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We introduce bivariate quantiles which are defined through the bivariate distri-
bution function. This approach ensures that, unlike most multivariate medians or
the multivariate M-quartiles, the bivariate quantiles satisfy an analogous property
to that of the univariate quantiles in that they partition R2 into sets with a specified
probability content. The definition of bivariate quantiles leads naturally to the
definition of quantities such as the bivariate median, bivariate extremes, the bi-
variate quantile curve, and the bivariate trimmed mean. We also develop asymptotic
representations for the bivariate quantiles. © 2002 Elsevier Science (USA)
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1. INTRODUCTION

Order statistics or quantiles are the basis for a variety of useful explora-
tory and robust procedures for univariate data. It is desirable to extend
these procedures to multivariate data, but the lack of a natural ordering for
multivariate data (Kendall, 1966; Bell and Haller, 1969) has hindered the
definition of quantiles and hence the definition of procedures based on
them in multivariate problems.
Much of the work in generalizing quantiles to multivariate distributions
has concentrated on the particular case of the median or the extremes.
Weber (1909) defined the multivariate a1 median by minimizing the multi-
variate version of the absolute residuals. More recently, Oja (1983) defined
the multivariate simplex median by minimizing the sum of volumes of



simplices with vertices on the observations, and Liu (1988, 1990) intro-
duced the simplicial depth median maximizing an empirical simplicial
depth function. An excellent review of this work is given by Small (1990).
Extremes have been defined by Kudo (1957) as the observations with
maximum Mahalanobis distance. The componentwise or marginal extreme
has been studied by Sibuya (1960) and many other authors. This definition
is quite reasonable for some applications but not for outlier detection
because it does not in general identify a particular bivariate observation as
the extreme from a sample (see Smith et al., 1990). General multivariate
quantiles (which of course include the multivariate median and extremes as
special cases) are more difficult to define. The approach of taking a mini-
mization problem whose solution is the univariate quantile, generalizing
the minimization problem to the multivariate case, and then defining
multivariate quantiles to be solutions of this minimization problem has
been taken by Breckling and Chambers (1988) and Koltchinski (1997).
Maller (1988) considered a fixed family of sets indexed by a univariate
parameter (such as spheres) and implicitly defined ath multivariate quan-
tiles to be the boundary of the largest member of the family (in terms of the
index parameter) which has probability less than a. A related approach was
developed by Einmahl and Mason (1992) who defined the multivariate ath
quantile to be the smallest (based on a real-valued function) Borel set that
has probability greater than or equal to a.
The ath quantile of a univariate distribution is a point that partitions the
real line into two sets such that the probability of the set to the left of the
quantile is approximately a and the probability of the set to the right of
the quantile is approximately 1−a. Most of the multivariate medians and
the multivariate M-quantiles do not satisfy this kind of probability
cumulation condition because their definitions do not involve the cumula-
tive probability distribution. Moreover, as noted by Chaudhuri (1996),
most authors try to introduce descriptive statistics that generalize the
concept of univariate quantiles to the multivariate setup without discussing
what they are trying to estimate. That is, almost no attention is paid to the
underlying population quantile. These issues, together with computational
simplicity, motivate our definition of bivariate quantiles. Our approach is
analogous to that used in the univariate case: We first specify the popula-
tion quantile in terms of the underlying cumulative distribution and then
construct estimators of the population quantiles simply by replacing the
cumulative distributions by sample cumulative distributions. This definition
leads naturally to the definition of quantities such as the bivariate median,
bivariate extremes, the bivariate interquantile area, and the bivariate
trimmed mean.
We define two different types of bivariate quantile points in Section 2.
We present sample estimators of these bivariate quantile points and
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establish their large sample properties in Section 3. We introduce bivariate
quantile curves in Section 4 and show how they can be used to define
bivariate extremes, the bivariate interquantile range, and bivariate trimmed
means. We apply the bivariate quantiles in Section 5 and briefly discuss
extensions to higher dimensions in Section 6.

2. BIVARIATE QUANTILE POINTS

Our approach to the bivariate case is to define quantiles as points which
satisfy natural generalisations of the probability cumulation condition. We
begin by considering a natural, fixed direction in R2 and then consider
using the distribution of X to choose a particular direction.

2.1. North–South Bivariate Quantile Points

Suppose that we fix the direction for convenience from south to north.
Then, each point (a, b) ¥R2 partitions R2 into the sets A1={(x1, x2)Œ: x2 \ b},
A2={(x1, x2)Œ: x1 [ a, x2 [ b}, and A3={(x1, x2)Œ: x1 \ a, x2 [ b}. The point
(a, b) can be thought of as a bivariate (P(A2), P(A3))th quantile point. It is
convenient to express the formal definition in terms of the usual bivariate
distribution function F(x1, x2)=P(X1 [ x1, X2 [ x2) and the marginal
distribution function F2 of X2. By analogy to the univariate quantile, we
introduce the following definition.

Definition 2.1. The (a1, a2)th NS bivariate quantile point is the vector
t(a1, a2)=(F

−1
12 (a1, a2), F

−1
2 (a1+a2))Œ which satisfies

F−12 (a1+a2)=inf{x2: F2(x2) \ a1+a2}

and

F−112 (a1, a2)=inf{x1: F(x1, F
−1
2 (a1+a2)) \ a1},

for a1, a2 \ 0 and a1+a2 [ 1. The ath NS bivariate quantile point is defined
as t(a)=t(12 a,

1
2 a), 0 [ a [ 1, and we call the t(

1
2) the NS bivariate median

point.

The marginal quantiles arise as components of NS bivariate quantile
points: The second component is the a=a1+a2 quantile of X2 and when
a1=1−a2=a, the first component is F

−1
12 (a, 1−a)=F

−1
1 (a), the ath

quantile of X1 (and the second component is F
−1
2 (1)). If X1 and X2 are

independent, then F−112 (a1, a2)=F
−1
1 (a1/(a2+a2)).
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Example 1. Consider the random vector with the bivariate continuous
uniform distribution on (0, 1)×(0, 1) which has probability density
function

f(x1, x2)=˛
1 if 0 < x1 < 1, 0 < x2 < 1
0 otherwise.

The (a1, a2)th and ath NS bivariate quantile points are

t(a1, a2)=1
a1

a1+a2
, a1+a2 2 and t(a)=11

2
, a2 .

The NS bivariate median point is (12 ,
1
2).

2.2. Bivariate Quantile Points

One aspect of the definition of NS bivariate quantile points that is un-
satisfactory is that the north–south direction, while very natural, is fixed
and arbitrary. We therefore develop a definition of bivariate quantile
points which allows the distribution of X to specify the appropriate direc-
tion. The resulting bivariate quantile has the additional advantage of
satisfying an equivariance condition.
Suppose that X=(X1, X2)Œ has location vector m and positive definite
spread matrix S. Since S is positive definite, there is an orthogonal matrix
P such that S=P LPŒ, where L is the diagonal matrix of eigenvalues
l1 [ l2 of S. Let v1 and v2 denote the eigenvectors of S corresponding to
l1 and l2, respectively. Set S1/2=P L1/2 so that S=S1/2S1/2Œ. Let the
bivariate vectors s −1 and s

−

2 denote the rows of S
−1/2Œ. Then let

Y=RY1
Y2
S=S−1/2Œ(X−m). (2.1)

We denote the joint distribution function of Y1 and Y2 by G and the
marginal distribution functions of Y1 and Y2 by G1 and G2, respectively.

Definition 2.2. For a1, a2 \ 0 and a1+a2 [ 1, the bivariate vector
g(a1, a2) is an (a1, a2)th bivariate quantile point if

g(a1, a2)=m+S1/2t*(a1, a2),

where t*(a1, a2)=(G
−1
12 (a1, a2), G

−1
2 (a1+a2))Œ is the (a1, a2)th NS bivariate

quantile point of Y=S−1/2Œ(X−m). We also write g(a)=g(12 a,
1
2 a), 0 [

a [ 1, and call g(12) the bivariate median point.

At least for theoretical calculations, it is useful to note that, if Y1 and
Y2 are independent, then G

−1
12 (a1, a2)=G

−1
1 (a1/(a2+a2)). In general,
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(G−112 (a1, a2), G
−1
2 (a1+a2))Œ is the NS bivariate quantile point for the

reweighted variable Y, and the bivariate quantile point is a back trans-
formation of this NS bivariate quantile point to the scale of X. This
means that the bivariate quantile point satisfies a rotated version of the
probability cumulation condition.
The following theorem shows that the bivariate quantile points also
satisfy a rotational equivariance property.

Theorem 2.3. Suppose that S1/2(AX+b)=AS1/2(X) and m(AX+b)=
Am(X)+b. Then the bivariate quantile satisfies

g(a1, a2, AX+b)=Ag(a1, a2, X)+b.

Proof. Notice that

S−1/2Œ(AX+b)(AX+b−m(AX+b))=S−1/2Œ(X)(X−m(X))

so

R G
−1
12 (a1, a2, AX+b)

G−12 (a1+a2, AX+b)
S=R G

−1
12 (a1, a2, X)

G−12 (a1+a2, X)
S .

It follows immediately that

g(a1, a2, AX+b)=S1/2(AX+b) R
G−112 (a1, a2, AX+b)
G−12 (a1+a2, AX+b)

S+m(AX+b)

=AS1/2(X) R G
−1
12 (a1, a2, X)

G−12 (a1+a2, X)
S+Am(X)+b

=Ag(a1, a2, X)+b. L

Example 2. Consider the bivariate normal distribution

N 1R0
0
S , R 1 r

r 1
S2 .

Figure 1 shows the NS bivariate quantile points (on the curve from ns1 to
ns2) and the bivariate quantile points (on the curve from bq1 to bq2) for
r=0.8.
Recall that for any bivariate point x ¥ R2, the inner product
(x−m)Œ (q−m) is the projection of x−m onto the vector (q−m). We require
the following lemma which describes the vector q0 that maximizes the
variance of projections of fixed length.
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FIG. 1. The NS bivariate quantile points (on the curve from ns1 to ns2) and the bivariate
quantile points (on the curve from bq1 to bq2) for the bivariate normal distribution with
means zero, variances one, and correlation r=0.8.

Lemma 2.4. Suppose that X has mean m and covariance matrix S. Then
var[(X−m)Œ (q−m)] is maximized among all bivariate vectors q satisfying
||q−m||=c for c > 0, by

q0=cv2+m, (2.2)

where v2 is the eigenvector corresponding to the largest eigenvalue, say l2, of
S. We can also write

q0=S1/2 R 0c
`l2

S+m. (2.3)

Proof. Equation (2.2) follows from principal component analysis. Since
S1/2=P L1/2, we have

S1/2 R 0c
`l2

S+m=P L1/2 R 0c
`l2

S+m=P R0
c
S+m=cv2+m

which implies (2.3). L
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Lemma 2.4 establishes that if q0=cv2+m satisfies the ath probability
cumulation condition, then, var[(X−m)Œ (q0−m)] \ var[(X−m)Œ (q−m)]
for each q satisfying the ath probability cumulation condition and
||q−m||=||q0−m||.
The following theorem establishes conditions under which the bivariate
quantiles lie on the principal component axis.

Theorem 2.5. If Y1 and Y2 are independent with symmetric distributions,
then

q0=S1/2 R 0
G−12 (a)
S+m=`l2 G−12 (a) v2+m. (2.4)

That is, q0=g(a), the ath bivariate quantile.

Proof. Since the distribution of Y1 is symmetric about zero, the result
follows from the fact that G2(G

−1
2 (a))=a and P(Y1 [ 0)=1/2. L

Some members of the elliptical family of distributions such as the
bivariate normal distribution satisfy the conditions of Theorem 2.5.

2.3. Relationships between NS and Bivariate Median Points

The NS bivariate quantile points and the bivariate quantile points coin-
cide when the random variables X1 and X2 are independent but not
otherwise. Nonetheless, if the distribution of X is symmetric in the sense
that X−m and −(X−m) have the same distribution, the bivariate median
point can be expressed as the average of the NS bivariate median point and
the SN bivariate median point. This may be useful for avoiding the poten-
tial loss of efficiency from having to estimate m and S in order to estimate
the bivariate median point.

Theorem 2.6. If X has a continuous and symmetric distribution, then the
bivariate median

g(12)=
1
2 (t(

1
2)+t*(

1
2)),

where t*(12)=(F
g−1
12 (

1
4 ,
1
4), F

g−1
2 (

1
2))Œ satisfies

Fg−1
2 (

1
2)=sup{x2: P(X2 \ x2) \

1
2}

and

Fg−1
12 (

1
4 ,
1
4)=sup{x1: P(X1 \ x1, X2 \ F

g−1
2 (

1
2)) \

1
4}

with Fg
12(x1, x2)=P(X1 \ x1, X2 \ x2) and F

g
2 (x2)=P(X2 \ x2).
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Proof. Write Fg−1
12 (a)=F

g−1
12 (a/2, a/2). Clearly m is the bivariate

median. We see from the continuity and symmetry of the distribution that
Fg−1
2 (

1
2)=sup{x2 : P(X2 \ x2) \

1
2}=inf{x2 : P(X2 [ x2) \

1
2}=m2 . Again,

by symmetry, F−112 (
1
2) satisfies P(X1 [ F

−1
12 (

1
2), X2 [ m2)=

1
4 and F

g−1
12 (

1
2)

satisfies P(X1 \ F
g−1
12 (

1
2), X2 \ m2)=

1
4 . It follows from the symmetry prop-

erty that t(12) and t*(
1
2) are equidistant from m1 and this implies that

1
2 (F

−1
12 (

1
2)+F

g−1
12 (

1
2))=m1. L

3. SAMPLE BIVARIATE QUANTILE POINTS

Let Xi=(X1i, X2i)Œ be a random sample from the distribution with dis-
tribution function F and marginal distribution functions F1 and F2. Let the
density functions of F and F2 be f and f2, respectively. We assume the set
of assumptions listed in the Appendix throughout the rest of this paper.

3.1. Sample NS Bivariate Quantile Points

The empirical marginal distribution function of X2 and the empirical left
joint distribution function of X1 and X2 are F̂2(x2)=n−1;n

i=1 I(X2i [ x2)
and F̂(x1, x2)=n−1;n

i=1 I(X1i [ x1, X2i [ x2), respectively.

Definition 3.1. The sample (a1, a2)th NS bivariate quantile point
t̂(a1, a2), the sample ath NS bivariate quantile point t̂(a), and the sample
NS bivariate median point t̂(12) are defined as in Definition 2.1 with F2 and
F replaced by F̂2 and F̂, respectively.

The sample (a1, a2) NS bivariate quantile has breakdown point
min{a1+a2, 1−(a1+a2)}. This implies that the breakdown point of the
sample NS bivariate median is 0.5. For comparison, the breakdown points
for Weber’s (1909) a1 median is 0.5, for Oja’s simplex median is 0, and for
the half space median is 1/3 (see Small (1990)).
To obtain the large sample properties of t̂(a1, a2), let d1(a1, a2)=

>F
−1
2 (a1+a2)
−. f(F−112 (a1, a2), x2) dx2 and d2(a1, a2)=>F

−1
12 (a1, a2)
−. fx1 | x2 (x1 | F

−1
2 (a1

+a2)) dx1, where fx1 | x2 is the conditional probability density function of X1
given X2=x2 and F

−1
12 (a1, a2) satisfies F(F

−1
12 (a1, a2), F

−1
2 (a1+a2))=a1.

Our main result is the following theorem.

Theorem 3.2. The components of the sample (a1, a2)th NS bivariate
quantile t̂(a1, a2) satisfy
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n1/2(F̂−112 (a1, a2)−F
−1
12 (a1, a2))

=d1(a1, a2)−1 53
a1

a1+a2
−d2(a1, a2)4

×n−1/2 C
n

i=1
{a1+a2−I(X2i [ F

−1
2 (a1+a2))}

+n−1/2 C
n

i=1

31 a1
a1+a2

−I(X1i [ F
−1
12 (a1, a2))2

×I(X2i [ F
−1
2 (a1+a2))46+op(1),

and

n1/2(F̂−12 (a1+a2)−F
−1
2 (a1+a2))

=f−12 (F
−1
2 (a1+a2)) n

−1/2 C
n

i=1
{a1+a2−I(X2i [ F

−1
2 (a1+a2))}+op(1).

The proof is given in the Appendix.

Corollary 3.3. The asymptotic distribution of the centered and
normalized (a1, a2)th NS bivariate quantile n1/2(t̂(a1, a2)−t(a1, a2))=
n1/2(F̂−112 (a1, a2)−F

−1
12 (a1, a2), F̂

−1
2 (a1+a2)−F

−1
2 (a1+a2))Œ is bivariate nor-

mal with mean vector zero and covariance matrix S̃=(sij, i, j=1, 2), where

s11=d1(a1, a2)−2 51
a1

a1+a2
−d2(a1, a2)2

2

(a1+a2)(1−(a1+a2))+
a1a2

a1+a2
6

s12=d1(a1, a2)−1 f2(F
−1
2 (a1+a2))

−1 1 a1
a1+a2

−d2(a1, a2)2

×(a1+a2)(1−(a1+a2))

and

s22=f2(F
−1
2 (a1+a2))

−2 (a1+a2)(1−(a1+a2)).

3.2. Sample Bivariate Quantile Points

Put Yi=(Y1i, Y2i)Œ=S−1/2Œ(Xi− m̂), where S and m̂ represent estimators of
S and m, respectively. The corresponding empirical distribution functions
of Y=(Y1, Y2)Œ and Y2 are Ĝ(y1, y2)=

1
n;n

i=1 I(Y1i [ y1, Y2i [ y2) and
Ĝ2(y2)=n−1;n

i=1 I(Y2i [ y2), respectively.
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Definition 3.4. The sample (a1, a2)th bivariate quantile point and the
sample bivariate median point ĝ(12) are defined as in Definition 2.2 with m,
S, G2, and G replaced by m̂, S, Ĝ2, and Ĝ, respectively.

Arguments similar to those used to prove Theorem 2.4 show that the
sample bivariate quantile point is equivariant provided the estimators S
and m̂ are equivariant.
We assume that g and g2 are continuous, positive, and finite and that g2,
g −2, g, “g/“y1, and “g/“y2 are bounded functions.

Theorem 3.5. Let (Yg
1i, Y

g
2i)Œ=S

−1/2Œ(Xi−m). Then the sample bivariate
quantile point satisfies

n1/2(ĝ(a1, a2)−g(a1, a2))=n1/2(S1/2−S1/2) R
G−112 (a1, a2)
G−12 (a1+a2)

S

+S1/2n1/2 1R Ĝ
−1
12 (a1, a2)

Ĝ−12 (a1+a2)
S−R G

−1
12 (a1, a2)

G−12 (a1+a2)
S2+n1/2(m̂−m)+op(1),

where

n1/2(Ĝ−12 (a1+a2)−G
−1
2 (a1+a2))

=g2(G
−1
2 (a1+a2))

−1 n−1/2 C
n

i=1
{a1+a2−I(Y

g
2i [ G

−1
2 (a1+a2))}

−s −2n
1/2(m̂−m)+Ẽ −2n

1/2(s2−s2)+op(1)

and

n1/2(Ĝ−112 (a1, a2)−G
−1
12 (a1, a2))

=(p21 g1(G
−1
12 (a1, a2)))

−1 5n−1/2 C
n

i=1

3 a1
a1+a2

−I(Yg
1i [ G

−1
12 (a1, a2))4

×I(Yg
2i [ G

−1
2 (a1+a2))+5

a1

a1+a2
−p126 n−1/2

× C
n

i=1
{a1+a2−I(Y

g
2i [ G

−1
2 (a1+a2))}

−g1(G
−1
12 (a1, a2)) p21s

−

1n
1/2(m̂−m)+g1(G

−1
12 (a1, a2)) Ẽ

−

21n
1/2(s1−s1)

+g2(G
−1
2 (a1+a2))(Ẽ

−

12−p12Ẽ
−

2) n
1/2(s2−s2)6+op(1)
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with s −1 and s
−

2 the rows of S
−1/2Œ,

Ẽ2=E(X−m | Y
g
2=G

−1
2 (a1+a2)),

p21=P(Y
g
2 [ G

−1
2 (a1+a2) | Y

g
1=G

−1
12 (a1, a2)),

p12=P(Y
g
1 [ G

−1
12 (a1, a2) | Y

g
2=G

−1
2 (a1+a2)),

Ẽ12=E[(X−m) I(Y
g
1 [ G

−1
12 (a1, a2) | Y

g
2=G

−1
2 (a1+a2)],

Ẽ21=E[(X−m) I(Y
g
2 [ G

−1
2 (a1+a2) | Y

g
1=G

−1
12 (a1, a2)].

3.3. An Estimator of the Bivariate Median Point under Symmetry

We showed in Section 2.3 that g(12)=
1
2 (t(

1
2)+t*(

1
2)) under symmetry. We

now explore the properties of the estimator of g(12) constructed from
1
2 (t(

1
2)+t*(

1
2)).

Let F̂g
2 (x2)=n

−1;n
i=1 I(X2i \ x2) and F̂

g
12(x1, x2)=n

−1;n
i=1 I(X1i \ x1,

X2i \ x2).

Theorem 3.6. Let t̂m=
1
2 (t̂*(

1
2)+t̂(

1
2)) where t̂*(

1
2) is defined in

Theorem 2.6 with Fg
2 and F

g
12 replaced by F̂

g
2 and F̂

g
12, respectively. Then, if

the distribution of X is symmetric, n1/2(t̂m−m) has the same asymptotic
distribution as that of n1/2(F̂−112 (1/2)−F

−1
12 (1/2), F̂

−1
2 (1/2)−F

−1
2 (1/2))Œ in

Corollary 3.3 with a1=a2=
1
4 .

The proof of Theorem 3.6 is analogous to that of Theorem 3.5 and so is
omitted.
Thus when the bivariate distribution is symmetric, we can obtain a
consistent estimator of the bivariate median without having to estimate m
and S.
If we use ĝ(12) to estimate g(

1
2), we need to estimate at least S and perhaps

also m, and the estimates of these quantities affect the efficiency of ĝ(12). On

TABLE I

Efficiencies of the Sample Mean X̄, Sample Bivariate Median ĝ, and t̂m for r=0.2

Estimate s=1 s=3 s=5 s=10 s=15

d=0.1
X̄ 1.000 0.968 0.538 0.171 0.083
ĝ 0.657 0.973 0.962 0.876 0.832
t̂m 0.679 1.000 1.000 1.000 1.000

d=0.2
X̄ 1.000 0.807 0.389 0.110 0.048
ĝ 0.675 0.971 0.950 0.946 0.929
t̂m 0.671 1.000 1.000 1.000 1.000
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TABLE II

Efficiencies of the Sample Mean X̄, Sample Bivariate Median ĝ, and t̂m for r=0.8

Estimate s=1 s=3 s=5 s=10 s=15

d=0.1
X̄ 1.000 0.872 0.512 0.151 0.074
ĝ 0.698 0.933 0.955 0.842 0.853
t̂m 0.725 1.000 1.000 1.000 1.000

d=0.2
X̄ 1.000 0.707 0.334 0.097 0.043
ĝy 0.636 1.000 0.985 0.972 0.969
ĝm 0.679 0.977 1.000 1.000 1.000

the other hand, t̂m does not require estimates of either S or m so it may be
more efficient than ĝ(12). To explore this possibility, we computed the
asymptotic variances of the three estimators X̄, ĝ(12) (using the sample mean
and variance to estimate m and S, respectively), and t̂m under the bivariate
mixture distribution

(1−d) N 1Rm1
m2

S , R 1 r

r 1
S2+dN 1Rm1

m2

S , Rs
2 0
0 s2
S2

and compared their efficiencies. We present the results in Tables I and II in
terms of the ratio of the minimum asymptotic variance of the three estima-
tors to the asymptotic variance of each estimator so that the efficiency is
always less than one. That is, the most efficient estimator has efficiency
equal to one.
Not surprisingly, for small s, the sample mean X̄ is the most efficient
estimator. As s increases, t̂m becomes the most efficient estimator. While
t̂m is mostly more efficient than ĝ(

1
2), the improvement in efficiency through

using t̂m is quite small.

4. QUANTILE CURVES AND OTHER DERIVED QUANTITIES

The analogue of the real interval [F−1(a1), F−1(a2)] in two dimensions is
a set J(a) whose boundaries can be called bivariate quantile curves. By
analogy to the univariate case, it is most useful to think of J(a) as a set
bounded by two quantile curves. Thus, while we have thought of bivariate
quantiles as points in R2, for many purposes, it is more natural to think of
a bivariate quantile as a curve in R2.

BIVARIATE QUANTILES 219



Once we have defined an appropriate set J(a) or equivalently appropri-
ate quantile curves, we can then define the extremes to be the extreme
quantile curves (the boundaries of the extreme set J(0, 0, 12 ,

1
2)), we can

generalize the interquantile range to the interquantile area which is the area
A(a)=>J(a) dx of J(a), and we can define the trimmed mean to be the
mean over the set J(a), namely m(a)=(>J(a) dF(x))−1 >J(a) x dF(x). These
derived quantities are equivariant or not according to whether the quantile
curves are equivariant or not, so it is of particular interest to construct
equivariant quantile curves.
One simple analogy to the univariate quantile interval is the bivariate
quantile parallelogram.

Definition 4.1. The a=(a1, a2, a3, a4)Œth bivariate quantile parallelo-
gram is

P(a)=3S1/2 Ry1
y2
S+m : G−112 (a1, a2) [ y1 [ G−112 (a3, a4),

G−12 (a1+a2) [ y2 [ G
−1
2 (a3+a4)4

for a1 [ a3 and a2 [ a4.

Just as we can think of the quantile interval as the intersection of the
two intervals [F−1(a1),.) and (−., F−1(a2)], with the finite boundaries
defining the quantiles, we can think of the quantile parallelogram as the
intersection of the two sets with finite boundaries

C(a1, a2)=boundary 3S1/2 R
y1
y2
S+m : y1 [ G−112 (a1, a2), y2 [ G−12 (a1+a2)4

if a1, a2 \
1
2 and

C(a1, a2)=boundary 3S1/2 R
y1
y2
S+m : y1 \ G−112 (a1, a2), y2 \ G−12 (a1+a2)4

if a1, a2 [
1
2 . (In most practical applications, it will be sensible to have both

arguments equal and hence on the same side of 12 .) The curves C(a1, a2) are
potential quantile curves which we call the quantile parallelogram curves.

Definition 4.2. The ath quantile parallelogram curve is given by

C(a)=boundary 3S1/2 Ry1
y2
S+m : y1 [G−112 11−a,

1
2
a2, y2 [G−12 11−

1
2
a24
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if a \ 1
2 and

C(a)=boundary 3S1/2 Ry1
y2
S+m : y1 \ G−112 1

1
2
a, 1−a2 , y2 \ G−12 1

1
2
a24

if a [ 1
2 .

Example 2 (continued). Consider again the bivariate normal distribu-
tion of Example 2 with r=0.8. Quantile parallelograms for this distribu-
tion are shown in Fig. 2 with a=0.025, 0.05, 0.1, and 0.2 (denoted by p1,
p2, p3, and p4, respectively).

A different approach is to consider defining a bivariate quantile point
for each possible rotation of the coordinate system and then rotate the
resulting curve back into the original coordinate system. Thus, if we let

RZ1(h)
Z2(h)
S=Rcos(h) − sin(h)

sin(h) cos(h)
SRY1
Y2
S ,

FIG. 2. The quantile curves for a=0.02, 0.2, and 0.4 (denoted qc.02, qc.2, and qc.4 in (a))
and the quantile curves for a=0.6, 0.8, and 0.98 (denoted qc.6, qc.8 and qc.98 in (b)).
(a) Quantile parallelograms and quantile curves (0 [ h [ p). (b) Quantile parallelograms and
quantile curves (p [ h < 2p).
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we can define the (a1, a2)th NS bivariate quantile point th(a1, a2) for
(Z1(h), Z2(h))Œ. The (a1, a2)th quantile curve is then

S1/2 R cos(h) sin(h)
− sin(h) cos(h)

S th(a1, a2)+m (4.1)

viewed as a function of h for fixed a1 and a2. (We can define the (a1, a2)th
NS bivariate quantile curve by replacing Y by X and omitting the final
renormalization by S1/2 and m.)
If we consider all possible rotations (all possible values of h), the quantile
curves are closed. (For the bivariate normal distribution, the curves are
ellipses in R2.) These quantiles reduce to a point in the upper tail and one
in the lower tail for the univariate case. This is not really what we think of
as a univariate quantile. An approach which reduces in the univariate case
to the univariate quantile is to consider only half the set of possible rota-
tions corresponding to the intersection of the closed curve with the half-
plane x2 > x1 if a1+a2 >

1
2 and with the other half-plane otherwise. In this

case, the quantile curve is defined in the half-plane on either side of the line
x2=−x1. To partition the space R2, we can extend the curve linearly along
the boundary line x2=−x1.

Definition 4.3. The bivariate quantile curve is the intersection of the
curve defined by (4.1) with the set {(x1, x2)Œ: x2 \ −x1} if a >

1
2 and

{(x1, x2)Œ: x2 [ −x1} if a <
1
2 .

Example 2 (continued). Consider again the bivariate normal distribu-
tion of Example 2 with r=0.8. Figure 2a shows the quantile curves for
a=0.02, 0.2, and 0.4 (denoted qc.02, qc.2, and qc.4) and Fig. 2b shows the
quantile curves for a=0.6, 0.8, and 0.98 (denoted qc.6, qc.8, and qc.98).

We can apply the quantile curve approach using the marginal quantile
instead of a bivariate quantile point. Of course, the points on the curve
then no longer satisfy bivariate probability cumulation conditions. We
could also consider using the boundaries of the sets defined by Einmahl
and Mason (1992) to define quantile curves but our approach is computa-
tionally simpler.
Estimators of the quantile curves and the derived quantities are easily
constructed simply by replacing the unknown population quantities by
their empirical analogues.

5. EXAMPLES

In this section, we examine the quantiles of two real data sets. In the first
example we display the two proposed bivariate quantiles and illustrate the
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partitions of the data implied by them. In the second example, we illustrate
the use of NS bivariate quantile points as a basis for statistical inference.
Reaven and Miller (1979) measured several variables to compare normal
patients and diabetics. Among the variables, the three variables of major
interest were X1, glucose intolerance; X2, insulin response to oral glucose;
and X3, insulin resistance. For our bivariate quantile analysis, we consider
the variables X1 and X2. Figures 3a and 3b show, respectively, the NS
bivariate quantile points t̂(a), for a=0.1, 0.2, ..., 0.9 (labeled × and
denoted ns1, ..., ns9), and the bivariate quantile points ĝ(a) (labeledg and
denoted bq1, ..., bq9). We have also included the observations (labeled · )
and the partitions of the data implied by the NS bivariate quantile point
and the bivariate quantile point at a=0.7 (denoted ns.7 and bq.7).
The sales price of rural land depends on many variables, including the
closeness of a parcel to transportation facilities. Maddala (1988) gives a
sample of size 67 of data on sales prices (per acre) of rural land near
Sarasota, Florida, and some other variables. For a bivariate variables

FIG. 3. The NS bivariate quantile points t̂(a), for a=0.1, 0.2, ..., 0.9 (labeled × and
denoted ns1, ..., ns9 in (a)) and the bivariate quantile points ĝ(a) (labeled g and denoted
bq1, ..., bq9 in (b)). We also show the observations (labeled · ) and the partitions of the data
implied by the NS bivariate quantile point and the bivariate quantile point at a=0.7 (denoted
ns.7 and bq.7, respectively). (a) Sample NS bivariate quantile points for normal patients.
(b) Sample bivariate quantile points for normal patients.
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TABLE III

Sample NS Bivariate Quantiles

a t̂(a) a t̂(a) a t̂(a)

0.1 R3000
2
S 0.4 R3977

3.2
S 0.7 R5172

5.4
S

0.2 R4234
2.5
S 0.5 R4821

4
S 0.8 R5000

6.4
S

0.3 R4764
2.9
S 0.6 R5172

4.9
S 0.9 R4835.5

12.4
S

analysis, we consider the variables sale price (X1) and distance from the
parcel to the I-75 freeway (X2). To see if these two variables are related, we
could fit a simple linear regression model with X1 as the dependent variable
and X2 as the independent variable and then test the significance of the
slope parameter, not to be greater than zero. We can explore the hypothesis
informally by examining the NS bivariate quantiles

t̂(a)=R F̂
−1
12 (a/2, a/2)
F̂−12 (a)
S .

Since F̂−112 (a/2, a/2) represents the median of the observations (x1i, x2i)Œ
subject to X2i [ F̂

−1
2 (a), there will be a positive relationship between X1

and X2 if F̂
−1
12 (a/2, a/2) decreases as a increases. We display the NS bi-

variate quantiles for a=0.1, 0.2, ..., 0.9 in Table III. Clearly, F̂−112 (a/2, a/2)
does not decrease in a, providing evidence against the hypothesis. Note
that this exploration does not require the assumption of a linear relation-
ship between X1 and X2.

6. HIGHER DIMENSIONS

The bivariate quantile can be extended to higher dimensional observa-
tions. Suppose that the random vector X=(X1, X2, ..., Xp)Œ has a location
vector m and positive spread matrix S. Again, let the p-vectors s −1,
s −2, ..., s

−

p denote the rows of S
−1/2Œ. We denote the distribution function of

the random variablesXj, ..., Xp by Fj...p(xj, ..., xp). When j=1 we also write
F=F1...p. The (a1, a2, ..., ap)th NS multivariate quantile point is the vector
t(a1 , a2 , ..., ap)=(F

−1
12..p(a1 , a2 , ..., ap), F

−1
2..p(a1+a2 , a3 , ..., ap), ..., F

−1
p−1p(a1

+·· ·+ap−1, ap), F
−1
p (a1+a2+·· ·+ap))Œ which satisfies
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F−1p (a1+a2+·· ·+ap)=inf{xp: Fp(xp) \ a1+a2+·· ·+ap},

F−1p−1p(a1+·· ·+ap−1, ap)=inf{xp−1: Fp−1p(xp−1, F
−1
p (a1+a2+·· ·+ap))

\ a1+·· ·+ap−1},

x

F−123..p(a1+a2, a3, ..., ap)=inf{x2: F23..p(x2, F
−1
3..p(a1+a2+a3, a4, ..., ap), ...,

F−1p (a1+a2+·· ·+ap)) \ a1+a2},

and

F−112..p(a1, a2, ..., ap)=inf{x1: F(x1, F
−1
2...p(a1+a2, a3, ..., ap), ...,

F−1p (a1+a2+·· ·+ap)) \ a1},

for a1, a2, ..., ap \ 0 and a1+a2+·· ·+ap [ 1.
For a1, a2, ..., ap \ 0 and a1+a2+·· ·+ap [ 1, the vector g(a1, a2, ..., ap)
is an (a1, a2, ..., ap)th multivariate quantile point if

g(a1, a2, ..., ap)=m+S1/2t*(a1, a2, ..., ap),

where t*(a1, a2, ..., ap)=(G
−1
12..p(a1, a2, ..., ap), G

−1
23..p(a1+a2, a3, ..., ap), ...,

G−1p−1p(a1+·· ·+ap−1, ap), G
−1
p (a1+a2+·· ·+ap))Œ is the (a1, a2, ..., ap)th

NS multivariate quantile point of Y=S−1/2Œ(X−m).

APPENDIX

Let a1 and a2 \ 0 and a1+a2 [ 1. The following conditions are assumed
to be true for random vector X, m̂, and S:

(a1) The probability density function f2 and the conditional proba-
bility density function fx1 | x2 , with x2=F

−1
2 (a1+a2), and their derivatives

are both bounded and bounded away from 0 in neighborhoods of F−12 (a)
and F−112 (a1, a2), respectively.
(a2) There exists t > 0 such that the probability density function of

(X−m)Œ (sj+d) is uniformly bounded in a neighborhood of H, with
H=G−12 (a) if j=2 and H=G

−1
12 (a1, a2) if j=1, for ||d|| [ t and the

probability density function of (X−m)Œ (sj+d)(X−m)Œ u((X−m)Œ sj) is
uniformly bounded away from zero for ||u||=1 and ||d|| [ t, for j=1, 2.
(a3) E(((X−m)Œ sj)2 ||(X−m)||) <. for j=1, 2.
(a4) n1/2(m̂−m)=Op(1) and n1/2(S−S)=Op(1).
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Proof of Theorem 3.2. The representation of F̂−12 (a1, a2) can be seen in
Ruppert and Carroll (1980). The first component of the sample NS
bivariate quantile point F̂−112 (a1, a2) can be formulated as a solution of the
problem

min
a

C
n

i=1
(X1i−a) 1

a1

a1+a2
−I(X1i [ a)2 I(X2i [ F̂−12 (a1, a2)).

Let

S(t1, t2)=n−1/2 C
n

i=1

3 a1
a1+a2

−I(X1i [ F
−1
12 (a1, a2)+n

−1/2t1)4

×I(X2i [ F
−1
2 (a1+a2)+n

−1/2t2).

Then we need to show that

sup
||t1|| [ k, ||t2|| [ kŒ

:S(t1, t2)−S(0, 0)+5
a1

a1+a2
f2(F

−1
2 (a1+a2)) t2

−d1(a1, a2) t1−f2(F
−1
2 (a1+a2)) d2(a1, a2) t26 :=op(1). (7.1)

Now, (7.1) is bounded above by the two terms

a1

a1+a2
sup
||t2|| [ k

:n−1/2 C
n

i=1
{I(X2i [ F

−1
2 (a1+a2)+n

−1/2t2)

−I(X2i [ F
−1
2 (a1+a2))}−f2(F

−1
2 (a1+a2)) t2 : ,

which is op(1) by the properties of univariate quantiles, and

sup
||t1|| [ k, ||t2|| [ kŒ

|S̃(t1, t2)− S̃(0, 0)−{d1(a1, a2) t1

+f2(F
−1
2 (a1+a2)) d2(a1, a2) t2}|, (7.2)

where

S̃(t1, t2)=n−1/2 C
n

i=1
I(X1i [ F

−1
12 (a1, a2)+n

−1/2t1, X2i [ F
−1
2 (a1+a2)+n

−1/2t2).

The result (7.1) will follow if we can show that the term in (7.2) is op(1).
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We have

E |I{X1i [ F
−1
12 (a1, a2)+n

−1/2t11, X2i [ F
−1
2 (a1+a2)+n

−1/2t12}

−I{X1i [ F
−1
12 (a1, a2)+n

−1/2t21, X2i [ F
−1
2 (a1+a2)+n

−1/2t22}|

[ E |I{X1i [ F
−1
12 (a1, a2)+n

−1/2t11}−I{X1i [ F
−1
12 (a1, a2)+n

−1/2t21}|

+E |I{X2i [ F
−1
2 (a1+a2)+n

−1/2t12}−I{X2i [ F
−1
2 (a1+a2)+n

−1/2t22}|

[M(||t21−t
1
1 ||+||t

2
2−t

1
2 ||)

and, similarly,

E sup
||t1 −t

1
1 ||[ k, ||t2 −t

1
2||[ kŒ
|I{X1i [ F

−1
12 (a1, a2)+n

−1/2t1, X2i [ F
−1
2 (a1+a2)+n

−1/2t2}

−I{X1i [ F
−1
12 (a1, a2)+n

−1/2t11, X2i [ F
−1
2 (a1+a2)+n

−1/2t12}|

[ C{P(|X1i−F
−1
12 (a1, a2)| [ k+kŒ)+P(|X2i−F

−1
2 (a1+a2)| [ k+kŒ)}

[ CŒ(k+kŒ).

We can apply Lemma 3.2 of Bai and He (1998) to show that (7.2) is op(1)
provided

sup
||t1|| [ k, ||t2|| [ kŒ

||E(S̃(t1, t2)− S̃(0, 0))−{d1(a1, a2) t1

+f2(F
−1
2 (a1+a2)) d2(a1, a2) t2}||=op(1). (7.3)

Using the techniques of Jurečková (1984), we can establish both (7.3)
and also that n1/2(F̂12(a1, a2)−F

−1
12 (a1, a2))=Op(1). Using the fact that

n1/2(F̂−12 (a1+a2)−F
−1
2 (a1+a2))=Op(1), the theorem then follows.

Proof of Theorem 4.2. The second component of the sample bivariate
quantile point Ĝ−12 (a) can be formulated as a solution of the minimization
problem

min
a

C
n

i=1
(Y2i−a)(a−I(Y2i [ a)).

By letting

F1(t1, t2, t3)=n−1/2 C
n

i=1
[a−I{(s2+n−1/2t3)Œ (Xi−m) [ G

−1
2 (a)

+n−1/2((s2+n−1/2t3)Œ t1+n−1/2t2}],
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the representation for Ĝ−12 (a) follows from:
(a) F1(T1 , T2 , T3)−F1(0, 0, 0)−g2(G

−1
2 (a))[s

−

2T1+T2 −T
−

3Ẽc2 (a)]=
op(1) for any sequences Tj with Tj=Op(1).
(b) n1/2(Ĝ−12 (a)−G

−1
2 (a))=Op(1), and

(c) n −1/2; n
i=1 (a−I(Y2i [ Ĝ

−1
2 (a))=F1(n

1/2(m̂−m), n 1/2(Ĝ −12 (a) −
G−12 (a)), n

1/2(s2−s2))=op(1).
The proof of the above statements can be derived by similar arguments to
those used in the proof in Chen et al. (1999) and is therefore omitted. The
proof for Ĝ−112 (a1, a2) which follows also establishes a more general case.
The first component of the sample bivariate quantile, Ĝ−112 (a1, a2), is a
solution of the minimization problem

min
a

C
n

i=1
(Y1i−a) 1

a1

a1+a2
−I(Y1i [ a)2 I(Y2i [ Ĝ−12 (a1+a2)).

Let

F̃1(tj)=n−1/2 C
n

i=1

5 a1
a1+a2

−I{(s1+n−1/2t4)Œ (Xi−m) [ G
−1
12 (a1, a2)

+n−1/2((s1+n−1/2t4)Œ t1+t3))6 I((s2+n−1/2t5)Œ (Xi−m)

[ G−12 (a1+a2)+n
−1/2((s2+n−1/2t5)Œ t1+t2))

and F̃(tj)=F̃1(tj)− F̃(0). Put

M̃(tj)=
a1

a1+a2
g2(G

−1
2 (a1+a2))[−t

−

5Ẽ2+s
−

2t1+t2]

−g1(G
−1
12 (a1, a2))[p21(s

−

1t1+t3)− t
−

4Ẽ21]

−g2(G
−1
2 (a1+a2))[−t

−

5Ẽ12+p12(s
−

2t1+t2)].

Then, we want to show that

max
tj \ kj

|F̃(tj)−M̃(tj)|=op(1). (7.4)

Let us denote

B(tj)=n−1/2 C
n

i=1
[I{(s1+n−1/2t4)Œ (Xi−m)

[ G−112 (a1, a2)+n
−1/2((s1+n−1/2t4)Œ t1+t3), (s2+n−1/2t5)Œ (Xi−m)

[ G−12 (a1+a2)+n
−1/2((s2+n−1/2t5)Œ t1+t2)}

−I{s −1(Xi−m) [ G
−1
12 (a1, a2), s

−

2(Xi−m) [ G
−1
2 (a1+a2)}].
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From the result in the first part of this proof, (7.4) is shown from the fact
that

sup
||tj|| [ kj

|B(tj)−h(tj)|=op(1), (7.5)

where

h(tj)=g1(G
−1
12 (a1, a2))[−t

−

4Ẽ21+p21(s
−

1t1+t3)]

+g2(G
−1
2 (a1+a2))[−t

−

5Ẽ12+p12(s
−

2t1+t2)],

which is implied from the following (see Chen et al. (2001) for analogous
proofs),

n−1 C
n

i=1
E(h̃i(t

1
j )− h̃i(t

2
j ))

2 [ n−1/2M C
5

j=1
||t2j −t

1
j ||, (7.6)

with writing B(tj)=n−1/2;n
i=1 h̃i(tj) and, fixing t

0
j ,

E sup
||t1j − t

0
j || [ k

|h̃i(t
0
j −t

1
j )| [ n

−1/2Mk for some M> 0. (7.7)

From (7.6), (7.7), and Lemma 3.2 of Bai and He (1999), we have

sup
||t0j || [ k

|F̃(t0j )−EF̃(t
0
j )|=op(1).

To complete the proof, we still need to show that

sup
||t0j || [ k

|EF̃(t0j )−M̃(t
0
j )|=o(1). (7.8)

Write

EF̃(t0j )=
a1

a1+a2
n1/2EI((s2+n−1/2t

0
5)Œ (X−m) [ G

−1
2 (a1+a2)

+n−1/2((s2+n−1/2t
0
5)Œ t

0
1+t

0
2))−n

1/2EI((s1+n−1/2t
0
4)Œ (X−m)

[G−112 (a1, a2)+n
−1/2((s1+n−1/2t

0
4)Œ t

0
1+t

0
3)), (s2+n

−1/2t05)Œ (X−m)

[ G−12 (a1+a2)+n
−1/2((s2+n−1/2t

0
5)Œ t

0
1+t

0
2))

=H1+H2.

We denote variables Yg
1=Y1−G

−1
12 (a1, a2) and Y

g
2=Y2−G

−1
2 (a1+a2). Let

Z1=t
0Œ
4 (X−m), Z2=t

0Œ
5 (X−m), d1=n

−1/2((s1+n−1/2t
0
4)Œ t

0
1+t

0
3), and d2=

n−1/2((s2+n−1/2t
0
5)Œ t

0
1+t

0
2). Then we can see that the two terms in the

following
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|H2+g1(G
−1
12 (a1+a2))[−t

0Œ
4 Ẽ21+p21(s

−

1t
0
1+t

0
3)]

+g2(G
−1
2 (a1, a2))[−t

0Œ
5 Ẽ12+p12(s

−

2t
0
1+t

0
2)]|

:H1−
a1

a1+a2
g2(G

−1
2 (a1+a2))[−t

0Œ
5 Ẽ2+s

−

2t
0
1+t

0
2] : [Mn−1/2

are all bounded byMn−1/2 which establishes (7.8).
Finally, as in Ruppert and Carroll (1980),

n−1/2 C
n

i=1

3 a1
a1+a2

−I(Y1i [ Ĝ
−1
12 (a1, a2))4 I{Y2i [ Ĝ−12 (a1+a2)}=op(1)

and, by an analogous argument to that given in Jurečková (1977,
Lemma 5.2), for e > 0 there exists k > 0, a > 0, and N such that

P 1 inf
||t3|| \ k

n−1/2 : C
n

i=1

1 a1
a1+a2

−I(Y1i [ G
−1
12 (a1+a2)+t3)2

I(Y2i [ Ĝ
−1
2 (a1+a2)) : < a2 < e

for n \N. These two results together establish that

n1/2(Ĝ−112 (a1, a2)−G
−1
12 (a1, a2))=Op(1)

and the representation for Ĝ−112 (a1+a2) follows.
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