COMPUTER
LANGUAGES,
SYSTETS &
STRUCTLURES

www.elsevier.com/locate/cl

PERGAMON Computer Languages, Systems & Structures 28 (2002) 273288

On the applicability of the longest-match rule
in lexical analysis™

Wuu Yang?®*, Chey-Woei TsayP, Jien-Tsai Chan?

Computer and Information Science Department, National Chiao-Tung University, HsinChu, Taiwan, ROC
®Department of Computer Science and Information Management, Providence University, Taichung County,
Taiwan, ROC

Received 25 April 2002; accepted 28 June 2002

Abstract

The lexical analyzer of a compiler usually adopts the longest-match rule to resolve ambiguities when
deciding the next token in the input stream. However, that rule may not be applicable in all situations.
Because the longest-match rule is widely used, a language designer or a compiler implementor frequently
overlooks the subtle implications of the rule. The consequence is either a flawed language design or a deficient
implementation. We propose a method that automatically checks the applicability of the longest-match rule and
identifies precisely the situations in which that rule is not applicable. The method is useful to both language
designers and compiler implementors. In particular, the method is indispensable to automatic generators of
language translation systems since, without the method, the generated lexical analyzers can only blindly
apply the longest-match rule and this results in erroneous behaviors. The crux of the method consists of two
algorithms: one is to compute the regular set of the sequences of tokens produced by a nondeterministic
Mealy automaton when the automaton processes elements of an input regular set. The other is to determine
whether a regular set and a context-free language have nontrivial intersection with a set of equations.

(© 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Compiler; Context-free grammar; Finite-state automaton; Lexical analyzer; Mealy automaton; Moore automaton;
Parser; Regular expression; Scanner

* This work was supported in part by National Science Council, Taiwan, ROC, under grants NSC 86-2213-E-009-021
and NSC 86-2213-E-009-079.
* Corresponding author. Tel.: +886-3-5712121x56614; fax: +886-3-5721490.
E-mail address: wuuyang@cis.nctu.edu.tw (W. Yang).

1477-8424/02/$ - see front matter (© 2002 Elsevier Science Ltd. All rights reserved.
PII: S0096-0551(02)00014-0

mailto:wuuyang@cis.nctu.edu.tw

274 W. Yang et al. | Computer Languages, Systems & Structures 28 (2002) 273288

1. Introduction

In modern compilers, the lexical analyzers are implemented according to regular-expression spec-
ifications. The lexical analyzer partitions a stream of characters into groups, called tokens.' Lexical
ambiguities arise when a sequence of characters may be partitioned in more than one way. For in-
stance, the six-character string “123456” may be considered as an integer of six digits or six integers
of 1 digit each, according to common regular-expression specifications. Intuitively, the formal view,
finding a longest match, is more natural and more reasonable.

The traditional model of a lexical analyzer is a Moore automaton, which can be made deter-
ministic with the subset-construction technique [1]. However, due to the look-ahead behavior of a
lexical analyzer, a Mealy machine is a better model of a lexical analyzer [2]. Lexical ambiguities
arise because the Mealy automaton underlying the lexical analyzer is, in general, nondeterministic.
Furthermore, there is no way to make it deterministic in general. For example, in Fig. 1(a), two
classes of tokens, ¢ and 7, are defined. A (deterministic) Moore automaton [1] corresponding to the

(a) A scanner specification

TOKEN 6 = a(aa) ba”
TOKEN t=a(aa) ba’b

(b) the (deterministic) Moore automaton M for the scanner specification

(d) the automaton M, ,

€

Fig. 1. A scanner specification and its Moore and Mealy automata.

"In our view, white spaces and comments also constitute tokens; only these whitespace tokens are discarded rather
than transmitted to the parser.

W. Yang et al. | Computer Languages, Systems & Structures 28 (2002) 273288 275

two tokens is shown in Fig. 1(b).? This Moore automaton is constructed with standard techniques
discussed in most compiler textbooks [3,4]. An equivalent (nondeterministic) Mealy automaton is
shown in Fig. 1(c). Notice the three bold arrows that carry output tokens. The Mealy automaton is
nondeterministic in that there are two outgoing edges from state 2 labeled b. Similar situations hold
for state 3. (Fig. 1(d) will be explained in a later section.) When the stream of characters “abab” is
fed into the automaton in Fig. 1(c), either the two tokens oo or a single token T may be produced.

The longest-match rule is generally adopted to enforce determinism on a nondeterministic Mealy
automaton [2]. The longest-match rule dictates that the next token is the one that contains the most
number of input characters. Though the rule is applicable in many situations, it may not always
yield the desired results. For instance, consider the string “>>” in C++ programs [5]. In the program
fragment “out > f f, the string “>>” should be considered as a single redirection token whereas in
the program fragment “foo < bar < buzz >>”, the string “>>” should be interpreted as two separate,
consecutive greater-than tokens. Upon encountering the string “>>”, the lexical analyzer needs to
consult the parser to check the context in which the string “>>” occurs. For a second example, note
that, in Modula-2 [6], integers, such as “10”, real numbers, such as “10.”, and the range symbol “..”
are all allowed tokens. For the string “10..20”, the partitioning yields the three tokens “10.”, “.”,
and “20” if the longest-match rule is observed strictly. But a correct partitioning in this case should
be the three tokens “10”, “..”, and “20”. For a third example, consider the string “a’('d’, ¢’)” in an
Ada program. Partitioning according to the longest-match rule yields the tokens: “a”, “/("”, “b”, <./,
“c”, “”, and “”, and “)”. A correct partitioning should be “a”, />, (>, “/b'”, «, “/c'”, and “)”.
Similar parser errors will occur in the following C++ program fragments: “i :=j +++-++k” and
“i := j4++k” if the longest-match rule is strictly obeyed. We conclude that misinterpretations by the
longest-match rule occur very frequently in practice. Since there are many such misinterpretations
in lexical analysis, it is necessary to have a technique that determines when the longest-match rule
can be safely applied. In this paper, we propose such a technique.

It is tempting to conjecture that the longest-match rule is not applicable whenever a token is a
prefix of another token. This is not necessarily so. For example, both “<” and “<” are tokens
in the C++ language. Since no two consecutive “<” tokens can appear in any C++ programs,
two consecutive “<” characters are always interpreted as a single “<” token. In this case, the
longest-match rule is applicable.

One naturally will ask when the longest-match rule can be safely applied. In the past, it depends
on the experience of the language designer or the compiler implementor to answer this question.
However, this is an unreliable approach when a new language is designed or implemented. The
longest-match rule is so common that a language designer or a compiler implementor frequently
overlooks the subtle implications caused by the longest-match rule in the design or implementation.
The consequence is either a flawed language design or a deficient implementation. Thus, it is impor-
tant to have a method that automatically checks the applicability of the longest-match rule and warns
the compiler implementor about the potential problems in the use of the longest-match rule. Such a
technique is particularly indispensable in automatic generators of language translation systems, such
as lex [7], Eli [8], and PCCTS [9], because, without the technique, the generated lexical analyzers

2 Our model of Moore automata is slightly different from the one defined in [1]: our Moore automaton always transits
to the initial state immediately after a token associated with an accepting state is emitted.

276 W. Yang et al. | Computer Languages, Systems & Structures 28 (2002) 273288

can only blindly apply the longest-match rule. However, blind application of the longest-match rule
only results in erroneous lexical analyzers.

A necessary condition for ambiguities is that a token is a prefix of another. A naive approach
is to post a warning message whenever such a condition arises. This amounts to giving up the
longest-match rule. However, past experience shows that the longest-match rule is applicable in
most cases. It would be better if warning messages are issued only when ambiguity will actually
occur. We propose such an approach to detecting the ambiguity occurrences more precisely.

Our approach makes use of the context-free grammars underlying the parsers. Ambiguities are not
declared prematurely whenever there is more than one partitioning of a sequence of tokens. Rather,
ambiguities are declared only if there is more than one partitioning, among the many plausible
partitionings, that may be part of sentences derived from the context-free grammar. To be more
specific, suppose that an input stream of characters may be partitioned into two different sequences of
tokens 71, 0,,...,0; and 11, 7,,..., 7, according to a lexical specification. This could be an ambiguity
for the lexical analyzer. However, if only one of the two sequences can form a valid sentence, the
lexical analyzer is forced to choose that sequence—there is no ambiguity in this case.

Because it is impractical for the lexical analyzer to examine the whole input stream in deciding the
next token, the lexical analyzer is constrained to read only as many characters that may constitute
a token as possible. The input stream beyond what was already read is assumed to contain any
characters. Under this assumption, it suffices to consider alternative partitionings of a sequence of
characters that constitute a token 7, rather than alternative partitionings of the whole input stream.
The single token 7, of course, could be part of a valid sentence. Therefore, we examine whether any
alternative partitioning of the sequence of characters for 7 could also be part of a valid sentence.
If so, the language designer or the compiler implementor is warned of the potential ambiguity.
Otherwise, the longest-match rule can be safely adopted.

The remainder of this paper is organized as follows. Section 2 presents the overview of our method.
In Section 3, we propose a set of axioms to compute the possible sequences of output tokens of
a finite automaton when elements of a regular set are used as input to the finite automaton. The
difficulty in such computation lies in the Kleene star operator in the regular expressions. To solve
this difficulty, Section 4 defines a “macro” automaton derived from the original automaton and solves
a set of equations related to the macro automaton. In Section 5, we discuss how to decide whether a
regular set and a context-free language intersect with an iterative algorithm. The complete detection
algorithm is summarized in Section 6. The last section concludes this paper and discusses related
work.

2. Overview of the detection method

In order to detect lexical ambiguities, a lexical specification, written in regular expressions, is
transformed into a deterministic Moore automaton M [3,4]. There is a unique initial state and one
or more accepting states in the Moore automaton. In order to simplify the following presentation,
we will assume that different accepting states accept different classes of tokens.

Lexical ambiguities may arise when one accepting state can reach another (not necessarily distinct)
accepting state via a nonnull path. An example is a path from states 3 to 4 in Fig. 1(b). Given two
accepting states s and ¢ of a Moore automaton M, consider a path P that starts from the initial state,

W. Yang et al. | Computer Languages, Systems & Structures 28 (2002) 273288 277

passes state s and reaches state . On the sequence of input characters corresponding to the path
P, M moves from the initial state to state ¢, emits the token 7 accepted by state ¢, and returns to the
initial state (if the longest-match rule is adopted). Alternatively, M may move from the initial state
to state s, emit the token ¢ accepted by state s, and scan the remaining part of the input from the
initial state. When scanning the remaining input, M may produce other tokens. If the sequence of
alternative output tokens may not be part of any sentence accepted by the parser, the longest-match
rule does produce the desired output—the single token 7. On the other hand, when the sequence
of alternative output tokens may become part of a sentence accepted by the parser, ambiguity will
arise. Thus, we need to examine the accepting-to-accepting paths and determine the sequences of
output tokens when M scans input corresponding to these paths, and tests whether the sequences of
output tokens of M can be embedded in sentences accepted by the parser.

Define the look-ahead set as the set of all accepting-to-accepting paths. Given two accepting states
s and ¢t of a Moore automaton M, the set of all paths from s to ¢ is a regular set, which may be
described by a regular expression. For the sake of computing alternative output tokens, each such
regular expression is annotated with the token class accepted by the state s. Thus, elements of the
look-ahead set are pairs (o, /a), where ¢ is a token class and /a is a regular expression of the input
characters, called the look-ahead expression.

To compute the look-ahead expression from state s to state #, we identify the subgraph of the
state-transition graph of M induced by all the states that are reachable from state s. This subgraph is
also a finite automaton, in which state s is the initial state and ¢ is the (only) accepting state. Then
this new finite automaton is converted back to a regular expression, which is the required look-ahead
expression. The conversion of a finite automaton to a regular expression is by a technique very similar
to the one discussed in Section 4 [10].

The second step of the detection method is, for each pair (o, la) of the look-ahead set, to determine
the sequences of tokens produced by the automaton M when M scans strings of input characters
satisfying the regular expression /a. Since the look-ahead expression /a may represent an infinite
number of strings, it is not feasible to run M on the strings one by one. We propose a set of
axioms to compute this set of sequences of output tokens in Section 3. It turns out that this set
of sequences of tokens produced by M is also a regular set. Call this set the alternative output
sequences corresponding to the pair (g, /a), denoted by AOS(o, [a).

Elements of 40S(g,la) are potential sequences of output tokens if the longest-match rule is not
applied. If any element of A0S(o,/a) may be part of a sentence derivable from the context-free
grammar underlying the parser, there are potential lexical ambiguities. Only in such case will the
language designer or the compiler implementor be warned about this potential ambiguity.

Our next task is to determine whether any element of a regular set AOS(o,la) can be part of a
sentence of a context-free language. Let A be the regular expression denoting the set AOS(o, [a).
Let I' be the regular set defined by the expression V*AV*, where V is the set of all possible tokens.
Let L denote the context-free language specified by the context-free grammar underlying the parser.
We solve the above problem by determining whether the intersection of the regular set I and the
context-free language L is an empty set or not. If I and L do not intersect, we may safely adopt
the longest-match rule. Otherwise, there is a string of input characters that can be partitioned into
several distinct sequences of tokens two or more of which may be part of sentences derivable from
a context-free grammar. We use an iterative algorithm to solve the intersection problem. The details
are in Section 5.

278 W. Yang et al. | Computer Languages, Systems & Structures 28 (2002) 273288
3. Computing sequences of output tokens

In this section, we will show how to compute the sequence of tokens produced by a (deterministic)
Moore automaton when the automaton scans a string of input characters that is an element of a
regular set. When the regular set is finite, the Moore automaton can scan strings of the regular set
one by one and collects the results. The difficulty lies in that the regular set may be infinite. We
use eight axioms and an algorithm to compute the set of all possible sequences of output tokens.
The following result shows that this set of all possible sequences of output tokens is also a regular
set, whose vocabulary is the set of all tokens.

In order to simplify the following presentation, we assume that the Moore automaton is determin-
istic. Let M be a deterministic Moore automaton (M will also denote the state-transition function of
the automaton). Let a be an input character and 4 and B be regular expressions of input characters.
Let go denote the initial state of M and Token(M(q,a)) denote the output token associated with
state M(g,a). Let X and Y be sets of pairs of the form [q,«],> where ¢ is a state of M and o is a
regular expression of output tokens (not input characters). Intuitively, ¢ denotes the state of M at a
certain point of time and o denotes the set of accumulated sequences of output tokens at that time.

First, we define the combined transition and output function @ of the automaton M on a regular
expression by the following eight axioms:

(1) {lg,2]1} ® a={[M(q,a),x]} U{[qo,a - Token(M(q,a))]} if M(q,a) is an accepting state
={[M(q,a),«]} if M(q,a) is not an accepting state
= if M(q,a) is error,

Q) X®e=X,

B)X®A-By=(XDA)® B,

4 XoA|B)=(XDA)UX ®B),

(5) X@A* = limit {Yl,Yz,...}, where Y] :X;Yn+1 = Y,, U Y,, @A,

(6) Jod=(,

(7) (XUY)BA=(X @ A)UY B A),

(8) {0, g, BT} = {l. (=)T},

Axioms 1, 2, 3, 4, 6, and 7 are quite straightforward. Axiom 1 describes the state-transition and
output behavior of M. Note that M transits to the initial state immediately after a token is emitted.
Note also that M also reserves the right not to emit a token even if it enters an accepting state.
Axiom 8 combines pairs with the same state into a single pair. Axiom 5 reflects the fact that the
Kleene star operation denotes zero or more repetitions of a regular expression. The limit operation
in the fifth axiom is defined as follows: given two regular expressions o and o,, we say oy < oy if
the regular set defined by «; is a subset of that defined by op. Given two pairs [¢1,o] and [g2, %],
we say [q1,a1] < [qa, 2] if g1 = ¢q» and o) < a,. Given two sets of pairs U = {[p;, o] |i=1,2,...}
and V ={[q;,5;1|j=1,2,...}, we say U <V if (1) for every pair [p;, o] in U, there is a pair
[¢;,B;] in V such that [p;,o;] < [gq;,f;], or (2) there is a set W such that U < W and W =V (based
on Axiom 8). Given a sequence of sets of pairs Vi, Va,..., we say V = limit {Vy,V,,...} if (1)

3 We use the square brackets [...] for pairs concerning the sequence of output tokens. We reserve the round brackets
(...) for pairs in the look-ahead set.

W. Yang et al. | Computer Languages, Systems & Structures 28 (2002) 273288 279

V; <V for all i, and (2) for any pair [g, 8] in V, and any element S’ of the regular set defined by
B, there exists a set V; in the sequence of the sets of pairs such that {[q, ']} < V;. We can easily
prove the following lemma according to the above definition.

Lemma. Given two sets of pairs U and V, if U <V then UUV =V.

Intuitively, /imit {Yy,Y,,...} is equal to ¥; U Y, U... . But this definition is useless since, in
Axiom 5 above, it is already known that Y, < Y,.; for all n. Note that, in general, for any m, there
exists n > m such that Y,, # Y,. Therefore, limit {Y1,Y,...} # Y,, for any n. Direct computation of
Y1, Y,,... effectively enumerates the elements of a regular set. This implies that direct computation of
the sets Y1, Y>,... one by one may not always result in the desired limit. We will present a method
to compute the /imit in the next section.

X @®A* is a fixed point of a monotone function on a lattice, defined as follows: consider a determin-
istic Moore automaton M. Define Q= the set of all output tokens. Define £={[q, o] | g is a state of
M and o is regular expression over Q}. Let 2f denote the powerset of E. Then (2£, <) is a partially
ordered set. Define, for U, V €2F

ULV =WubU,V)=UUYV,

Unv=glbU,V).

We can show that (2£,11,M) is a lattice. Unfortunately, it is not a complete lattice. On this lattice,
we may define a (monotone) function: f4 = AU. U U (U @ 4). Note that f%(X) = Y,;; defined in
Axiom 5. The limit limit {Y},Y,,...} is a fixed point of f4. The fixed point corresponds to the
equation (X @ A*) A =X © A4*.

Based on the algorithm in the next section, we assert that the /imit always exists for any X
and is unique up to equivalent regular expressions and the application of Axiom 8. Furthermore,
the computation of the /imit in Axiom 5 will halt in finite amount of time and the /imit may be
represented as a finite set of pairs (that is, the number of pairs in the /imit is finite though each
pair may denote an infinite regular set).

A pair [g,] contains both the information regarding the final state and the information regarding
the sequences of output tokens. Since we are only interested in the sequences of output tokens, we
use the operation collect to collect all the potential output, which is defined as follows: consider a
finite set of pairs X = {[p;,o;]|i=1,2,...,k}. For each pair [p;, o] in X, let {f;;|j=1,2,...,mi}
be the set of tokens associated with the accepting states that are reachable from state p; in M’s
state-transition graph. Let o; denote the regular expression o;(fi1 | fi2| --- | Bimi)- Then collect(X)=
(01] 02| - | 0k).

Our purpose in this section is, given a pair (o,/a) of the look-ahead set, to compute the set
of the alternative output sequences corresponding to the pair (o, /a), that is, AOS(0,la). Note that
AOS(o,la) = collect({[qo, 0]} @ la), where qq is the initial state of M. An example of computing
AOS is included in the next section.

4. Computing X @ A" in Axiom 5

In this section, we discuss in detail how to compute the /imit operation used in Axiom 5 listed in
the previous section. Our purpose is to compute X & A*, where X is a finite set of pairs of the form

280 W. Yang et al. | Computer Languages, Systems & Structures 28 (2002) 273288

Algorithm: Construction of M, 4
create a state g in M, 4
WL = {q}
while WL is not empty do
remove a state from WL, call it state p
X ={[p,el} @A
for each pair [p;, o;] in X do
if p; is not already in M, 4, then
create a new state p; in M, 4
WL :=WLu {p; }
end if
create an edge p —> p; in M, 4 and label it o;
end for
end while

Fig. 2. Construction of M, A.

[g,P] and A4 is a regular expression. As was discussed in the previous section, it is not feasible to
compute the sequence X, X & A4,(X $A) D A,..., etc. Our solution is to construct a new automaton
and then solve equations of regular expressions on this new automaton.

Though X is a set of pairs, due to Axiom 7, we may consider one pair at a time. In order to
compute {[g,]} ® A* on a given finite automaton M, we first construct a new macro automaton
M, 4. M, 4 is a nondeterministic Mealy automaton in which every transition corresponds to an ag-
gregate of transitions of the original automaton M on an element of the regular set defined by A.
The macro automaton M, 4 is constructed with the work-list algorithm shown in Fig. 2. Initially, the
work list contains a single state, that is, state g. Then a state p is picked up from the work list and
{[p,€]} @ 4 (¢ is the empty string) is computed inductively by the axioms in the previous section.
Let {[p.e]l} ®A4 = {[pi»]|i=1,2,...,k}. For each pair [p;,o;], create a new state p; in M, 4 (if
one does not already exist) and create a new transition from state p to state p;, which is labeled
with the output sequence ;. If p; is a newly created state, then state p; is added to the work list.
The above step is repeated for each state added to the work list. This work-list algorithm terminates
when the work list becomes empty. The initial state of M, 4 is the state g. Note that the edges of
M, 4 are labeled with the output token sequences, rather than the input characters (since input is
always the regular expression A4). Note that the work-list algorithm must terminate because there are
only a finite number of states in M and each state is processed at most once. Fig. 2 is a recast of
the work-list algorithm.

After constructing the macro automaton M, 4, we will calculate the output regular expression
for each state of M, 4. The calculation is performed by solving a set of equations. For each
state p of M, 4, there is a variable P representing the regular expression associated with state
p. Let {r;, — “pli=1,2,...,m} be the set of edges entering state p (the notation », — *p
denotes an edge from r; to p labeled «;). If state p is not the initial state of M, 4, the vari-
able P is defined by the equation P = Rjoy |Ry02 | ... | Ryo,. For the initial state g of M, 4, let
{ri — %q|i=1,2,...,n} be the set of edges entering state ¢q. The equation defining ¢’s variable
is Q= p|Rio | Ry | ..., |Ryo,. This set of mutually recursive equations can be solved with a
backward substitution strategy.

W. Yang et al. | Computer Languages, Systems & Structures 28 (2002) 273288 281

After obtaining the regular expression P for each state p of automaton M, 4, the set {[p,P]|p
is a state of M, 4,and P is the regular expression associated with state p} is {[q, f]} ® 4*.

Example. Consider the scanner specification in Fig. 1(a). Two classes of tokens are specified: o
and 7. The scanner specification is converted to the deterministic Moore automaton M shown in
Fig. 1(b), where state 3 recognizes the token class ¢ and state 4 recognizes the token class t. There
is an accepting-to-accepting path from states 3 to 4. Hence, the look-ahead set is {(o,a*b)}. Then
we need to compute A40S(a,a*b) = collect({[1,0]} @ a*b). First we compute {[1,0]} & a*.

To compute {[1,0]} & a*, we need to construct the automaton M, ,. Initially, there is a state 1 in
M, ,. Then the following computation is performed, based on axioms in Section 3:

{[1,¢]} ®a={[2,¢]},
{[2,e]} ®a={[5.]},
{[5,e]} ® a={[2,¢]},

Thus, two more states 2 and 5 are created in M, ,, together with the transitions. Fig. 1(d) shows

the automaton M;,a. Let P, O, and R be the regular-expression variables for states 1, 2, and 5,
respectively. Then we may set up the following equations:

P=o,
QO = P¢ | Re,
R = Qe.

Solving these equations, we obtain the “least” solution P = Q = R = ¢. (The least solution is
obtained by considering the equal sign = in the equations as the derivation sign — in production
systems.) Therefore, {[1,a]} ® a* = {[1,0],[2,0],[5,a]}. Call this set X. Next we may compute
X@®b=A{[3,0],[1,00]}. Therefore, {[1,0]} ® a*b={[3,0],[1,00]}. This means that, if elements of
the regular set defined by the look-ahead expression a*b are fed into the automaton M, either M
will end up in state 3 with no output (the token ¢ is accounted for previous input characters) or
in state 1 with a single output token . For example, suppose that the input is abaab, of which the
suffix aab is the look-ahead string. The automaton in Fig. 1(b) may exhibit three kinds of possible
behaviors: (1) it produces a token 7 and returns to the initial state 1; (2) it emits a token ¢ and halts
at state 3; or (3) it emits two tokens go and returns to state 1. Case (1) above occurs when the
longest-match rule is adopted. Cases (2) and (3), corresponding to the above computation, indicate
the possible states of the automaton if the longest-match rule is not adopted.

Finally, the collect operation is performed. In the automaton in Fig. 1(b), both state 1 and state 3
can reach the two accepting states 3 and 4. Each of the two tokens ¢ and 7 is appended to each of
the two expressions ¢ and go. Hence, we reach the result 40S(g,a*b) = {00,07,000,001}, which
corresponds to the regular expression A = (o |oa)(a|t). The regular set defined by A is tested for
containment in sentences derived by the context-free grammar underlying the parser. Though the
regular set contains only four elements and can be tested easily, we will propose a general solution
for arbitrary regular sets in the next section.

Before we prove that the above is correct, we first claim, without a proof, that the set of equations
of regular expressions is solved correctly. Specifically, we claim the following two lemmas.

282 W. Yang et al. | Computer Languages, Systems & Structures 28 (2002) 273288

Lemma. For any pair {[r,R]} <{lg.f]} ® A", for some n, the state r is included in M, . Fur-
thermore, let R' be the regular expression associated with state r obtained by solving the set of
equations. Then R is an element of the regular set defined by R'.

Lemma. Let r be a state of M, 4 and R' be the regular expression associated with state r. Let
R be an element of the regular set defined by R'. Then R corresponds to a finite path from the
initial state to state r in M, 4.

Below we show that the computation of {[q, f]} ® 4* is correct. Specifically, we need to prove
the following theorem.

Theorem. The set {[p,P]| p is a state of M, 4, and P is the reqular ex pression associated with
state p} computed by the method in this section is equal to {[q,]} ® A* defined in the previous
section.

Proof. Let X denote the set {[q,f]}. Let ¥ denote the set {[p,P]|p is a state of M, 4,and P
is the regular expression associated with statep} computed by the method in this section. Let Y1 =X
and Y,.; =Y,UY, ®A. We need to show that Y = limit {Y,,Ys,...}.

First we show that ¥, <Y, for all n. Since Y, <Y, for all n, consider any set of a pair
{[r,R]} such that {[r,R]} < Y, but {[r,R]} £ Y,. Intuitively, {[r,R]} < {[g,f]} ® A". Based on
the construction of M, 4, the state » must be a state in the macro machine M, 4. Let R’ be the regular
expression associated with state » obtained by solving the set of equations. Since we assume that
the set of equations of regular expressions are solved correctly, R is an element of the regular set
defined by R’. Hence, {[r,R]} < Y. This implies that ¥, < Y, for all n.

Next we need to show that for any pair [r,R'] in Y, and any element R of the regular set defined
by R/, there exists a set ¥; such that {[r,R]} < Y;. Since we assume that the set of equations is
solved correctly, R must correspond to a finite path from the initial state to state » in M, 4. Let k
be the length of the path. Then {[r,R]} < Y;. O

Based on the correctness of solving the set of equations induced by the macro automaton M, 4,
we may prove the correctness of the axioms of the previous section.

Theorem. The set of the 8 axioms of Section 3 correctly computes [q,a] & A for any regular
expression A in finite amount of time.

Proof. By structural induction [11] on the syntax of the regular expressions. Details are omitted. [

5. Determining the intersection of a regular language and a context-free language

Our next task is to determine whether any element of a regular set 40S(0,/a) can be part of
a sentence of the context-free language accepted by the parser. Let A be the regular expression
denoting the set A0S(a,la). Let I' be the regular set defined by the expression V*AV*, where V
is the set of all possible tokens. Let L denote the context-free language accepted by the parser.
We solve the above problem by determining whether the intersection of the regular set I' and the

W. Yang et al. | Computer Languages, Systems & Structures 28 (2002) 273288 283

context-free language L is an empty set or not. Note that both I' and L are based on the same
vocabulary, the set of all tokens.

Let M be a finite automaton corresponding to the regular set I' and G be the context-free grammar
underlying the parser. We define an operator ® that takes two arguments: a set of states (of M) and
a string of terminals and nonterminals (of G). The result of ® is a set of states (of M). The notation
O ® o = Q' means that, starting from a state of Q,M will reach a state of Q' on an input string
that is derivable from the string o (according to the production rules of G). With the ® operator,
the regular set and the context-free language intersect if and only if the set {go} ® S contains an
accepting state of M, where ¢, is the initial state of M and S is the start symbol of the grammar
of G.

The ® operator may be viewed as an extension of the transition function of the automaton to
strings of terminals and nonterminals of the context-free grammar. The operator ® is defined by the
following five axioms:

(1) {9} ® a={q' | Mmoves from state ¢ to state ¢’ on input a, where a is a terminal of G}.

(2) {9} ® 4 = {¢'|M moves from state g to state ¢’ on a string of terminals o, where 4 is a
nonterminal of G and 4 — *a}.

B) O®af=(0®a)® f, where o and f are strings of terminals and nonterminals.

@A) (QIUD)®a=(0) ®@a)U(Q, ®a), where « is a string of terminals and nonterminals.

(5) Goa=D.

The operator ® is similar to the @ operator defined in the previous section. They differ in two
aspects: (1) The second argument of the ® operator is a context-free language whereas that of the
@ operator is a regular set; and (2) The ® operator does not compute output components.

To find {¢} ®a for a state ¢ of M and a terminal a of G, we may simply examine the transition
table of M. To find {¢} ® A, where 4 is a nonterminal of G, we establish a set of equations and
solve the equations iteratively. Let A — o |aa| ... | o, be the set of all the 4-productions in G.
Then {g} ® 4=({g} @ 1)U ({g} ® ®) U...U ({q} ® xn).

There is one such equation for each state ¢ of M and each nonterminal 4 of G. The above set
of equations can be solved by an iteration algorithm. Initially, assume {q} ® 4 = & for each ¢
and each 4. Then we repeatedly evaluate the set of equations until a stable solution is reached.
The iteration algorithm is shown in Fig. 3, where an expression, such as {g} ® 4, is treated as a
variable.

Example. Fig. 4(a) is a deterministic automaton corresponding to the regular set I'. State 1 is the
initial state. Fig. 4(b) is a grammar defining the context-free language L. Fig. 4(b) is the ® operator
applied to the automaton in Fig. 4(a) and the context-free grammar in Fig. 4(b). For the sake of
brevity, we have omitted the set symbols {...}. From the definition of the ® operator, we obtain
the following six equations:

{eT={1}ouTu) U ({1} ®rHU 1} ®0)
={l}ouTewu({l}@{eTeHU{l}®0)

=2teTopu{l}eTedulll},

284 W. Yang et al. | Computer Languages, Systems & Structures 28 (2002) 273-288

Algorithm: Iteration
Given a set of k equations x; = f;(...), fori =1,2,...,k
fori :=1tok dox; := D end for

repeat
fori =1tok do
Xo=fi.)
end for

stable := true
fori :=1tok do
if x; # x; then
X; =X
stable = false
end if
end for
until stable

Fig. 3. The iteration algorithm.

(@) An automaton I (b) A context-free grammar L (c) the ® operator
PI:S —T$ ® lnl5 1 61S S
P2: T —puTu 1 2 |1 113 3
P3: T —E&TE 2 211 1 3 3
P4:T—6 3 Q|0 | DD %)

Fig. 4. An automaton, a context-free grammar, and the ® operator.

{2leoT={2}@uTw)U({2} ® CTHU ({2} ®0)
={2foueTowu({2t®ieTo U2} ©0)
=(@eTeowu({l}eT U l},

{31eT=({3}@uTw) U ({3} ® CTHU ({3} @ 0).
={3loueTeopu{3telaTed)u{3}®0)
=(@ToWnU(@eT®)U I,

{(les={1}&T$
={1}®T®S§,

2les={}oT$s
={2}1®T®8$,

W. Yang et al. | Computer Languages, Systems & Structures 28 (2002) 273288 285
BleS={31®T$
=(3}®T oS

Let x1, x2, X3, X4, x5, and x¢ denote the six terms: {1} R T, {2} @ T, {3} @ T, {1} ®S,{2} @S, {3} ®S,
respectively. After some simplification, we get the following six equations:

X1=uUMx ® é)U {1}’
X =0 ®&)U{l},

x3 =,

X4=x ®8$,
Xs=x, @8,
X6 =x3 ®§.

Initially, assume that x; = x; =x3 = x4 = x5 = x¢ = (J. We repeatedly evaluate the six equations.
After three iterations, we reach a stable solution: {1} ®S={3}, {2} ®S5={3}, {3}®S=7, {1} ®
T={1,2}, {2} @T={1},and {3} @ T =(.

Because {1} ® S = {3}, which means that the automaton moves from state 1 (the initial state)
to 3 (an accepting state) on a sentence derived from the start symbol S, the regular set and the
context-free language do have common elements. An example is the string ué0&us.

The iteration algorithm in Fig. 3 always halts due to its accumulative nature. That the solution is
correct can be proved by an inductive reasoning, as follows: the addition of a state ¢’ into the solution
of {¢g} ®4 can be traced backward eventually to a transition ¢; —“ ¢; in the finite automaton, where
a is a token. Thus, we can construct a string of terminals that is derivable from 4 and the finite
automaton moves from state g to state ¢’ on that string. Conversely, if the finite automaton moves
from state g to state ¢’ on a string derivable from A, there must be a path (of finite length) from
g to ¢’ on the state-transition graph of the finite automaton that is labeled with the string. Thus, ¢’
must be eventually added to {¢q} ® A. Specifically, the following theorem is asserted:

Theorem (Correctness of the iteration algorithm). ¢’ € {q} ® 4 if and only there is a string derivable
from the (terminal or nonterminal) symbol A according to the context-free grammar on which the
finite automaton moves from state q to state q'.

Yet another problem that we need to address is the independence of the answer on the particular
finite automaton and the particular context-free grammar used in the computation. We investigate
whether a regular set and a context-free language have common elements. In the iteration algo-
rithm, an arbitrary finite automaton for the regular set and an arbitrary context-free grammar for the
context-free language are chosen for setting up the set of equations. It is natural to ask whether
we will reach a different answer if different finite automata or different context-free grammars are
chosen. Based on the correctness of the iteration algorithm, we may claim that the same result is
always reached no matter which finite automaton or context-free grammar is chosen.

286 W. Yang et al. | Computer Languages, Systems & Structures 28 (2002) 273288

Algorithm: Detection of lexical conflicts
Let G be the context-free grammar of the programming language under consideration.
R = the set of regular expressions defining tokens (including white spaces and comments) of the language
M = the deterministic Moore automaton that accepts the tokens defined by regular expressions of R
for each pair of accepting states s and ¢ in M do
if state ¢ is reachable from state s in M’s transition diagram then
o = the token associated with state s
la = the regular expression representing all paths from state s to state ¢
Compute AOS (0, la) by the algorithms in Sections 3 and 4.
A = the regular expression for the regular set AOS (0, la)
V = the set of all possible tokens
I = the regular set defined by the equation V*AV"*
/* Determine whether the regular set I" and the context-free language
defined by G have common elements by the algorithm in Section 5. */
warning = intersection (I',G)
if warning then
issue a warning message together with the tokens associated with states s and ¢
end if
else if state s is reachable from state ¢ then
/* This case is handled in the identical way as the above case. */
/* The details are omitted. */
end if
end for

Fig. 5. The complete detection algorithm.

A classical method for the intersection problem is to integrate the finite automaton of the reg-
ular set and the pushdown automaton of the context-free language into a new pushdown automa-
ton. A new context-free grammar can then be derived from the integrated pushdown automaton.
Though the ® operator did not compute the exact intersection, it provides additional information
relating the states of a finite automaton and the nonterminals of a context-free grammar. This
information is useful in simplifying the LR parser of the context-free grammar as well as its
parser [12].

6. The complete detection algorithm

Fig. 5 is the complete conflict detection algorithm. It first computes the determinisitic Moore
automaton for the set of regular expressions for tokens. Then each pair of accepting states of the
automaton is examined for alternative partitionings when the longest-match rule is not observed. The
regular set AOS(ao,/a) is computed by the algorithms in Sections 3 and 4. Then the algorithm in
Section 5 is applied to determine whether any element of AOS(a,la) could be part of a sentence
of the programming language. If so, a misinterpretation may potentially arise and hence a suitable
warning message is issued. It is this warning message that indicates the precise situation in which
the longest-match rule is not applicable.

W. Yang et al. | Computer Languages, Systems & Structures 28 (2002) 273288 287
7. Conclusion and related work

We have identified the applicability problem of the longest-match rule and proposed a solution. The
crux of the solution consists of two algorithms: one is to compute the regular set of the sequences
of tokens produced by a nondeterministic Mealy automaton when the automaton processes elements
of an input regular set. The other is to determine whether a regular set and a context-free language
have nontrivial intersection with a set of equations.

The work reported here is a systematic method to detect potential ambiguities in lexical analysis. It
aids a language designer to check his/her design of a new language and it helps a compiler writer in
applying the longest-match rule. As far as we know, this kind of integrated check (of both the lexical
specification and the syntactic specification) has not been studied in details previously. The work
reported here may be viewed as a refined longest-match rule. The longest-match rule is widely used
in compiler implementation [3,4] and has been studied in details in [13], where the author proposed
a new lexical analysis method to solve the look-ahead problem. Most compiler textbooks treat a
lexical analyzer as a Moore machine. The scangen scanner generator [4] exhibits some flavor of a
Mealy machine. A deterministic Mealy-machine model is proposed in [2] for lexical analysis due to
the longest-match rule. The work reported in [2] is concerned only with a subclass of automata—the
class of finite look-ahead automata; by contrast, the work reported in this paper is applicable to
infinite look-ahead automata as well as finite look-ahead ones.

References

[1] Hopcroft JE, Ullman JD. Introduction to automata theory, languages, and computation. Reading, MA:
Addison-Wesley, 1979.
] Yang W. Mealy machines are a better model of lexical analyzers. Computer Languages 1996;22(1):27-38.
] Aho AV, Sethi R, Ullman JD. Compilers: Principles, Techniques, and Tools. Reading, MA: Addison-Wesley, 1986.
] Fischer CN, Leblanc Jr RJ. Crafting a compiler with C. Reading, MA: Benjamin/Cummings, 1991.
] Ellis MA, Stroustrup B. The annotated C + + reference manual. Reading, MA: Addison-Wesley, 1990.
] Wirth N. Programming with modula-2, 2nd corrected ed. New York: Springer, 1983.
] Lesk ME, Schmidt E. LEX—a lexical analyzer generator. Computer Science Technical Report 39, Bell Labs., Murray
Hill, NJ, 1975.
[8] Gray RW, Heuring VP, Levi SP, Sloane AM, Waite WM. Eli: a complete, flexible compiler construction system.
Communications of the ACM 1992;35(2):121-31.
[9] Parr T, Language translation using PCCTS and C + +: a reference guide. San Jose, CA: Automata Publishing, 1997.
A pre-release version is available from ftp://ftp.parr-research.com/pub/pccts/Book/reference.ps.
[10] Aho AV, Ullman JD. The theory of parsing, translation, and compiling: parsing. Englewood Cliffs, NJ: Prentice-Hall,
1972.
[11] Burstall RM. Proving properties of programs by structural induction. The Computer Journal 1969;12(1):41-8.
[12] Yang W. A lattice framework for analyzing context-free languages with applications in parser simplication and
data-flow analysis. Journal of Information Science and Engineering 1999;15(2):287-306.
[13] Yang W. On the look-ahead problem in lexical analysis. ACTA Informatica 1995;32:459-76.

Wuu Yang received his B.S. degree in computer science from National Taiwan University in 1982 and the M.S. and Ph.D.
degrees in computer science from University of Wisconsin at Madison in 1987 and 1990, respectively. Currently he is a
professor in the National Chiao-Tung University, Taiwan, Republic of China. Dr. Yang’s current research interests include

ftp://ftp.parr-research.com/pub/pccts/Book/reference.ps.

288 W. Yang et al. | Computer Languages, Systems & Structures 28 (2002) 273-288

Java and network security, programming languages and compilers, and attribute grammars. He is also very interested in
the study of human languages and human intelligence.

Chey-Woei Tsay received his B.S. degree in computer science from National Taiwan University in 1982. After receiving a
Ph.D. degree in computer science from University of Utah, he joined the Department of Computer Science and Information
Management, Providence University, Taiwan, Republic of China. Dr. Tsay’s current research interests include network
computation, computer graphics, programming languages and compilers, and user interface design.

Lien-Tsai Chan received his M.S. degree in Computer and Information Science from the National Chiao Tung University
in 1996. Currently he is a Ph.D. candidate in the same university. His research interests include programming languages,
attribute grammars, compilers, programming systems.

	On the applicability of the longest-match rulein lexical analysis
	Introduction
	Overview of the detection method
	Computing sequences of output tokens
	Computing XA* in Axiom 5
	Determining the intersection of a regular language and a context-free language
	The complete detection algorithm
	Conclusion and related work
	References

