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Abstract

Itis known that every hypercub@, is a bipartite graph. Assume that> 2 andF is a subset of edges witl¥| <n — 2. We
prove that there exists a hamiltonian pathgp — F between any two vertices of different partite sets. Moreover, there exists
a path of length 2 — 2 between any two vertices of the same partite set. Assume tha andF is a subset of edges with
|F| < n — 3. We prove that there exists a hamiltonian pati@in— {v} — F between any two vertices in the partite set without
v. Furthermore, all bounds are tight.2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper, a network is represented as an undi-
rected graph. For the graph definition and notation
we follow [1]. G = (V, E) is a graph ifV is a fi-
nite set andk is a subset of(a, b) | (a, b) is an or-
dered pair ofV}. We say thatV is thevertex set and
E is the edge set. Two verticesa and b are adja-
cent if (a,b) € E. A path is a sequence of adjacent
vertices, written agvg, v1, v2, ..., vy ), in which all
the verticesvo, v1, . . ., vy, are distinct except possibly
vo = vy. We also write the pathuvg, P, vy,), where
P = (v1,...,vy—1). A path is ahamiltonian path if
its vertices are distinct and they span 8n A cycle
is a path with at least three vertices such that the first
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vertex is the same as the last one. A cycle feaail-
tonian cycle if it traverses every vertex of; exactly
once. A graph ishamiltonian if it has a hamiltonian
cycle. A graphG is hamiltonian connected if there
exists a hamiltonian path joining any two vertices of
G. AgraphG = (Vo U V1, E) is bipartiteif V(G) is
the union of two disjoint set®p and V7 such that each
edge consists of one vertex from each set.

As the hamiltonicity of a grapl& is concerned, it
is an important issue to investigatedfis hamiltonian
or hamiltonian connected. However, any hamiltonian
bipartite graphG = (Vo U Vi, E) satisfies|Vp| =
|V1]. Since the colors of the bipartite path alternates,
all hamiltonian bipartite graphs are not hamiltonian-
connected. Simmons [8] introduces the concept of
hamiltonian laceability for those hamiltonian bipartite
graphs. A hamiltonian bipartite grapGd = (Vo U
V1, E) is hamiltonian laceableif there is a hamiltonian
path between any two verticesandy with x € Vo and
y € V1. Hsieh et al. [3] further extend this conceptinto

0020-0190/02/$ — see front mattér 2002 Elsevier Science B.V. All rights reserved.

PIl: S0020-0190(02)00214-4



302

strongly hamiltonian laceable. A hamiltonian laceable
graph G = (Vo U V1, E) is strongly if there is a
simple path of lengthVo U V1| — 2 between any two
vertices of the same partite set. Lewinter et al. [7] also
introduce the concept of hyper-hamiltonian laceable.
A hamiltonian laceable graply = (Vo U Vi, E) is
hyper-hamiltonian laceable if for any vertexv € V;,
i =0, 1, there is a hamiltonian path 6f — v between
any two vertices oV _;.

The edge fault-tolerant hamiltonicity proposed by
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Up_1Up—2...urug andv = v,_1v,_2...v1V0 be two
n-bit binary strings. The Hamming distanégu, v)
between two vertices andv is the number of different
bits in the corresponding strings of both vertices. The
n-dimensional hypercube consists of alln-bit binary
strings as its vertices and two verticesand v are
adjacent if and only ifa(u, v) = 1. Latifi et al. [5]
proved that4.(Q,) =n —2if n > 2. Harary et al. [2]
proved thatQ,, is strongly hamiltonian laceable if and
only if n > 2. Lewinter et al. [7] proved thaD,, is

Hsieh, Chen, and Ho [4], measures the performance hyper-hamiltonian laceable if and onlyif> 3. In this

of the hamiltonian property in the faulty networks.
A hamiltonian graplG is k edge fault-tolerant hamil-
tonian if G — F remains hamiltonian for every c
E(G) with |F| < k. The edge fault-tolerant hamil-
tonicity, H.(G), is defined to be the maximum integer
k such thaiG is k edge fault-tolerant hamiltonian &

is hamiltonian, and undefined if otherwise. Itis easy to
see that,.(G) < 8(G) — 2 for any hamiltonian graph
G where

8(G) =min{degv) v e V(G)}.

We can further study other fault-hamiltonicity. A ham-
iltonian laceable graptG is k edge fault-tolerant
hamiltonian laceable if G — F remains hamiltonian
laceable for every C E(G) with |F| < k. Theedge
fault-tolerant hamiltonian laceability, H% (G), is de-
fined to be the maximum integér such thatG is

k edge fault-tolerant hamiltonian laceable, and unde-

fined if otherwise. A strongly hamiltonian laceable
graphG is k edge fault-tolerant strongly hamiltonian
laceableif G — F remains strongly hamiltonian lace-
able for everyF C E(G) with | F| < k. Theedgefault-
tolerant strongly hamiltonian laceability, H?—(G), is
defined to be the maximum integeisuch thatG is k
edge fault-tolerant strongly hamiltonian laceable, and
undefined if otherwise. A hyper-hamiltonian laceable
graph G is k edge fault-tolerant hyper-hamiltonian
laceableif G — F remains hyper-hamiltonian laceable
for every F C E(G) with |F| < k. The edge fault-
tolerant hyper-hamiltonian laceability, HQ(G), is de-
fined to be the maximum integdr such thatG is
k edge fault-tolerant hyper-hamiltonian laceable, and
undefined if otherwise.

Network topology is usually represented by a graph

paper, we prove that

HE(Q) =HI Q) =n—2 ifn>2
and

HYN Q) =n—-3 ifn>3

Using our approach, we can easily prove thatQ,,)
=n—-2ifn>2.

2. Fault-tolerant hamiltonian laceability of
hypercubes

Let O, be thern-dimensional hypercube. In this
section, we will prove that{>-(Q,) > n — 2 and
H'(Q,) >n — 3. Itis clear that{3(G) <n — 2 and
Hf(G) < n — 3, for anyn-regular bipartite grapld.
So H-(Q,) =n — 2, H'(Q,) =n — 3, and these
results are optimal2,, can be divided into two copies
of Q,—1, denoted by® , and Q! ;. Let E, be the
set of crossing edges, i.e.,

Ec={(u,u)| (u,u') € E(Qn), ue V(02 ;) and
u' e V(L D}

Let F be the set of faulty edges a?,,, Fop = F N
E(Q° ), Fi=FNE(Q} ), andF, = FNE..Also

let fo = [Fol, f1 = |F1l, and f. = |F¢|. SinceQ, is
edge symmetric, it suffices to consider only the case
that f. > 1. That meansQ, can be split intoQ° ;

and Q}Z_l using any dimensiod, where 1< d < n.
Therefore, given a faulty edge s&t Q, can be split
into 0% , andQ? , such thatF, is not an empty set.

where nodes represent processors and edges represent

links between processors. The binary hypercube,
is one of the most popular topologies [6]. Let=

Lemma 1. Q3 is 1 edge fault-tolerant hamiltonian
laceable, HL (Q3) = 1.
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Proof. Let e be a faulty edge iQ3. Q3 can be split
into 09 and Q1 such that is neither inE(QY) nor in
E(Q%). Suppose that andy are with different colors.

Case 1: x,y € V(Q9) or x,y € V(03). Without
loss of generality, we may assume thay < V(Qg).
Q2 is a cycle of length four, sa and y are adja-
cent. LetP = (x,xo,x1,y) be a path inQ9. Since
|F| = 1, there exists an edge, denoted (ay v), in
this path such thatu,u«’) and (v,v") are fault-free
and u’,v' € Q3. Obviously,u’ and v’ are adjacent.
Let R = (u',w,z,v') be a path inQ3. Therefore,
E(P)U E(R) — {(u, v)} forms a hamiltonian path in
Qs joining x andy.

Case2:x € V(Q9) andy € V(Q31), orx e V(0))
andy e V(Qg). Without loss of generality, we may
assume that € V(Q9) andy e V(Q3). Since there
are two vertices irQ% adjacent tax, we may choose
a fault-free edgegu, v) such thatu € V(Qg), u is
adjacent tox and v € V(Q3). Obviously,v and y
are adjacent. Letx, xo, x1,u) be a path ian and
(v, yo. y1, v) be a path inQ3, respectively. Combining
these two paths, we have a hamiltonian pathQig
joiningx andy. O

Lemma 2. Q3 is 1 edge fault-tolerant strongly hamil-
tonian laceable, i.e., H-(Q3) = 1.

Proof. Let e be a faulty edge iQ3. Q3 can be split
into 09 and Q1 such that is neither inE (Q9) nor in
E(Q%). Suppose that andy are with the same color.
In order to prove this lemma, we will construct a fault-
free path of length 6 joining andy.

Case 1: x,y € V(Q9) or x,y € V(Q3). Without
loss of generality, we may assume thay < V(Qg).
Let (x,u, y) be a path inQ9 such thatu, u') is fault-
free andu’ € Q%. There is a vertex in {x, y} such
that (v, v') is fault free andv’ € Q3. Without loss
of generality, we assume that= x. Obviously, u’
andv’ are adjacent. Leu’, w, z, v') be a path inQ%.
Therefore(x, v, z, w, u’, u, y) forms a path of length
6 in Q3 joining x andy.

Case2:x € V(Q9) andy € V(Q31), orx e V(Q3)
andy e V(Qg). Without loss of generality, we may
assume that € V(Q9) andy € V(Q}). Let u be
another vertex inV(Qg) having the same color as
Also letv e V(Q%), v andy have the same color. So
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these four vertices, y, u, andv are all with the same
color. And at least one af andwv is not an endpoint
of the faulty edges. We may assume thdi, u’) is
a fault-free edge such that € V(Q%). Obviously,u’
andy are adjacent. Lety, yo, v, u’) be a path inQ%
and(x, xo, u) be a path inQ(z’, respectively. Therefore,
(x, x0, u, u', v, yo, y) forms a path of length 6 joining
xandy. O

Lemma 3. The hypercube Q,,, n > 2, is (n — 2) edge
fault-tolerant hamiltonian laceable, i.e., HeL(Qn) =
n—2.

Proof. We prove this lemma by induction on First,
we observe that the lemma holds far= 2. By
Lemma 1, the lemma holds if = 3. Forn > 4, we
assume that the lemma is true for every intggern.
Let x and y be two vertices with different colors in
On, 1.e.,x andy are in different partite sets. In order
to prove thatHeL(Qn) >n — 2, we must construct a
fault-free hamiltonian path joining and y for any
given faulty edge seft with | F| =n —2. Sincef, > 1,
fo<n—3andfi <n-3.

Case1l:x,y e V(Q% ) orx,y e V(QL ). (See
Fig. 1(a).) Without loss of generality, we may as-
sume thatc andy are in Qg_l. By induction hypoth-
esis, H-(Q°_)) =n — 3, there exists a hamiltonian
path (x, Po, y) with 2*~1 — 1 edges. We claim that
there exists an edge:, v) € E({x, Po, y)) such that
both crossing edge@:, v’) and (v, v") are fault-free.
Since|E((x, Py, y))| =2""1 -1, we have 271 — 1
choices. If none of the edges 6f, Pp, y) meets the
requirements of such an edge, v), then there are
at least[(2"~1 — 1)/2] faults in F,. (Because a sin-
gle fault in F, eliminates 2 edges df, Po, y).) And
[(2"~1—-1)/2] > n—2 forn > 4, this contradicts with
the fact that|F| < n — 2. Therefore, we can always
find such an edgé:, v). Obviously,u” andv’ are with
different colors. Sincé<%(Q! ) =n — 3, there ex-
ists a fault-free hamiltonian patfa’, P1, v') in Qi_l.
Therefore,

E((x, Po, y)) U E((u/, Py, v’)) U

{,u), )} = {@, v}

forms a hamiltonian path i@, — F joining x andy.
Case2: x e V(Q% ) andy e V(QL ), orx e
V(QL ) andy e v(Q° ). (See Fig. 1(b).) Without
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Fig. 1. (a) Case 1t, y € V(Q°_,). (b) Case 2x € V(Q°_))andy e V(QL ).

loss of generality, we assume that V(Qg_l) and

y € V(Q,%_l). We claim that we can choose a vertex
u in Qg_l such thatu and x are with different
colors, and the crossing edde, «’) is fault-free,
whereu’ € V(QL ). Since|V(Q° )| =2""1, we
have 2-2 choices. (Because there ar& 2 vertices

in 0% , which have different colors from.) If none

of the vertices inQS_l meets the requirements of
such vertexu, then there are at least? faults in
F.. This contradicts with the fact tha#| <n — 2
for n > 2. Therefore, we can always find such a
vertexu. Then,u’ and y are with different colors.
SinceHE (0% ) = HE(QY ;) =n — 3, there exists

a hamiltonian pattfx, Po, u) and (', P1,y) in Q°
and in erz—r respectively. Therefore,

E((x, Po,u)) UE((u', P1,y)) U{(u,u")}

forms a hamiltonian path i@, — F joining x andy.
This completes the induction.c

Given any faulty edge sdt with |F|=n — 2, we
can chose an edge:, v) in Q, — F. By the proof
above, there exists a hamiltonian path P, v) in
O, — F joiningu andv. So it is easy to see that

E((u, P, v)) U {(u, v)}

forms a hamiltonian cycle i®,, — F. HenceH.(Q,)
=n—-2ifn>2.

Theorem 1. The hypercube Q,, n > 2, is (n — 2)
edge fault-tolerant strongly hamiltonian laceable, i.e.,
HZ(Qn) =n—2.

Proof. By Lemma 3, we havé{.(Q,) =n — 2. So
all we have to show is the following. Lat andy be

two vertices with the same color 9,. We must find a
fault-free path{x, P, y) of length 2 — 2 for any given
faulty edge se¥ with |F| =n — 2. This theorem can
be proved using by the same way of Lemma 3 and
hence the detail proof is omitted.

Theorem 2. The hypercube Q,, n > 3, is (n — 3)
edge fault-tolerant hyper-hamiltonian laceable, i.e.,
HI(Qu) =n - 3.

Proof. The proof is again by using induction on
Lewinter et al. [7] proved thaQ,, n > 3, is hyper-
hamiltonian laceable. So the lemma holds for the
casen = 3. Forn > 4, we assume the theorem is
true for every integek < n. By induction hypothe-
sis, H"(Qn—1) = n — 4. Now, we considerQ,. By
Lemma 3, we havét(.(Q,) = n — 2. Obviously,Q,

is hamiltonian laceable after removing- 3 edges. In
orderto prove thaH’g(Qn) > n— 3, it suffices to show
the following. After deleting a given vertex from
0., letx andy be any two vertices in the larger par-
tite set of 0,,. We must construct a hamiltonian path
of 0, — F — w joining x andy for any given faulty
edge sefr with |F| =n — 3. Without loss of general-
ity, we may assume that € V(Q°_,). Sincef. > 1,
fo<n—4andfy <n-—4.

Case 1: x,y € V(Q°% ). (See Fig. 2(a).) By in-
duction hypothesis’l-{ﬁ(QS_l) =n — 4, there exists
a fault-free hamiltonian pathx, Po, y) with 2'~1 — 2
edges in Q2_1 — w. We now show that there ex-
ists an edge(u, v) € E({x, Po, y)) such that both
crossing edgeét, u’) and(v, v’) are fault-free. Since
|E((x, Po, y))| =2"~1—2, we have 2-1 — 2 choices.

If none of the edges ofx, Py, y) meets the require-
ments of(u, v), then there are at leag"~1 — 2)/2=
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Fig. 2. (a) Case 1r, y € V(Q°_,). (b) Case 2x,y e V(Q ). (c) Case 3x € V(Q% ;) andy e v(Q} ).

2"=2 _ 1 faults in F.. (Because a single fault i,
eliminates 2 edges ofx, Po,y).) And 202 — 1 >

n — 3 for n > 4, this contradicts with the fact that
|F| < n — 3. Therefore, we can always find such an
edge(u, v). Obviouslyu” andv’ are with different col-
ors. SinceHeL(Q,%_l) =n — 3, there exists a fault-free

hamiltonian pathu’, P, v') in Q}z_l. Therefore,

E((x, Po, y)) UE((u/, P1,v")) U
{w,u), @, )} = {@, v}

forms a hamiltonian path i, — F — w joining x
andy.

Case2:x,y € V(Q! ). (See Fig. 2(b).) First, we
will choose a vertex in Q%_l such thatt andx are
with different colors, and the crossing ed@e ') is
fault-free, wherew’ € V(Q°_,). Since|V(Q} )| =
2"~1 we have 22 choices. (Because there are 2
vertices inQ,%_l which have different colors from.)

If none of the vertices img,%_l meets the requirements
of such vertexu, then there are at least 2 faults
in F,.. This contradicts with the fact thaf'| <n — 3
for n > 2. Therefore, we can always find such a
vertexu. SinceH! (01 ) =n—4, there exists a fault-
free hamiltonian pathx, P, y) in Q}z_l — u joining

x and y. We claim that there exists a vertexsuch
that the edge(u, ¢) is fault-free in Q%_l, the edge
(t,v) € E({x, P, y)), and the crossing edge, v') is
fault-free in 0,, wherev’ € Q2_1- Since the number
of neighboring vertices af in Q}z_l isn—1, we have
n — 1 choices. If none of the vertices @%—1 meets
the requirements of such a vertexthen there are at
leastn — 1 faults in F,;, making it contradictory to the
fact that| F| < n — 3. Therefore, we can always find
such a vertex.

We then divide the patkx, P, y) into two sections
(x, Po,v) and (z, Py, y), or (x, Po,t) and (v, Py, y).
Without loss of generality, we assume the casePo, t)
and(v, P1, y). Thus, we have two sections @as Po, u)
and (v, P1, y). Let (u, u") and (v, v") be two crossing
edges incident to verticesandv, respectively. Then,
u’ andv’ are with the same color i®°_,. Sinceu
and x are with different colorsy’ andv’ are in the
larger partite set OQS_1 — w. By induction hypothe-
sis,HE(Q0 ) = n— 4, there exists a fault-free hamil-
tonian path(u’, R, v') in Q°_,. Therefore,

E({x, Po,t)) UE((u', R,v))U
E((v, P, »)) U{@u,u'), (v, V), (t,w)}

forms a hamiltonian path i@, — F — w joining x
andy.

Case 3:x € V(Q% ;) andy e V(Q! )), orx e
V(Qr ) andy e V(Q° ,). (See Fig. 2(c).) Without
loss of generality, we assume that V(Qg_l) and
y € V(Q}%_l). First, we will choose a vertex, u # x,
in Q2_1 such thatu and x are with the same color,
and the crossing edde, ') is fault-free, where:’ €
V(QL )).SincelV(Q° )l =2""1, wehave 221
choices. (Because there are 2— 1 fault-free vertices
in Qg_l which have the same color as) If none of
the vertices ianj_1 meets the requirements of such
vertex u, then there are at least'?2 — 1 faults in
F.. This contradicts with the fact thaF| <n — 3 for
n > 3. Therefore, we can always find such a vemex
Then,u’ andy are with different colors. By induction
hypothesis,?—lﬁ(QS_l) =n — 4, there exists a fault-
free hamiltonian pathx, Po, u) in Q2—1 joining x

andu. Also, sinceHﬁ(Q,%_l) =n — 3, there exists a
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fault-free hamiltonian patku’, Py, y) in Q}Z_l joining
u’ andy. Therefore,

E((x, Po,u)) UE((u', P1,y)) U{(u,u")}

forms a hamiltonian path i@, — F — w joining x
andy. The proofis complete. O
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