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Abstract

It is known that every hypercubeQn is a bipartite graph. Assume thatn � 2 andF is a subset of edges with|F | � n− 2. We
prove that there exists a hamiltonian path inQn − F between any two vertices of different partite sets. Moreover, there exists
a path of length 2n − 2 between any two vertices of the same partite set. Assume thatn � 3 andF is a subset of edges with
|F | � n − 3. We prove that there exists a hamiltonian path inQn − {v} −F between any two vertices in the partite set without
v. Furthermore, all bounds are tight. 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper, a network is represented as an undi-
rected graph. For the graph definition and notation
we follow [1]. G = (V ,E) is a graph ifV is a fi-
nite set andE is a subset of{(a, b) | (a, b) is an or-
dered pair ofV }. We say thatV is thevertex set and
E is the edge set. Two verticesa and b are adja-
cent if (a, b) ∈ E. A path is a sequence of adjacent
vertices, written as〈v0, v1, v2, . . . , vm〉, in which all
the verticesv0, v1, . . . , vm are distinct except possibly
v0 = vm. We also write the path〈v0,P, vm〉, where
P = 〈v1, . . . , vm−1〉. A path is ahamiltonian path if
its vertices are distinct and they span onV . A cycle
is a path with at least three vertices such that the first
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vertex is the same as the last one. A cycle is ahamil-
tonian cycle if it traverses every vertex ofG exactly
once. A graph ishamiltonian if it has a hamiltonian
cycle. A graphG is hamiltonian connected if there
exists a hamiltonian path joining any two vertices of
G. A graphG = (V0 ∪ V1,E) is bipartite if V (G) is
the union of two disjoint setsV0 andV1 such that each
edge consists of one vertex from each set.

As the hamiltonicity of a graphG is concerned, it
is an important issue to investigate ifG is hamiltonian
or hamiltonian connected. However, any hamiltonian
bipartite graphG = (V0 ∪ V1,E) satisfies |V0| =
|V1|. Since the colors of the bipartite path alternates,
all hamiltonian bipartite graphs are not hamiltonian-
connected. Simmons [8] introduces the concept of
hamiltonian laceability for those hamiltonian bipartite
graphs. A hamiltonian bipartite graphG = (V0 ∪
V1,E) is hamiltonian laceable if there is a hamiltonian
path between any two verticesx andy with x ∈ V0 and
y ∈ V1. Hsieh et al. [3] further extend this concept into
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strongly hamiltonian laceable. A hamiltonian laceable
graph G = (V0 ∪ V1,E) is strongly if there is a
simple path of length|V0 ∪ V1| − 2 between any two
vertices of the same partite set. Lewinter et al. [7] also
introduce the concept of hyper-hamiltonian laceable.
A hamiltonian laceable graphG = (V0 ∪ V1,E) is
hyper-hamiltonian laceable if for any vertexv ∈ Vi ,
i = 0,1, there is a hamiltonian path ofG− v between
any two vertices ofV1−i .

The edge fault-tolerant hamiltonicity proposed by
Hsieh, Chen, and Ho [4], measures the performance
of the hamiltonian property in the faulty networks.
A hamiltonian graphG is k edge fault-tolerant hamil-
tonian if G − F remains hamiltonian for everyF ⊂
E(G) with |F | � k. The edge fault-tolerant hamil-
tonicity, He(G), is defined to be the maximum integer
k such thatG is k edge fault-tolerant hamiltonian ifG
is hamiltonian, and undefined if otherwise. It is easy to
see thatHe(G) � δ(G)− 2 for any hamiltonian graph
G where

δ(G) = min
{
deg(v) | v ∈ V (G)

}
.

We can further study other fault-hamiltonicity. A ham-
iltonian laceable graphG is k edge fault-tolerant
hamiltonian laceable if G − F remains hamiltonian
laceable for everyF ⊂ E(G) with |F | � k. Theedge
fault-tolerant hamiltonian laceability, HL

e (G), is de-
fined to be the maximum integerk such thatG is
k edge fault-tolerant hamiltonian laceable, and unde-
fined if otherwise. A strongly hamiltonian laceable
graphG is k edge fault-tolerant strongly hamiltonian
laceable if G − F remains strongly hamiltonian lace-
able for everyF ⊂ E(G) with |F | � k. Theedge fault-
tolerant strongly hamiltonian laceability, HSL

e (G), is
defined to be the maximum integerk such thatG is k

edge fault-tolerant strongly hamiltonian laceable, and
undefined if otherwise. A hyper-hamiltonian laceable
graphG is k edge fault-tolerant hyper-hamiltonian
laceable if G−F remains hyper-hamiltonian laceable
for every F ⊂ E(G) with |F | � k. The edge fault-
tolerant hyper-hamiltonian laceability, Hh

e (G), is de-
fined to be the maximum integerk such thatG is
k edge fault-tolerant hyper-hamiltonian laceable, and
undefined if otherwise.

Network topology is usually represented by a graph
where nodes represent processors and edges represent
links between processors. The binary hypercube,Qn,
is one of the most popular topologies [6]. Letu =

un−1un−2 . . .u1u0 andv = vn−1vn−2 . . . v1v0 be two
n-bit binary strings. The Hamming distanceh(u, v)
between two verticesu andv is the number of different
bits in the corresponding strings of both vertices. The
n-dimensional hypercube consists of alln-bit binary
strings as its vertices and two verticesu and v are
adjacent if and only ifh(u, v) = 1. Latifi et al. [5]
proved thatHe(Qn) = n− 2 if n � 2. Harary et al. [2]
proved thatQn is strongly hamiltonian laceable if and
only if n � 2. Lewinter et al. [7] proved thatQn is
hyper-hamiltonian laceable if and only ifn � 3. In this
paper, we prove that

HL
e (Qn) =HSL

e (Qn) = n− 2 if n � 2

and

Hh
e (Qn) = n − 3 if n � 3.

Using our approach, we can easily prove thatHe(Qn)

= n− 2 if n � 2.

2. Fault-tolerant hamiltonian laceability of
hypercubes

Let Qn be then-dimensional hypercube. In this
section, we will prove thatHSL

e (Qn) � n − 2 and
Hh

e (Qn) � n − 3. It is clear thatHSL
e (G) � n − 2 and

Hh
e (G) � n − 3, for anyn-regular bipartite graphG.

So HSL
e (Qn) = n − 2, Hh

e (Qn) = n − 3, and these
results are optimal.Qn can be divided into two copies
of Qn−1, denoted byQ0

n−1 andQ1
n−1. Let Ec be the

set of crossing edges, i.e.,

Ec = {
(u,u′) | (u,u′) ∈ E(Qn), u ∈ V (Q0

n−1) and

u′ ∈ V (Q1
n−1)

}
.

Let F be the set of faulty edges ofQn, F0 = F ∩
E(Q0

n−1), F1 = F ∩E(Q1
n−1), andFc = F ∩Ec. Also

let f0 = |F0|, f1 = |F1|, andfc = |Fc|. SinceQn is
edge symmetric, it suffices to consider only the case
that fc � 1. That means,Qn can be split intoQ0

n−1
andQ1

n−1 using any dimensiond , where 1� d � n.
Therefore, given a faulty edge setF , Qn can be split
into Q0

n−1 andQ1
n−1 such thatFc is not an empty set.

Lemma 1. Q3 is 1 edge fault-tolerant hamiltonian
laceable, HL

e (Q3) = 1.
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Proof. Let e be a faulty edge inQ3. Q3 can be split
into Q0

2 andQ1
2 such thate is neither inE(Q0

2) nor in
E(Q1

2). Suppose thatx andy are with different colors.
Case 1: x, y ∈ V (Q0

2) or x, y ∈ V (Q1
2). Without

loss of generality, we may assume thatx, y ∈ V (Q0
2).

Q2 is a cycle of length four, sox and y are adja-
cent. LetP = 〈x, x0, x1, y〉 be a path inQ0

2. Since
|F | = 1, there exists an edge, denoted by(u, v), in
this path such that(u,u′) and (v, v′) are fault-free
and u′, v′ ∈ Q1

2. Obviously,u′ and v′ are adjacent.
Let R = 〈u′,w, z, v′〉 be a path inQ1

2. Therefore,
E(P) ∪ E(R) − {(u, v)} forms a hamiltonian path in
Q3 joining x andy.

Case 2: x ∈ V (Q0
2) andy ∈ V (Q1

2), or x ∈ V (Q1
2)

and y ∈ V (Q0
2). Without loss of generality, we may

assume thatx ∈ V (Q0
2) andy ∈ V (Q1

2). Since there
are two vertices inQ0

2 adjacent tox, we may choose
a fault-free edge(u, v) such thatu ∈ V (Q0

2), u is
adjacent tox and v ∈ V (Q1

2). Obviously, v and y

are adjacent. Let〈x, x0, x1, u〉 be a path inQ0
2 and

〈y, y0, y1, v〉 be a path inQ1
2, respectively. Combining

these two paths, we have a hamiltonian path inQ3
joining x andy. ✷
Lemma 2. Q3 is 1 edge fault-tolerant strongly hamil-
tonian laceable, i.e., HSL

e (Q3) = 1.

Proof. Let e be a faulty edge inQ3. Q3 can be split
into Q0

2 andQ1
2 such thate is neither inE(Q0

2) nor in
E(Q1

2). Suppose thatx andy are with the same color.
In order to prove this lemma, we will construct a fault-
free path of length 6 joiningx andy.

Case 1: x, y ∈ V (Q0
2) or x, y ∈ V (Q1

2). Without
loss of generality, we may assume thatx, y ∈ V (Q0

2).
Let 〈x,u, y〉 be a path inQ0

2 such that(u,u′) is fault-
free andu′ ∈ Q1

2. There is a vertexv in {x, y} such
that (v, v′) is fault free andv′ ∈ Q1

2. Without loss
of generality, we assume thatv = x. Obviously,u′
andv′ are adjacent. Let〈u′,w, z, v′〉 be a path inQ1

2.
Therefore,〈x, v′, z,w,u′, u, y〉 forms a path of length
6 in Q3 joining x andy.

Case 2: x ∈ V (Q0
2) andy ∈ V (Q1

2), or x ∈ V (Q1
2)

and y ∈ V (Q0
2). Without loss of generality, we may

assume thatx ∈ V (Q0
2) and y ∈ V (Q1

2). Let u be
another vertex inV (Q0

2) having the same color asx.
Also let v ∈ V (Q1

2), v andy have the same color. So

these four verticesx, y, u, andv are all with the same
color. And at least one ofu andv is not an endpoint
of the faulty edgee. We may assume that(u,u′) is
a fault-free edge such thatu′ ∈ V (Q1

2). Obviously,u′
andy are adjacent. Let〈y, y0, v, u

′〉 be a path inQ1
2

and〈x, x0, u〉 be a path inQ0
2, respectively. Therefore,

〈x, x0, u,u
′, v, y0, y〉 forms a path of length 6 joining

x andy. ✷
Lemma 3. The hypercube Qn, n � 2, is (n − 2) edge
fault-tolerant hamiltonian laceable, i.e., HL

e (Qn) =
n− 2.

Proof. We prove this lemma by induction onn. First,
we observe that the lemma holds forn = 2. By
Lemma 1, the lemma holds ifn = 3. For n � 4, we
assume that the lemma is true for every integerk < n.
Let x and y be two vertices with different colors in
Qn, i.e.,x andy are in different partite sets. In order
to prove thatHL

e (Qn) � n − 2, we must construct a
fault-free hamiltonian path joiningx and y for any
given faulty edge setF with |F | = n−2. Sincefc � 1,
f0 � n − 3 andf1 � n− 3.

Case 1: x, y ∈ V (Q0
n−1) or x, y ∈ V (Q1

n−1). (See
Fig. 1(a).) Without loss of generality, we may as-
sume thatx andy are inQ0

n−1. By induction hypoth-
esis,HL

e (Q
0
n−1) = n − 3, there exists a hamiltonian

path 〈x,P0, y〉 with 2n−1 − 1 edges. We claim that
there exists an edge(u, v) ∈ E(〈x,P0, y〉) such that
both crossing edges(u,u′) and (v, v′) are fault-free.
Since|E(〈x,P0, y〉)| = 2n−1 − 1, we have 2n−1 − 1
choices. If none of the edges of〈x,P0, y〉 meets the
requirements of such an edge(u, v), then there are
at least�(2n−1 − 1)/2� faults in Fc . (Because a sin-
gle fault inFc eliminates 2 edges of〈x,P0, y〉.) And
�(2n−1−1)/2�> n−2 forn � 4, this contradicts with
the fact that|F | � n − 2. Therefore, we can always
find such an edge(u, v). Obviously,u′ andv′ are with
different colors. SinceHL

e (Q
1
n−1) = n − 3, there ex-

ists a fault-free hamiltonian path〈u′,P1, v
′〉 in Q1

n−1.
Therefore,

E
(〈x,P0, y〉) ∪E

(〈u′,P1, v
′〉)∪

{
(u,u′), (v, v′)

} − {
(u, v)

}

forms a hamiltonian path inQn − F joining x andy.
Case 2: x ∈ V (Q0

n−1) and y ∈ V (Q1
n−1), or x ∈

V (Q1
n−1) andy ∈ V (Q0

n−1). (See Fig. 1(b).) Without
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Fig. 1. (a) Case 1:x,y ∈ V (Q0
n−1). (b) Case 2:x ∈ V (Q0

n−1) andy ∈ V (Q1
n−1).

loss of generality, we assume thatx ∈ V (Q0
n−1) and

y ∈ V (Q1
n−1). We claim that we can choose a vertex

u in Q0
n−1 such thatu and x are with different

colors, and the crossing edge(u,u′) is fault-free,
whereu′ ∈ V (Q1

n−1). Since |V (Q0
n−1)| = 2n−1, we

have 2n−2 choices. (Because there are 2n−2 vertices
in Q0

n−1 which have different colors fromx.) If none
of the vertices inQ0

n−1 meets the requirements of
such vertexu, then there are at least 2n−2 faults in
Fc . This contradicts with the fact that|F | � n − 2
for n � 2. Therefore, we can always find such a
vertex u. Then, u′ and y are with different colors.
SinceHL

e (Q
0
n−1) = HL

e (Q
1
n−1) = n − 3, there exists

a hamiltonian path〈x,P0, u〉 and〈u′,P1, y〉 in Q0
n−1

and inQ1
n−1, respectively. Therefore,

E
(〈x,P0, u〉) ∪E

(〈u′,P1, y〉) ∪ {
(u,u′)

}

forms a hamiltonian path inQn − F joining x andy.
This completes the induction.✷

Given any faulty edge setF with |F | = n − 2, we
can chose an edge(u, v) in Qn − F . By the proof
above, there exists a hamiltonian path〈u,P, v〉 in
Qn − F joining u andv. So it is easy to see that

E
(〈u,P, v〉) ∪ {

(u, v)
}

forms a hamiltonian cycle inQn − F . HenceHe(Qn)

= n − 2 if n � 2.

Theorem 1. The hypercube Qn, n � 2, is (n − 2)
edge fault-tolerant strongly hamiltonian laceable, i.e.,
HSL

e (Qn) = n− 2.

Proof. By Lemma 3, we haveHL
e (Qn) = n − 2. So

all we have to show is the following. Letx andy be

two vertices with the same color inQn. We must find a
fault-free path〈x,P,y〉 of length 2n − 2 for any given
faulty edge setF with |F | = n − 2. This theorem can
be proved using by the same way of Lemma 3 and
hence the detail proof is omitted.✷
Theorem 2. The hypercube Qn, n � 3, is (n − 3)
edge fault-tolerant hyper-hamiltonian laceable, i.e.,
Hh

e (Qn) = n − 3.

Proof. The proof is again by using induction onn.
Lewinter et al. [7] proved thatQn, n � 3, is hyper-
hamiltonian laceable. So the lemma holds for the
casen = 3. For n � 4, we assume the theorem is
true for every integerk < n. By induction hypothe-
sis, Hh

e (Qn−1) = n − 4. Now, we considerQn. By
Lemma 3, we haveHl

e(Qn) = n − 2. Obviously,Qn

is hamiltonian laceable after removingn− 3 edges. In
order to prove thatHh

e (Qn) � n−3, it suffices to show
the following. After deleting a given vertexw from
Qn, let x andy be any two vertices in the larger par-
tite set ofQn. We must construct a hamiltonian path
of Qn − F − w joining x andy for any given faulty
edge setF with |F | = n − 3. Without loss of general-
ity, we may assume thatw ∈ V (Q0

n−1). Sincefc � 1,
f0 � n − 4 andf1 � n− 4.

Case 1: x, y ∈ V (Q0
n−1). (See Fig. 2(a).) By in-

duction hypothesis,Hh
e (Q

0
n−1) = n − 4, there exists

a fault-free hamiltonian path〈x,P0, y〉 with 2n−1 − 2
edges inQ0

n−1 − w. We now show that there ex-
ists an edge(u, v) ∈ E(〈x,P0, y〉) such that both
crossing edges(u,u′) and(v, v′) are fault-free. Since
|E(〈x,P0, y〉)| = 2n−1 −2, we have 2n−1 −2 choices.
If none of the edges of〈x,P0, y〉 meets the require-
ments of(u, v), then there are at least(2n−1 − 2)/2=
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Fig. 2. (a) Case 1:x,y ∈ V (Q0
n−1). (b) Case 2:x,y ∈ V (Q1

n−1). (c) Case 3:x ∈ V (Q0
n−1) andy ∈ V (Q1

n−1).

2n−2 − 1 faults inFc. (Because a single fault inFc

eliminates 2 edges of〈x,P0, y〉.) And 2n−2 − 1 >

n − 3 for n � 4, this contradicts with the fact that
|F | � n − 3. Therefore, we can always find such an
edge(u, v). Obviously,u′ andv′ are with different col-
ors. SinceHL

e (Q
1
n−1) = n− 3, there exists a fault-free

hamiltonian path〈u′,P1, v
′〉 in Q1

n−1. Therefore,

E
(〈x,P0, y〉) ∪E

(〈u′,P1, v
′〉)∪

{
(u,u′), (v, v′)

} − {
(u, v)

}

forms a hamiltonian path inQn − F − w joining x

andy.
Case 2: x, y ∈ V (Q1

n−1). (See Fig. 2(b).) First, we
will choose a vertexu in Q1

n−1 such thatu andx are
with different colors, and the crossing edge(u,u′) is
fault-free, whereu′ ∈ V (Q0

n−1). Since|V (Q1
n−1)| =

2n−1, we have 2n−2 choices. (Because there are 2n−2

vertices inQ1
n−1 which have different colors fromx.)

If none of the vertices inQ1
n−1 meets the requirements

of such vertexu, then there are at least 2n−2 faults
in Fc . This contradicts with the fact that|F | � n − 3
for n � 2. Therefore, we can always find such a
vertexu. SinceHh

e (Q
1
n−1) = n−4, there exists a fault-

free hamiltonian path〈x,P,y〉 in Q1
n−1 − u joining

x and y. We claim that there exists a vertext such
that the edge(u, t) is fault-free inQ1

n−1, the edge
(t, v) ∈ E(〈x,P,y〉), and the crossing edge(v, v′) is
fault-free inQn wherev′ ∈ Q0

n−1. Since the number
of neighboring vertices ofu in Q1

n−1 is n− 1, we have
n − 1 choices. If none of the vertices inQ1

n−1 meets
the requirements of such a vertext , then there are at
leastn − 1 faults inFc , making it contradictory to the
fact that|F | � n − 3. Therefore, we can always find
such a vertext .

We then divide the path〈x,P,y〉 into two sections
〈x,P0, v〉 and 〈t,P1, y〉, or 〈x,P0, t〉 and 〈v,P1, y〉.
Without loss of generality, we assume the case〈x,P0, t〉
and〈v,P1, y〉. Thus, we have two sections as〈x,P0, u〉
and〈v,P1, y〉. Let (u,u′) and(v, v′) be two crossing
edges incident to verticesu andv, respectively. Then,
u′ andv′ are with the same color inQ0

n−1. Sinceu
and x are with different colors,u′ and v′ are in the
larger partite set ofQ0

n−1 −w. By induction hypothe-
sis,HL

e (Q
0
n−1) = n−4, there exists a fault-free hamil-

tonian path〈u′,R, v′〉 in Q0
n−1. Therefore,

E
(〈x,P0, t〉

) ∪E
(〈u′,R, v′〉)∪

E
(〈v,P1, y〉) ∪ {

(u,u′), (v, v′), (t, u)
}

forms a hamiltonian path inQn − F − w joining x

andy.
Case 3: x ∈ V (Q0

n−1) and y ∈ V (Q1
n−1), or x ∈

V (Q1
n−1) andy ∈ V (Q0

n−1). (See Fig. 2(c).) Without
loss of generality, we assume thatx ∈ V (Q0

n−1) and
y ∈ V (Q1

n−1). First, we will choose a vertexu, u �= x,

in Q0
n−1 such thatu andx are with the same color,

and the crossing edge(u,u′) is fault-free, whereu′ ∈
V (Q1

n−1). Since|V (Q0
n−1)| = 2n−1, we have 2n−2−1

choices. (Because there are 2n−2−1 fault-free vertices
in Q0

n−1 which have the same color asx.) If none of
the vertices inQ0

n−1 meets the requirements of such
vertex u, then there are at least 2n−2 − 1 faults in
Fc . This contradicts with the fact that|F | � n − 3 for
n � 3. Therefore, we can always find such a vertexu.
Then,u′ andy are with different colors. By induction
hypothesis,Hh

e (Q
0
n−1) = n − 4, there exists a fault-

free hamiltonian path〈x,P0, u〉 in Q0
n−1 joining x

andu. Also, sinceHL
e (Q

1
n−1) = n − 3, there exists a
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fault-free hamiltonian path〈u′,P1, y〉 in Q1
n−1 joining

u′ andy. Therefore,

E
(〈x,P0, u〉) ∪E

(〈u′,P1, y〉) ∪ {
(u,u′)

}

forms a hamiltonian path inQn − F − w joining x

andy. The proof is complete. ✷
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