

Information Processing Letters 83 (2002) 301-306

www.elsevier.com/locate/ipl

Fault-tolerant hamiltonian laceability of hypercubes *

Chang-Hsiung Tsai, Jimmy J.M. Tan, Tyne Liang, Lih-Hsing Hsu*

Department of Computer and Information Science, National Chiao Tung University, Hsinchu, 30050 Taiwan, ROC

Received 16 January 2001; received in revised form 27 December 2001

Communicated by F.Y.L. Chin

Abstract

It is known that every hypercube Q_n is a bipartite graph. Assume that $n \ge 2$ and F is a subset of edges with $|F| \le n - 2$. We prove that there exists a hamiltonian path in $Q_n - F$ between any two vertices of different partite sets. Moreover, there exists a path of length $2^n - 2$ between any two vertices of the same partite set. Assume that $n \ge 3$ and F is a subset of edges with $|F| \le n - 3$. We prove that there exists a hamiltonian path in $Q_n - \{v\} - F$ between any two vertices in the partite set without v. Furthermore, all bounds are tight. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Hamiltonian laceable; Hypercube; Fault tolerance

1. Introduction

In this paper, a network is represented as an undirected graph. For the graph definition and notation we follow [1]. G = (V, E) is a graph if V is a finite set and E is a subset of $\{(a, b) \mid (a, b) \text{ is an or-}$ dered pair of V}. We say that V is the vertex set and E is the edge set. Two vertices a and b are adjacent if $(a, b) \in E$. A path is a sequence of adjacent vertices, written as $\langle v_0, v_1, v_2, \dots, v_m \rangle$, in which all the vertices v_0, v_1, \dots, v_m are distinct except possibly $v_0 = v_m$. We also write the path $\langle v_0, P, v_m \rangle$, where $P = \langle v_1, \dots, v_{m-1} \rangle$. A path is a hamiltonian path if its vertices are distinct and they span on V. A cycle is a path with at least three vertices such that the first

Corresponding author.

vertex is the same as the last one. A cycle is a *hamil-tonian cycle* if it traverses every vertex of *G* exactly once. A graph is *hamiltonian* if it has a hamiltonian cycle. A graph *G* is *hamiltonian connected* if there exists a hamiltonian path joining any two vertices of *G*. A graph $G = (V_0 \cup V_1, E)$ is *bipartite* if V(G) is the union of two disjoint sets V_0 and V_1 such that each edge consists of one vertex from each set.

As the hamiltonicity of a graph *G* is concerned, it is an important issue to investigate if *G* is hamiltonian or hamiltonian connected. However, any hamiltonian bipartite graph $G = (V_0 \cup V_1, E)$ satisfies $|V_0| =$ $|V_1|$. Since the colors of the bipartite path alternates, all hamiltonian bipartite graphs are not hamiltonianconnected. Simmons [8] introduces the concept of hamiltonian laceability for those hamiltonian bipartite graphs. A hamiltonian bipartite graph $G = (V_0 \cup V_1, E)$ is *hamiltonian laceable* if there is a hamiltonian path between any two vertices *x* and *y* with $x \in V_0$ and $y \in V_1$. Hsieh et al. [3] further extend this concept into

 $^{^{\}star}$ This work was supported in part by the National Science Council of the Republic of China under Contract NSC 89-2115-M-009-020.

E-mail address: ihhsu@cc.nctu.edu.tw (L.-H. Hsu).

^{0020-0190/02/}\$ – see front matter © 2002 Elsevier Science B.V. All rights reserved. PII: S0020-0190(02)00214-4

strongly hamiltonian laceable. A hamiltonian laceable graph $G = (V_0 \cup V_1, E)$ is *strongly* if there is a simple path of length $|V_0 \cup V_1| - 2$ between any two vertices of the same partite set. Lewinter et al. [7] also introduce the concept of hyper-hamiltonian laceable. A hamiltonian laceable graph $G = (V_0 \cup V_1, E)$ is *hyper-hamiltonian laceable* if for any vertex $v \in V_i$, i = 0, 1, there is a hamiltonian path of G - v between any two vertices of V_{1-i} .

The edge fault-tolerant hamiltonicity proposed by Hsieh, Chen, and Ho [4], measures the performance of the hamiltonian property in the faulty networks. A hamiltonian graph *G* is *k* edge fault-tolerant hamiltonian if G - F remains hamiltonian for every $F \subset$ E(G) with $|F| \leq k$. The edge fault-tolerant hamiltonicity, $\mathcal{H}_e(G)$, is defined to be the maximum integer *k* such that *G* is *k* edge fault-tolerant hamiltonian if *G* is hamiltonian, and undefined if otherwise. It is easy to see that $\mathcal{H}_e(G) \leq \delta(G) - 2$ for any hamiltonian graph *G* where

 $\delta(G) = \min\{\deg(v) \mid v \in V(G)\}.$

We can further study other fault-hamiltonicity. A hamiltonian laceable graph G is k edge fault-tolerant hamiltonian laceable if G - F remains hamiltonian laceable for every $F \subset E(G)$ with $|F| \leq k$. The *edge* fault-tolerant hamiltonian laceability, $\mathcal{H}_{e}^{L}(G)$, is defined to be the maximum integer k such that G is k edge fault-tolerant hamiltonian laceable, and undefined if otherwise. A strongly hamiltonian laceable graph G is k edge fault-tolerant strongly hamiltonian *laceable* if G - F remains strongly hamiltonian laceable for every $F \subset E(G)$ with $|F| \leq k$. The *edge fault*tolerant strongly hamiltonian laceability, $\mathcal{H}_{e}^{SL}(G)$, is defined to be the maximum integer k such that G is kedge fault-tolerant strongly hamiltonian laceable, and undefined if otherwise. A hyper-hamiltonian laceable graph G is k edge fault-tolerant hyper-hamiltonian *laceable* if G - F remains hyper-hamiltonian laceable for every $F \subset E(G)$ with $|F| \leq k$. The *edge fault*tolerant hyper-hamiltonian laceability, $\mathcal{H}^h_{e}(G)$, is defined to be the maximum integer k such that G is k edge fault-tolerant hyper-hamiltonian laceable, and undefined if otherwise.

Network topology is usually represented by a graph where nodes represent processors and edges represent links between processors. The binary hypercube, Q_n , is one of the most popular topologies [6]. Let u = $u_{n-1}u_{n-2}...u_1u_0$ and $v = v_{n-1}v_{n-2}...v_1v_0$ be two *n*-bit binary strings. The Hamming distance h(u, v)between two vertices *u* and *v* is the number of different bits in the corresponding strings of both vertices. The *n*-dimensional hypercube consists of all *n*-bit binary strings as its vertices and two vertices *u* and *v* are adjacent if and only if h(u, v) = 1. Latifi et al. [5] proved that $\mathcal{H}_e(Q_n) = n - 2$ if $n \ge 2$. Harary et al. [2] proved that \mathcal{Q}_n is strongly hamiltonian laceable if and only if $n \ge 2$. Lewinter et al. [7] proved that Q_n is hyper-hamiltonian laceable if and only if $n \ge 3$. In this paper, we prove that

$$\mathcal{H}_{e}^{L}(Q_{n}) = \mathcal{H}_{e}^{SL}(Q_{n}) = n - 2 \quad \text{if } n \ge 2$$

and

$$\mathcal{H}^h_e(Q_n) = n - 3 \quad \text{if } n \ge 3.$$

Using our approach, we can easily prove that $\mathcal{H}_e(Q_n) = n - 2$ if $n \ge 2$.

2. Fault-tolerant hamiltonian laceability of hypercubes

Let Q_n be the *n*-dimensional hypercube. In this section, we will prove that $\mathcal{H}_e^{SL}(Q_n) \ge n-2$ and $\mathcal{H}_e^h(Q_n) \ge n-3$. It is clear that $\mathcal{H}_e^{SL}(G) \le n-2$ and $\mathcal{H}_e^h(G) \le n-3$, for any *n*-regular bipartite graph *G*. So $\mathcal{H}_e^{SL}(Q_n) = n-2$, $\mathcal{H}_e^h(Q_n) = n-3$, and these results are optimal. Q_n can be divided into two copies of Q_{n-1} , denoted by Q_{n-1}^0 and Q_{n-1}^1 . Let E_c be the set of crossing edges, i.e.,

$$E_c = \{(u, u') \mid (u, u') \in E(Q_n), \ u \in V(Q_{n-1}^0) \text{ and} \\ u' \in V(Q_{n-1}^1) \}.$$

Let *F* be the set of faulty edges of Q_n , $F_0 = F \cap E(Q_{n-1}^0)$, $F_1 = F \cap E(Q_{n-1}^1)$, and $F_c = F \cap E_c$. Also let $f_0 = |F_0|$, $f_1 = |F_1|$, and $f_c = |F_c|$. Since Q_n is edge symmetric, it suffices to consider only the case that $f_c \ge 1$. That means, Q_n can be split into Q_{n-1}^0 and Q_{n-1}^1 using any dimension *d*, where $1 \le d \le n$. Therefore, given a faulty edge set *F*, Q_n can be split into Q_{n-1}^0 and Q_{n-1}^1 such that F_c is not an empty set.

Lemma 1. Q_3 is 1 edge fault-tolerant hamiltonian laceable, $\mathcal{H}_e^L(Q_3) = 1$.

Proof. Let *e* be a faulty edge in Q_3 . Q_3 can be split into Q_2^0 and Q_2^1 such that *e* is neither in $E(Q_2^0)$ nor in $E(Q_2^1)$. Suppose that *x* and *y* are with different colors.

Case 1: $x, y \in V(Q_2^0)$ or $x, y \in V(Q_2^1)$. Without loss of generality, we may assume that $x, y \in V(Q_2^0)$. Q_2 is a cycle of length four, so x and y are adjacent. Let $P = \langle x, x_0, x_1, y \rangle$ be a path in Q_2^0 . Since |F| = 1, there exists an edge, denoted by (u, v), in this path such that (u, u') and (v, v') are fault-free and $u', v' \in Q_2^1$. Obviously, u' and v' are adjacent. Let $R = \langle u', w, z, v' \rangle$ be a path in Q_2^1 . Therefore, $E(P) \cup E(R) - \{(u, v)\}$ forms a hamiltonian path in Q_3 joining x and y.

Case 2: $x \in V(Q_2^0)$ and $y \in V(Q_2^1)$, or $x \in V(Q_2^1)$ and $y \in V(Q_2^0)$. Without loss of generality, we may assume that $x \in V(Q_2^0)$ and $y \in V(Q_2^1)$. Since there are two vertices in Q_2^0 adjacent to x, we may choose a fault-free edge (u, v) such that $u \in V(Q_2^0)$, u is adjacent to x and $v \in V(Q_2^1)$. Obviously, v and yare adjacent. Let $\langle x, x_0, x_1, u \rangle$ be a path in Q_2^0 and $\langle y, y_0, y_1, v \rangle$ be a path in Q_2^1 , respectively. Combining these two paths, we have a hamiltonian path in Q_3 joining x and y. \Box

Lemma 2. Q_3 is 1 edge fault-tolerant strongly hamiltonian laceable, i.e., $\mathcal{H}_e^{SL}(Q_3) = 1$.

Proof. Let *e* be a faulty edge in Q_3 . Q_3 can be split into Q_2^0 and Q_2^1 such that *e* is neither in $E(Q_2^0)$ nor in $E(Q_2^1)$. Suppose that *x* and *y* are with the same color. In order to prove this lemma, we will construct a fault-free path of length 6 joining *x* and *y*.

Case 1: $x, y \in V(Q_2^0)$ or $x, y \in V(Q_2^1)$. Without loss of generality, we may assume that $x, y \in V(Q_2^0)$. Let $\langle x, u, y \rangle$ be a path in Q_2^0 such that (u, u') is faultfree and $u' \in Q_2^1$. There is a vertex v in $\{x, y\}$ such that (v, v') is fault free and $v' \in Q_2^1$. Without loss of generality, we assume that v = x. Obviously, u'and v' are adjacent. Let $\langle u', w, z, v' \rangle$ be a path in Q_2^1 . Therefore, $\langle x, v', z, w, u', u, y \rangle$ forms a path of length 6 in Q_3 joining x and y.

Case 2: $x \in V(Q_2^0)$ and $y \in V(Q_2^1)$, or $x \in V(Q_2^1)$ and $y \in V(Q_2^0)$. Without loss of generality, we may assume that $x \in V(Q_2^0)$ and $y \in V(Q_2^1)$. Let *u* be another vertex in $V(Q_2^0)$ having the same color as *x*. Also let $v \in V(Q_2^1)$, *v* and *y* have the same color. So these four vertices x, y, u, and v are all with the same color. And at least one of u and v is not an endpoint of the faulty edge e. We may assume that (u, u') is a fault-free edge such that $u' \in V(Q_2^1)$. Obviously, u'and y are adjacent. Let $\langle y, y_0, v, u' \rangle$ be a path in Q_2^1 and $\langle x, x_0, u \rangle$ be a path in Q_2^0 , respectively. Therefore, $\langle x, x_0, u, u', v, y_0, y \rangle$ forms a path of length 6 joining x and y. \Box

Lemma 3. The hypercube Q_n , $n \ge 2$, is (n-2) edge fault-tolerant hamiltonian laceable, i.e., $\mathcal{H}_e^L(Q_n) = n-2$.

Proof. We prove this lemma by induction on *n*. First, we observe that the lemma holds for n = 2. By Lemma 1, the lemma holds if n = 3. For $n \ge 4$, we assume that the lemma is true for every integer k < n. Let *x* and *y* be two vertices with different colors in Q_n , i.e., *x* and *y* are in different partite sets. In order to prove that $\mathcal{H}_e^L(Q_n) \ge n - 2$, we must construct a fault-free hamiltonian path joining *x* and *y* for any given faulty edge set *F* with |F| = n - 2. Since $f_c \ge 1$, $f_0 \le n - 3$ and $f_1 \le n - 3$.

Case 1: $x, y \in V(Q_{n-1}^0)$ or $x, y \in V(Q_{n-1}^1)$. (See Fig. 1(a).) Without loss of generality, we may assume that x and y are in Q_{n-1}^0 . By induction hypothesis, $\mathcal{H}_{e}^{L}(Q_{n-1}^{0}) = n - 3$, there exists a hamiltonian path $\langle x, P_0, y \rangle$ with $2^{n-1} - 1$ edges. We claim that there exists an edge $(u, v) \in E(\langle x, P_0, y \rangle)$ such that both crossing edges (u, u') and (v, v') are fault-free. Since $|E(\langle x, P_0, y \rangle)| = 2^{n-1} - 1$, we have $2^{n-1} - 1$ choices. If none of the edges of $\langle x, P_0, y \rangle$ meets the requirements of such an edge (u, v), then there are at least $\lceil (2^{n-1}-1)/2 \rceil$ faults in F_c . (Because a single fault in F_c eliminates 2 edges of $\langle x, P_0, y \rangle$.) And $\lceil (2^{n-1}-1)/2 \rceil > n-2$ for $n \ge 4$, this contradicts with the fact that $|F| \leq n-2$. Therefore, we can always find such an edge (u, v). Obviously, u' and v' are with different colors. Since $\mathcal{H}_e^L(Q_{n-1}^1) = n - 3$, there exists a fault-free hamiltonian path $\langle u', P_1, v' \rangle$ in Q_{n-1}^1 . Therefore,

$$E(\langle x, P_0, y \rangle) \cup E(\langle u', P_1, v' \rangle) \cup \{(u, u'), (v, v')\} - \{(u, v)\}$$

forms a hamiltonian path in $Q_n - F$ joining x and y.

Case 2: $x \in V(Q_{n-1}^0)$ and $y \in V(Q_{n-1}^1)$, or $x \in V(Q_{n-1}^1)$ and $y \in V(Q_{n-1}^0)$. (See Fig. 1(b).) Without

Fig. 1. (a) Case 1: $x, y \in V(Q_{n-1}^0)$. (b) Case 2: $x \in V(Q_{n-1}^0)$ and $y \in V(Q_{n-1}^1)$.

loss of generality, we assume that $x \in V(Q_{n-1}^0)$ and $y \in V(Q_{n-1}^1)$. We claim that we can choose a vertex u in Q_{n-1}^0 such that u and x are with different colors, and the crossing edge (u, u') is fault-free, where $u' \in V(Q_{n-1}^1)$. Since $|V(Q_{n-1}^0)| = 2^{n-1}$, we have 2^{n-2} choices. (Because there are 2^{n-2} vertices in Q_{n-1}^0 which have different colors from x.) If none of the vertices in Q_{n-1}^0 meets the requirements of such vertex u, then there are at least 2^{n-2} faults in F_c . This contradicts with the fact that $|F| \leq n-2$ for $n \geq 2$. Therefore, we can always find such a vertex u. Then, u' and y are with different colors. Since $\mathcal{H}_e^L(Q_{n-1}^0) = \mathcal{H}_e^L(Q_{n-1}^1) = n-3$, there exists a hamiltonian path $\langle x, P_0, u \rangle$ and $\langle u', P_1, y \rangle$ in Q_{n-1}^0 and in Q_{n-1}^1 , respectively. Therefore,

$$E(\langle x, P_0, u \rangle) \cup E(\langle u', P_1, y \rangle) \cup \{(u, u')\}$$

forms a hamiltonian path in $Q_n - F$ joining x and y. This completes the induction. \Box

Given any faulty edge set *F* with |F| = n - 2, we can chose an edge (u, v) in $Q_n - F$. By the proof above, there exists a hamiltonian path $\langle u, P, v \rangle$ in $Q_n - F$ joining *u* and *v*. So it is easy to see that

$$E(\langle u, P, v \rangle) \cup \{(u, v)\}$$

forms a hamiltonian cycle in $Q_n - F$. Hence $\mathcal{H}_e(Q_n) = n - 2$ if $n \ge 2$.

Theorem 1. The hypercube Q_n , $n \ge 2$, is (n-2) edge fault-tolerant strongly hamiltonian laceable, i.e., $\mathcal{H}_e^{SL}(Q_n) = n - 2$.

Proof. By Lemma 3, we have $\mathcal{H}_{e}^{L}(Q_{n}) = n - 2$. So all we have to show is the following. Let *x* and *y* be

two vertices with the same color in Q_n . We must find a fault-free path $\langle x, P, y \rangle$ of length $2^n - 2$ for any given faulty edge set *F* with |F| = n - 2. This theorem can be proved using by the same way of Lemma 3 and hence the detail proof is omitted. \Box

Theorem 2. The hypercube Q_n , $n \ge 3$, is (n-3)edge fault-tolerant hyper-hamiltonian laceable, i.e., $\mathcal{H}_e^h(Q_n) = n - 3$.

Proof. The proof is again by using induction on *n*. Lewinter et al. [7] proved that Q_n , $n \ge 3$, is hyperhamiltonian laceable. So the lemma holds for the case n = 3. For $n \ge 4$, we assume the theorem is true for every integer k < n. By induction hypothesis, $\mathcal{H}_{e}^{h}(Q_{n-1}) = n - 4$. Now, we consider Q_{n} . By Lemma 3, we have $\mathcal{H}_{e}^{l}(Q_{n}) = n - 2$. Obviously, Q_{n} is hamiltonian laceable after removing n - 3 edges. In order to prove that $\mathcal{H}^h_{\rho}(Q_n) \ge n-3$, it suffices to show the following. After deleting a given vertex w from Q_n , let x and y be any two vertices in the larger partite set of Q_n . We must construct a hamiltonian path of $Q_n - F - w$ joining x and y for any given faulty edge set F with |F| = n - 3. Without loss of generality, we may assume that $w \in V(Q_{n-1}^0)$. Since $f_c \ge 1$, $f_0 \leq n - 4$ and $f_1 \leq n - 4$.

Case 1: $x, y \in V(Q_{n-1}^0)$. (See Fig. 2(a).) By induction hypothesis, $\mathcal{H}_e^h(Q_{n-1}^0) = n - 4$, there exists a fault-free hamiltonian path $\langle x, P_0, y \rangle$ with $2^{n-1} - 2$ edges in $Q_{n-1}^0 - w$. We now show that there exists an edge $(u, v) \in E(\langle x, P_0, y \rangle)$ such that both crossing edges (u, u') and (v, v') are fault-free. Since $|E(\langle x, P_0, y \rangle)| = 2^{n-1} - 2$, we have $2^{n-1} - 2$ choices. If none of the edges of $\langle x, P_0, y \rangle$ meets the requirements of (u, v), then there are at least $(2^{n-1} - 2)/2 =$

Fig. 2. (a) Case 1: $x, y \in V(Q_{n-1}^0)$. (b) Case 2: $x, y \in V(Q_{n-1}^1)$. (c) Case 3: $x \in V(Q_{n-1}^0)$ and $y \in V(Q_{n-1}^1)$.

 $2^{n-2} - 1$ faults in F_c . (Because a single fault in F_c eliminates 2 edges of $\langle x, P_0, y \rangle$.) And $2^{n-2} - 1 > n-3$ for $n \ge 4$, this contradicts with the fact that $|F| \le n-3$. Therefore, we can always find such an edge (u, v). Obviously, u' and v' are with different colors. Since $\mathcal{H}_e^L(Q_{n-1}^1) = n-3$, there exists a fault-free hamiltonian path $\langle u', P_1, v' \rangle$ in Q_{n-1}^1 . Therefore,

$$E(\langle x, P_0, y \rangle) \cup E(\langle u', P_1, v' \rangle) \cup \{(u, u'), (v, v')\} - \{(u, v)\}$$

forms a hamiltonian path in $Q_n - F - w$ joining x and y.

Case 2: $x, y \in V(Q_{n-1}^1)$. (See Fig. 2(b).) First, we will choose a vertex u in Q_{n-1}^1 such that u and x are with different colors, and the crossing edge (u, u') is fault-free, where $u' \in V(Q_{n-1}^0)$. Since $|V(Q_{n-1}^1)| =$ 2^{n-1} , we have 2^{n-2} choices. (Because there are 2^{n-2} vertices in Q_{n-1}^1 which have different colors from x.) If none of the vertices in Q_{n-1}^1 meets the requirements of such vertex u, then there are at least 2^{n-2} faults in F_c . This contradicts with the fact that $|F| \leq n-3$ for $n \ge 2$. Therefore, we can always find such a vertex *u*. Since $\mathcal{H}_e^h(Q_{n-1}^1) = n-4$, there exists a faultfree hamiltonian path $\langle x, P, y \rangle$ in $Q_{n-1}^1 - u$ joining x and y. We claim that there exists a vertex t such that the edge (u, t) is fault-free in Q_{n-1}^1 , the edge $(t, v) \in E(\langle x, P, y \rangle)$, and the crossing edge (v, v') is fault-free in Q_n where $v' \in Q_{n-1}^0$. Since the number of neighboring vertices of u in Q_{n-1}^1 is n-1, we have n-1 choices. If none of the vertices in Q_{n-1}^1 meets the requirements of such a vertex t, then there are at least n-1 faults in F_c , making it contradictory to the fact that $|F| \leq n - 3$. Therefore, we can always find such a vertex t.

We then divide the path $\langle x, P, y \rangle$ into two sections $\langle x, P_0, v \rangle$ and $\langle t, P_1, y \rangle$, or $\langle x, P_0, t \rangle$ and $\langle v, P_1, y \rangle$. Without loss of generality, we assume the case $\langle x, P_0, t \rangle$ and $\langle v, P_1, y \rangle$. Thus, we have two sections as $\langle x, P_0, u \rangle$ and $\langle v, P_1, y \rangle$. Let (u, u') and (v, v') be two crossing edges incident to vertices u and v, respectively. Then, u' and v' are with the same color in Q_{n-1}^0 . Since u and x are with different colors, u' and v' are in the larger partite set of $Q_{n-1}^0 - w$. By induction hypothesis, $\mathcal{H}_e^L(Q_{n-1}^0) = n - 4$, there exists a fault-free hamiltonian path $\langle u', R, v' \rangle$ in Q_{n-1}^0 . Therefore,

$$E(\langle x, P_0, t \rangle) \cup E(\langle u', R, v' \rangle) \cup \\E(\langle v, P_1, y \rangle) \cup \{(u, u'), (v, v'), (t, u)\}$$

forms a hamiltonian path in $Q_n - F - w$ joining x and y.

Case 3: $x \in V(Q_{n-1}^0)$ and $y \in V(Q_{n-1}^1)$, or $x \in V(Q_{n-1}^1)$ and $y \in V(Q_{n-1}^0)$. (See Fig. 2(c).) Without loss of generality, we assume that $x \in V(Q_{n-1}^0)$ and $y \in V(Q_{n-1}^1)$. First, we will choose a vertex $u, u \neq x$, in Q_{n-1}^0 such that u and x are with the same color, and the crossing edge (u, u') is fault-free, where $u' \in$ $V(Q_{n-1}^1)$. Since $|V(Q_{n-1}^0)| = 2^{n-1}$, we have $2^{n-2} - 1$ choices. (Because there are $2^{n-2} - 1$ fault-free vertices in Q_{n-1}^0 which have the same color as x.) If none of the vertices in Q_{n-1}^0 meets the requirements of such vertex u, then there are at least $2^{n-2} - 1$ faults in F_c . This contradicts with the fact that $|F| \leq n-3$ for $n \ge 3$. Therefore, we can always find such a vertex *u*. Then, u' and y are with different colors. By induction hypothesis, $\mathcal{H}_{e}^{h}(Q_{n-1}^{0}) = n - 4$, there exists a faultfree hamiltonian path $\langle x, P_0, u \rangle$ in Q_{n-1}^0 joining x and *u*. Also, since $\mathcal{H}_{e}^{L}(Q_{n-1}^{1}) = n - 3$, there exists a

fault-free hamiltonian path $\langle u', P_1, y \rangle$ in Q_{n-1}^1 joining u' and y. Therefore,

$$E(\langle x, P_0, u \rangle) \cup E(\langle u', P_1, y \rangle) \cup \{(u, u')\}$$

forms a hamiltonian path in $Q_n - F - w$ joining x and y. The proof is complete. \Box

References

- J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, North-Holland, New York, 1980.
- [2] F. Harary, M. Lewinter, Hypercubes and other recursively defined hamilton laceable graphs, Congr. Numer. 60 (1987) 81– 84.

- [3] S.Y. Hsieh, G.H. Chen, C.W. Ho, Hamiltonian-laceability of star graphs, Networks 36 (2000) 225–232.
- [4] S.Y. Hsieh, G.H. Chen, C.W. Ho, Fault-free hamiltonian cycles in faulty arrangement graphs, IEEE Trans. Parallel Distributed Systems 10 (32) (1999) 223–237.
- [5] S. Latifi, S. Zheng, N. Bagherzadeh, Optimal ring embedding in hypercubes with faulty links, in: Fault-Tolerant Computing Symp., 1992, pp. 178–184.
- [6] F.T. Leighton, Introduction to Parallel Algorithms and Architecture: Arrays, Trees, Hypercubes, Morgan Kaufmann, San Mateo, CA, 1992.
- [7] M. Lewinter, W. Widulski, Hyper-Hamilton laceable and caterpillar-spannable product graphs, Comput. Math. Appl. 34 (1997) 99–104.
- [8] G. Simmons, Almost all *n*-dimensional rectangular lattices are Hamilton laceable, Congr. Numer. 21 (1978) 103–108.