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Abstract

In each training iteration of the self-organizing feature maps (SOFM), the adjustable
output nodes can be determined by the neighborhood size of the winning node. However,
it seems that the SOFM ignores some important information, which is the relationships
that actually exist between the input training data and each adjustable output node, in the
learning rule. By viewing input data and each adjustable node as a reference sequence
and a comparative sequence, respectively, the grey relations between these sequences can
be seen. This paper thus incorporates the grey relational coe8cient into the learning rule
of the SOFM, and a grey clustering method, namely the GSOFM, is proposed. From the
simulation results, we can see that the best result of the proposed method applied for
analysis of the iris data outperforms those of other known unsupervised neural network
models. Furthermore, the proposed method can e:ectively solve the traveling salesman
problem. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Kohonen originally proposed the self-organizing feature maps (SOFM) learning
algorithm in 1984 [19], and since then it has served as a powerful tool for a
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Fig. 1. Basic model of SOFM.

variety of applications, including problem solving for pattern recognition
and image processing. The SOFM can map the distribution of input data
with any number of dimensions to a one- or two-dimensional feature map graph,
preserving the statistical properties of the data distribution [16,17,3]. Further-
more, each output node of the SOFM is restricted to a smaller distance around
the cluster center in the cluster analysis [3]. SigniGcantly, this paper demonstrates
that the problem-solving capability of the SOFM can be enhanced by
incorporating grey relations, previously proposed by Deng [10], into the
SOFM.

We show the basic model of SOFM in Fig. 1, indicating that there are two
layers in the model: one is the Kohonen layer, consisting of multiple output
nodes with one- or two-dimensions; and the other is the input layer. Both lay-
ers are fully connected and each connection is given an adjustable weight. Let
the number of the output nodes to be m, the number of the input nodes be
n, and wi =(wi1; wi2; : : : ; win)(1 ≤ i ≤ m) be the connection weight vector cor-
responding to the output node i. Thus, wi can be viewed as the center of the
cluster i.

Whenever new input training data x=(x1; x2; : : : ; xn) is presented to the network
during the training phase of the SOFM, the output value of the output node i can be
obtained by computing the square of the Euclidean distance denoted by oi between
x and wi, as:

oi =(di)2 = ‖x − wi‖2 =
n∑

j=1

(xj − wij)2; 1 ≤ i ≤ m: (1)

If the node i∗ satisGes Eq. (2) then it is the winner.

(di∗)2 =min
i
oi; 1 ≤ i ≤ m: (2)

Adjustable output nodes including the winning node i∗ and its neighbor nodes are
determined by the neighborhood size of the winning node i∗, which can be denoted
by Li∗ . Subsequently, connection weights of the adjustable nodes are all updated.
The learning rule of the SOFM is as follows [19,16,17]:

Mwij = �(xj − wij); i∈Li∗ ; 1 ≤ j ≤ n; (3)
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where � is the learning rate. To achieve a better convergence, � and Li∗ should be
decreased gradually with learning time [17,22]. After su8cient training time, the
SOFM can map the distribution of input data with any dimensions to the Kohonen
feature maps.

By inspecting Eq. (3), we can see that the movable amount is determined
only by the learning rate and the di:erence between xj and wij. However,
it seems that the SOFM ignores some important information, which is the
relationships that actually exist between the input training data and each adjustable
output node, in the learning rule. Indeed, there exist distinct relationships between
any two subsystems in the real world [10,24], although we do not know
exactly what these relationships are. Grey theory, as proposed by Deng [10],
can perform grey relational analysis for these subsystems by dealing with
Gnite and incomplete output data series obtained from these subsystems [15].
Given one reference sequence, for example x, and some comparative sequences,
for example wi(1 ≤ i ≤ m), we can easily obtain the grey relation between
each corresponding data in these sequences by viewing the reference sequence
as a desired goal. Therefore, we consider that the learning rule should take into
account the grey relation which actually exists between wij and xj. Such a
signiGcant relation is called the grey relational coe8cient (GRC).
The connection weight wij can thus acquire more movement if there exists a
larger GRC between wij and xj. This paper incorporates the GRC into the learning
rule of the SOFM, and we refer to this novel combination as grey self-organizing
feature maps (GSOFM), which can thus be viewed as a grey clustering
method. This is the main di:erence between the original SOFM and the
GSOFM.

In the following sections, we Grst review concepts of the GRC and
describe how to compute the GRC between xj and wij in Section 2. In
Section 3, we describe in detail the GSOFM learning algorithm. To show the
problem-solving capability of the GSOFM, in Section 4, the performances are
examined by computer simulations on two representative problems: one is the
classiGcation problems, including the iris data proposed by Fisher [11], the
appendicitis data and the wine recognition data; the second is the traveling
salesman problems (TSP). In the Grst simulation, we compare the best result
of the GSOFM with that of the SOFM in each problem. Moreover, the best re-
sult of the GSOFM with respect to the iris data is compared with other known
unsupervised neural networks models. For applying the neural network with
unsupervised learning to classiGcation problems, the summarized results can
demonstrate the e:ectiveness and feasibility of the GSOFM. In the latter
simulation, we Grst brieNy introduce the TSP. Since it seems that the learning
algorithm introduced in Section 3 simpliGes the mechanism for lateral feedback,
we incorporate the neighborhood function into the learning rule. A complete learn-
ing algorithm of the GSOFM for solving the TSP is described in
Section 4.2. Subsequently, we apply the proposed method on the TSPLIB
problem set proposed by Reinelt [23] to show the e:ectiveness of the
GSOFM.
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2. Grey relational coe�cient (GRC)

Grey relational analysis is a method that can Gnd the relationships between one
major sequence and the other sequences in a given system [14]. Given the reference
sequence x=(x1; x2; : : : ; xn) and the comparative sequences wi =(wi1; wi2; : : : ; win)
(1 ≤ i ≤ m) with the normalized form, the GRC �ij between xj and wij(1 ≤ j ≤ n)
can be computed as [24,15,14,8]

�ij =
Mmin + 
Mmax

Mij + 
Mmax
; (4)

where 
 is the discriminative coe8cient (0 ≤ 
 ≤ 1), and usually 
=0:5 [14,8];
and

Mmin =min
i

min
j
|xj − wij|; 1 ≤ i ≤ m; 1 ≤ j ≤ n; (5)

Mmax =max
i

max
j

|xj − wij|; 1 ≤ i ≤ m; 1 ≤ j ≤ n; (6)

Mij = |xj − wij|; (7)

where |·| denotes the absolute value. Clearly, �ij is between zero to one. Moreover,
�ij approaches one if Mij is near Mmin. That is, the larger degree of relationship
that exists between xj and wij, the more movement should be acquired for moving
wij toward xj. Thus �ij is incorporated into the learning rule of the SOFM. We
should note that the appropriate value of 
 is actually dependent on individual
applications.

Unlike correlation analysis, which only stresses the relationship between any two
random variables, grey relational analysis tries to Gnd the relationships between
one reference sequence and other comparative sequences by viewing the reference
sequence as a desired goal that each comparative sequence expects to attain. In the
following section, the learning algorithm for the grey self-organizing feature maps
is introduced.

3. Grey self-organizing feature maps (GSOFM)

The learning algorithm of the GSOFM is categorized as unsupervised learning,
that is we need not know the desired output of each training data during the training
phase. Before training, we usually normalize all the input data and weight vectors
[17]. Similar to the SOFM, the training phase in GSOFM is typically composed of
the ordering phase and the convergence phase [17,22]. Initially, � should be chosen
close to 1.0. Moreover, Li should cover all output nodes. During the ordering
phase, � will gradually decrease but not below 0.1. Li will also decrease slowly,
as depicted in Fig. 2 [17,22] where t1 and t2 are the number of iterations and
0¡t1¡t2. At the end of this phase, both � and Li will achieve much smaller
values, and they continue to decrease during the convergence phase. In principle,
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Fig. 2. Neighborhood size of the winning node gradually decrease with time.

� will not be decreased below a given value, say 0.05, and Li will decrease to
only cover itself during the training phase. It should be noted that both � and
Li(1 ≤ i ≤ m) are decreased at the end of each iteration or each complete pass
(i.e. each training data has been presented to the network).

As we have stated in the previous section, x=(x1; x2; : : : ; xn) and wi =
(wi1; wi2; : : : ; win)(1 ≤ i ≤ m) are the reference sequence and the comparative se-
quences, respectively. Note that, the value of m serving as the number of clusters
must be speciGed before the training task is performed. SigniGcantly, the learning
rule of the GSOFM is as follows:

Mwij = �(�ij)k(xj − wij); i∈Li∗ ; 1 ≤ j ≤ n; (8)

where k is a pre-speciGed positive real number, and �ij is the GRC between
xj and wij. This implies that if �ij is much smaller, then the value of (�ij)k

will approach zero when k is a larger value. On the other hand, �ij will be
dampened by a much larger value of k. SigniGcantly, the connection weight wij
could acquire a large amount of movement if there exists a larger GRC be-
tween wij and xj. We describe the learning algorithm of the GSOFM as the
following.

Algorithm : Grey self-organizing feature maps learning algorithm
Input: A given set of training data.
Output: The center of each cluster.

Method:
Step 1: Initialize connection weights and parameters

a. Initialize weights corresponding to each output node with random
small values;

b. Initialize �(0) and the number of neighbor nodes Li(0) of node i:
�(0) should approach 1.0, and Li(0) should cover all output nodes,
1 ≤ i ≤ m;

c. Set t=1, where t is an iteration counter.
Step 2: Present input training data x(t)
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Step 3: Calculate the output value oi(t) of each output node i

oi(t)= (di(t))2 =
n∑

j=1

(wij(t) − xj(t))2; 1 ≤ i ≤ m:

Step 4: Determine the winning node i∗

The node i∗ is the winner if

(di∗(t))2 =min
i
oi(t); 1 ≤ i ≤ m:

Step 5: Adjust the winning nodes i∗ and its neighbor nodes
a. The neighbor nodes around the winning node i∗ can be determined

by Li∗(t);
b. The learning rule based on �ij(t) can be given as Eq. (8)

wij(t + 1)=wij(t) + �(t)[�ij(t)]
k[xj(t) − wij(t)]; i∈Li∗(t); 1 ≤ j ≤ n;

where k is a pre-speciGed positive real number, and �ij(t) is the
GRC between xj(t) and wij(t). If each training data is presented to
the network, then go to Step 6; otherwise go to Step 2.

Step 6: Shrink the learning rate �(t) and the neighborhood size Li(t)
�(t) and Li(t) may shrink gradually with linear or exponential time,
where 1 ≤ i ≤ m:

Step 7: Convergence test
If the winning node of each input data is not changed then stop. Other-
wise, set t + 1 to t and go to Step 2.

To achieve the convergence, empirically, many thousands of iterations for the
GSOFM are necessary. We can see that the learning rule of the GSOFM is not
determined only by the learning rate and the di:erence of wij(t) and xj(t). To
show its e:ectiveness, we apply the GSOFM for two representative problems: one
is the classiGcation problem, including the iris data proposed by Fisher [11], the
appendicitis data and the wine recognition data; the second is the TSP. Simulations
with speciGed parameter speciGcations are described in Section 4.

4. Simulations

To examine the performance of the GSOFM, we Grst employ it to obtain classi-
Gcation rates on the well-known data including the iris data, the appendicitis data
and the wine recognition data. Subsequently, we show that the GSOFM can ef-
fectively solve the TSP in comparison with other known neural network models.
All programs coded by Delphi version 5.0 were executed by a personal computer
with Pentium III-500 CPU. It should be noted that we stress the feasibility and the
problem-solving capability of the GSOFM, rather than providing formal methods
to Gnd general parameter speciGcations that can optimize problems.
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Table 1
The best result (96.00%) obtained by the GSOFM for the iris data with various k versus 



 k 
 k

0.02 6.30, 6.38 0.14 8.83, 9.12
0.03 5.23 0.16 9.44, 9.45, 9.58, 9.64, 9.67
0.07 7.78, 8.01, 8.42 0.17 8.13, 9.51
0.08 7.71 0.21 8.06
0.09 5.41, 7.76, 8.84, 8.87 0.23 6.62
0.10 7.98, 8.51, 9.18, 9.40 0.34 7.65
0.11 9.52 0.39 8.90
0.13 8.47, 9.09, 9.23, 9.24

4.1. Performance for classi5cation problems

We compare the best result of the GSOFM with that of the SOFM for each
problem. Moreover, the best result of the GSOFM with respect to the iris data is
compared with those of other known unsupervised neural networks models. Good
parameter speciGcations for suggesting the GSOFM to obtain the best result can
be found through the following sections.

4.1.1. The iris data
The iris data consists of three classes (class 1: iris setosa; class 2: iris versicolor;

class 3: iris virginica) and each class consists of Gfty data with four dimensions.
Moreover, class 2 overlaps class 3.

The Kohonen layer is implemented by a one-dimensional array. Initial parameter
speciGcation including m; � and Li is described as follows:

m=3;

�(0)=1:0;

Li(0)=2; 1 ≤ i ≤ m;
During the training phase, � is gradually decreased by a much smaller and Gxed
amount (i.e., 0.005) at the end of each iteration. Actually, � will not be decreased
below a given value (i.e., 0.05). Similar to Fig. 2, Li is gradually decreased after
each of the 100 iterations are executed. In decreasing both � and Li, we follow the
principles described in Section 3. We examine the performance by the misclassiGed
number through various k versus 
 (i.e., 0 ≤ k ≤ 10; 0:0 ≤ 
 ≤ 1:0), and the best
result that the GSOFM can attain is 96.00% (i.e., misclassiGed number is 6).
Simulation results are summarized in Table 1. From this table, we can see that the
best result can be obtained for 
¡ 0:4 by carefully tuning parameters.

Next, we compare the best result of the GSOFM with that of other known neural
network models that have been applied on the iris data. These models include
the generalized learning vector quantization (GLVQ) [20], the unsupervised fuzzy
competitive learning (UFCL) [21], the soft competition scheme (SCS) [6], and the
descending fuzzy learning vector quantization (↓FLVQ) [6]. The fuzzy c-means



870 Y.-C. Hu et al. / Neurocomputing 48 (2002) 863–877

Table 2
Compare best result of the GSOFM with those of other known unsupervised neural networks

GSOFM (%) SOFM (%) LVQ (%) GLVQ (%) ↓FLVQ (%) UFCL (%) SCS (%) FCM (%)

96.00 88.00 89.33 88.67 88.67 90.00 89.33 91.33

(FCM) [21,7] is also taken into account. From Table 2, we can see that the best
result of the GSOFM is superior to those of other unsupervised neural network
models.

4.1.2. The appendicitis data
The appendicitis data consists of 106 cases classiGed into two classes with seven

attributes. Initial parameter speciGcation including m; � and Li is described as
follows:

m=2;

�(0)=1:0;

Li(0)=1; 1 ≤ i ≤ m;
The method for decreasing both � and Li are the same as that used in Section 4.1.1.
By carefully tuning values of k and 
 (i.e., 0 ≤ k ≤ 10; 0:0 ≤ 
 ≤ 1:0), the best
result that the GSOFM can attain is 86.79% (i.e., misclassiGed number is 14). We
also Gnd that the best result is obtained only when 
=0:07. On the other hand,
the best result for the SOFM is 78.30% (i.e., misclassiGed number is 23), clearly
worse than that of the GSOFM.

4.1.3. The wine recognition data
The wine recognition data, which are the results of a chemical analysis of three

types of wines, consists of 178 cases classiGed into three classes with 13 con-
tinuous attributes. Initial parameter speciGcations, including m; � and Li, and the
corresponding decreasing method are used as those described in Section 4.1.2. Us-
ing the SOFM, we Gnd the classiGcation result is 92.13% (i.e., misclassiGed number
is 14). By carefully tuning values of k and 
 (i.e., 0 ≤ k ≤ 10; 0:0 ≤ 
 ≤ 1:0),
the best result of the GSOFM is 96.63% (i.e., misclassiGed number is 6). We also
Gnd that the best result is obtained only when 
=0:02. From the viewpoint of the
best classiGcation capability, the GSOFM again outperforms the SFOFM.

From the simulation results, we can see that the best classiGcation capability of
the SOFM could be enhanced by incorporating grey relations into the learning rule.
For applying the neural networks to classiGcation problems, simulation results can
thus demonstrate the e:ectiveness and the feasibility of the GSOFM.

4.2. Performance for the traveling salesman problem (TSP)

The TSP can be stated as follows: “Given N cities, Gnd the shortest path for a
salesman so that he can visit all the cities exactly once” [9]. TSP is a combinatorial
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optimization problem and is known to be NP-complete [3]. In addition to the Grst
successful neural model proposed by HopGeld and Tank [13], other neural network
models for solving the TSP have been proposed. Some approaches have been well
surveyed and simulated by Aras et al. [3], for example, the guilty net (GN) by
Burke and Damany [5], Angeniol et al.’s method (AVL) by Angeniol et al. [2],
the KNIES-TSP (KL), and the KNIES-TSP-Global (KG) by Aras et al. [3].

On the other hand, the SOFM can also be used to solve the TSP with various
number of output nodes through trial and error. The SOFM could give us a near
optimal solution [9]. However, the quality of the solution depends on the number
of output nodes. If we do not Gnd an acceptable path after su8ciently long time,
then the path is not useful and extra output nodes are added. Since more than one
node can be attracted to the same city, it is actually best to have more nodes than
cities [12]. The number is usually 2, 3 or 4 times N . The number of output nodes
of the GSOFM are thus experimentally set to be three times of the number of
cities.

In this section, we employ the GSOFM to solve the TSP to determine its e:ec-
tiveness. However, it seems that poor results are obtained if we apply the learning
algorithm presented in Section 3 to solve the TSP, since it simpliGes the lateral
feedback mechanism [22]. Thus, it is necessary to incorporate the neighborhood
function Ui∗ , which is a type of Gaussian function, around the winning node i∗ as
Eq. (9):

Ui∗ =exp(−dii∗=�); i∈Li∗ ; 1 ≤ i ≤ m (9)

into the learning rule. While, dii∗ is the cardinal distance [1] measured along the
ring between the nodes i and i∗:

dii∗ =min{|i∗ − i|; m− |i∗ − i|}; (10)

where | · | denotes the absolute value, and i and i∗ are actually the labels of
the winning node and the node i, respectively. As for �, it is called the “gain
parameter” [3,1], reNecting the scope of the neighborhood [3] and it is decreased
at the end of each complete pass by Eq. (11) [1]

�(t + 1)= ��(t); (11)

where 0 ≤ � ≤ 1. A detailed learning algorithm of the GSOFM for solving the
TSP is described as follows.

Algorithm : GSOFM learning algorithm for solving the TSP
Input: Given N cities.
Output: Find the shortest path for a salesman so that he can visit all the cities

exactly once.
Method:
Step 1: Initialize connection weights and parameters

a. Initialize weights corresponding to each output node with random
small value;
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b. Let �(0)=1:0, and Li(0)=3(m− 1), where 1 ≤ i ≤ m, i.e., the total
number of output nodes is 3m;

c. Randomize the order of cities and label cities 1; : : : ; N . The variable r
indexes the order of city and set r=1, where 1 ≤ r ≤ N . In addition,
we assign the label i to the node i, where 1 ≤ i ≤ m;

d. Set t=1, where t is an iteration counter.
Step 2: Present the rth city x(r)(t)
Step 3: Calculate the output value oi(t) of each output node i

oi(t)= (di(t))2 =
n∑

j=1

(wij(t) − x(r)
j (t))2; 1 ≤ i ≤ m

Step 4: Determine the winning node i∗

The node i∗ is the winner if

(di∗(t))2 =min
i
oi(t); 1 ≤ i ≤ m

Step 5: Adjust the winning nodes i∗ and its neighbor nodes
a. The neighbor nodes around the winning node i∗ can be determined

by Li∗(t);
b. The learning rule based on �ij(t) can be given as

wij(t + 1)=wij(t) + �(t)[�ij(t)]
kUi∗(t)[x

(r)
j (t) − wij(t)];

i∈Li∗(t); 1 ≤ j ≤ n (12)

where k is a pre-speciGed positive real number, and �ij(t) is the GRC
between xrj(t) and wij(t)

Step 6: Increment the value of r
If r equals to N , then
a. Shrink the gain parameter �(t) as Eq. (11);
b. shrink the learning rate �(t) and the neighborhood’s size Li(t);
c. Set t + 1 to t.

Go to Step 7. Otherwise, set r + 1 to r and go to Step 2.
Step 7: Convergence test

Checking whether or not locations of output nodes are within an accept-
able distance of cities. If yes then stop. Otherwise, set t + 1 and 1 to t
and r, respectively, and go to Step 2.

During the training phase, � is gradually decreased by a much smaller and
Gxed amount (i.e., 0.0005) at the end of each iteration. Actually, � will not be
decreased below a given value (i.e., 0.05). We employ the same methods described
in Section 4.1.1 to gradually decrease Li during the training phase. For simplicity,
we set 
=0:5, which is commonly used in other applications [14], and set k=1.
Therefore, the initial values of � and � are two tunable variables that can determine
whether or not the GSOFM can Gnd a high quality solution in convergence. Using
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Table 3
Eight problems selected from the TSPLIB

Problems Number of cities Optimal length

bier127 127 118282
eil51 51 426
eil76 76 538
eil101 101 629
pr107 107 44303
pr136 136 96772
rd100 100 7910
st70 70 675

Table 4
Compare the best result of the GSOGM with those of the SOFM, GN, AVL, KL and KG

Problems Optimal GSOFM (�(0); �) SOFM GN AVL KL KG
lenght

bier127 118282 121181.3 (55,0.92) 122211.7 155163.2 122673.9 121548.7 121923.7
eil51 426 437.71 (36,0.91) 443.9 470.7 443.5 438.2 438.2
eil76 538 562.41 (139,0.74) 571.2 614.3 571.3 564.8 567.5
eil101 629 658.04 (85,0.85) 688.7 771.9 671.4 658.3 664.4
pr107 44303 44483.46 (147,0.87) 44504.3 80481.3 45096.4 44628.3 44491.1
pr136 96772 98956.42 (41,0.78) 103878.0 135887.7 103442.3 101156.8 101752.4
rd100 7910 8143.72 (72,0.69) 8137.9 8731.2 8265.8 8075.7 8117.4
st70 675 692.06 (21, 0.52) 692.8 755.7 693.3 685.2 690.7

eight problems shown in Table 3 from the TSPLIB proposed by Reinelt [23],
we compare the best solution by the GSOFM with those of other neural network
models, including the SOFM, the GN, AVL method, the KNIES-TSP (KL) and the
KNIES-TSP-Global (KG), all as reported in [3]. Note that cities in each selected
problem are spread on the two-dimensional Euclidean space, while the Euclidean
norm is used to compute the distance among any two cities. Simulation results are
summarized in Table 4.

In Table 4, the Grst column shows the testing problem sets that are used in our
simulation. The second column shows the known optimal length for these problem
sets. The real numbers in the third to eighth column show the best solutions through
various parameter speciGcations obtained by using GSOFM, SOFM, GN, AVL, KL
and KG, respectively. In the third column, the numbers in parentheses are parameter
speciGcations (i.e., �(0) and �) for which the best results can be obtained by the
GSOFM.

We Gnd that the GSOFM outperforms the other neural network models for
bier127, eil51, eil76, eil101, pr107 and pr136. In the case of st70, the result of the
GSOFM is slightly inferior compared with those of KL and KG. Furthermore, to
show the relative deviations from the optimal length, we summarize the results in
Table 5. From this table, we may thus conclude that the GSOFM outperforms the
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Table 5
Deviation from the optimal length of the various algorithms

Problems GSOFM SOFM GN AVL KL KG

bier127 2.45 3.32 31.18 3.71 2.76 3.08
eil51 2.75 4.20 10.49 4.11 2.86 2.86
eil76 4.54 6.17 14.18 6.19 4.98 5.48
eil101 4.62 9.49 22.72 6.74 4.65 5.63
pr107 0.41 0.45 81.66 1.79 0.73 0.42
pr136 2.26 7.34 40.42 6.89 4.53 5.15
rd100 2.95 2.88 10.38 4.49 2.09 2.62
st70 2.53 2.64 11.96 2.71 1.51 2.33
Average 2.81 4.56 27.87 4.58 3.01 3.45

other neural network models. Actually, Tables 3 and 4 show the feasibility and
e:ectiveness of the GSOFM for solving the TSP.

5. Discussions and future works

Since the original SOFM in the training phase ignores important information,
which is the relationships that actually exist between the input training data and
each adjustable output node, we thus incorporate the grey relational coe8cients
into the learning rule of the SOFM, namely the GSOFM. The GSOFM can be
viewed as a grey clustering method. To show the problem-solving capability of
the GSOFM, the performances are examined by complete computer simulations
for two representative problems: one is the classiGcation problems, including the
iris data proposed by Fisher [11], the appendicitis data and the wine recognition
data; and the other is the TSP, selecting from the TSPLIB problem set proposed
by Reinelt [23].

In the classiGcation problems, we Gnd that the best result from the GSOFM
outperforms that of the SOFM in each problem. Moreover, the best result from
the GSOFM with respect to the iris data is compared with those of other known
unsupervised neural networks models. Although criteria in selecting a method for
classiGcation problems are subjective and dependent on applications, accuracy is
always the primary goal [25]. For applying the unsupervised neural networks on
classiGcation problems, simulation results thus demonstrate the e:ectiveness and
the feasibility of the GSOFM.

As for the TSP, we selected some problem sets from the TSPLIB to test the
performance of the GSOFM. In our simulations, the number of output nodes are
experimentally set to be three times of the number of cities. It is furthermore
possible to check if the quality of the solution depends on the number of output
nodes, especially for the large size problems such as pcb442 and att532 in the
TSPLIB. In addition, we can modify the GSOFM to dynamically add nodes in the
Kohonen layer to obtain good quality during the training phase.

On the other hand, we are also very interested to use the GSOFM to solve
problems encountered in other Gelds. For example, we may design a framework to
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integrate the GSOFM with the fuzzy query processing. Previously, Kamel et al. had
proposed a clustering method for fuzzy query processing [18] from the viewpoint
of enhancing the Nexibility of the existing database systems. Kamel et al.’s works
provide a good basis for the future integration. Also, the GSOFM could serve as a
data mining tool. Previously, the SOFM has been a powerful tool for data mining
that can help a business to analyze the characteristics of customers from transaction
databases. Therefore, it is possible to apply the GSOFM for knowledge discovery.
For example, a large bank could try to understand customers who currently have
home equity loans to determine the best strategy for increasing its market share [4].

6. Conclusions

By applying the GSOFM on classiGcation problems and on the TSP, we can see
that simulation results demonstrate the e:ectiveness and feasibility of the GSOFM,
and we will continue to study related topics. From the discussions and the future
works mentioned above, we can see that it is worthwhile to measure the e:ective-
ness and the feasibility applying the GSOFM to fuzzy query processing and data
mining.
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