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Low-frequency noise in boron-doped polycrystalline silicon—germar(poiy-Si, _,Ge) resistors

at various temperatures is studied. The poly-Jie, films with 0%~ 36% Ge content were grown

using ultrahigh vacuum chemical molecular epitaxy system. We find that the low-frequency noise in
poly-Si, _,Ge, decreases with increasing Ge content, due to the lower potential barrier height of
grain boundaries in higher Ge content samples. Moreover, the low-frequency noise decreases with
increasing temperature. These results are well explained by the carrier mobility fluctuation model.
© 2002 American Institute of Physic§DOI: 10.1063/1.1511815

In analog and radio frequency circuits, polycrystallinefurnace annealing at 800 °C for 20 min and rapid thermal
silicon (poly-Si) films are frequently used for resistors, the annealing at 1050°C for 10 s were performed for dopant
gate material of metal-oxide-semiconductor field-effect tranactivation and uniform doping distribution. Kelvin resistor
sistors, and the emitter contacts of bipolar junction transisstryctures were fabricated and used to accurately measure

tors. Recently, polycrystalline silicon—germaniufpoly-  (egistivity. The dimension of all samples studied was 500
Si;-xGe,) has been shown to be an attractive alternative to, 10 um?. Current—voltage characteristics of these poly-

con\{ent!onal_spoly—S| 'materlal for various integrated C'rc.:u'tSil,xGeX resistors were measured using an HP4156A semi-
applications:~® By taking advantage of its lower processing

temperature, thin film transistors can be fabricated with poly-CondUCtor parameter analyzer. The noise measurements were

Si,_,Ge, films with processing temperature not eXceedingperformec_i at val_rioug temperatures using a BTA981.ZB_noise
550°C! Furthermore, compatibility with existing silicon analyzer in conjunction with an HP35670A dynamic signal
processing technology and the ability to adjust the threshol@nalyzer.

voltage by changing the Ge content have made heavily Figure 1 shows a typical result of the measured spectral
dopedp-type poly-Sj_,Ge, a very promising gate-electrode density of the current noise in a poly;SiGg, resistor at
material for deep submicrometer complementary metalfoom temperature for various applied currents. The spectra
oxide-semiconductor technologi&3. Because the low- reveal the presence of a large puré &kcess noise signal.
frequency noise in transistors and resistors may contribute tas can be seen in Fig. 1, the noise decreases approximately
the phase noise of the radio frequency circuits or systems, jhyersely proportional to frequency. The exponent of the fre-

is important to predict the amount of noise in them. Severahuency slope of the noise varied betwee®.95 and— 1
researchers have studied the noise properties of poly-Si

films2~" Both carrier number fluctuatioisand mobility

fluctuation§” were supported for the possible mechanisms . " AR
1021 -

which can cause the low-frequency noise. However, the low- 3 1 =10, 20,30, 50,100 pA 7

frequency noise in poly-$i Ge, resistor was less studiéd. 1022 [

In this letter, the low-frequency noise in boron-doped poly-
Si; _,Ge, resistors at various temperatures is investigated.
The relationship of noise and Ge content in poly-SGe,

resistors can be well predicted using the mobility fluctuation
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In this work, poly-Sj_,Ge, films were grown by ultra- 10 FRM
high vacuum chemical molecular epitaxy system to a thick- 1028 ém_,,
ness of~0.2um at 580°C onto thermally grown silicon £
nitride. Pure disilane and germane were used as the source 1027 [O 10 B o7 .
gases. The Ge contertin polycrystalline film was varied AP il s —
from 0 to 0.36. Boron atoms were implanted into the films by 107 102 10°
BF, at an energy of 20 keV. After the ion implantation, Frequency (Hz)

FIG. 1. Current noise spectrum vs frequency of a moderately doped (

¥Electronic mail: kmchen@ndl.gov.tw =6X 10" cm™3) poly-Si 5Gey 36 resistor. Inset shows the current noise as
YElectronic mail: gwhuang@ndl.gov.tw a function of applied current dt=10 Hz.
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FIG. 2. Normalized current noise as a function of Ge content at differente;~ 3 Normalized sheet resistance of poly-Si and polys&ie, 5 for two
boron doping levels. boron concentrations at different temperatures. '

slightly increasing toward higher applied currents. Moreoverg,ge of poly-Si, botip- and n-type doped material will show

the variation of noise intensity varied as the square of CUry similar trapping behavior. In the case of poly-Ge, the traps

. . . th i i type, th levels of
the current noise can be normalized with frequency and th%ﬁe treaggas"r]]if?(ig\?vi?élfsea\ﬁlé/rege %r;?]d E ::;g))é}:(vr;asso

square of the current to permit a clear comparison of resistorg | o, potential barrier for the boron-doped sampfds.is

with d|tffer(_—:‘nt _Ge clontt_antG. F|gur§t2 showsfthet.normfazlhzedbe“eved that the observedfIioise in poly-Si is attributed to

cGurren tnOItseTlr? plo y'stX & resistors gsal1 ung _'02 0 de carrier mobility fluctuations occurring in the space charge
€ content. The fow-lrequency noise Is amost Indepen erFegions near the grain boundary. From the model proposed

; : . 0 =3
Of Ge Contef“ in heavily dOPECB(_l_X 10 cm ) poly- __by Luo, the normalized current noise can be expresséd as
Si;_,Ge, resistors. However, the noise decreases with in-
2 Zda
ade p(qd)s), @

creasing Ge content in moderately doped sampks § S X f 1 (v,
X 1018_cm‘.3). As seen in Fig. 2, the poly-§i/Gey 3¢ exhib- Iz = N—eﬁ( 3ekTASP kT
its a significantly lower noise level than the poly-Si, making
poly-Si; _,Geg, films the preferred choice for analog resistors.whereS; is the measured current noise spectral denkity,
In the generally accepted model of poly-Si, the materialthe bias currentf is the frequencyN is the effective num-
is viewed as composed of small crystallites joined togetheber of large-barrier grains in the conduction path,is the
by grain boundarie¥ ! Inside each crystallite, the atoms are recombination velocityy 4 is the diffusion velocity. is the
arranged in a periodic manner forming small single crystalsgielectric constantA is the cross section of the resistdrjs
while the grain boundaries are composed of disordered athe width of a one-sided space charge region, ard the
oms and contain large numbers of defects due to incompleteoise  parameter for the grains. Substitutingl
bonding. From the literature, the grain boundaries contain=(2¢ ¢ /qn)Y?in Eq. (2), we have
trapping states that are capable of trapping mobile carriers
and contributing to the creation of space-charge potential S xf %q;%)
| (he creation — 7= g ex : 3)
barriers'? The potential barriers will block the transport of | kT

free carriers between the grains, thereby reducing the appar;

ent carrier mobility2 For low and moderately doped poly-Si ence, the noise will depend on the barrier height according
the sheet resistand®, can be expressed ds to Eqg. (3). For moderately doped samples, the difference in

the barrier height can lead to a factor of 6 difference in noise
q¢és between Si and §E/Gey 36. For both materials, the potential
Rs=constyT ex;{ W) (1) parriers are lower with increasing dopant concentration and
the relative difference becomes smaller, so that the effect of
whereT is the temperaturepy is the potential barrier height, the potential barriers becomes less important. For heavily
and k is Boltzmann’s constant. To determine the barrierdoped samples, the potential barrier height only contributes
heights of the grain boundaries, the sheet resistance has begpproximately a factor 1.5 to the difference in noise.
determined as a function of the measurement temperature for
poly-Si and poly-Sje.Gey.ss samples. In Fig. 3, the l0ga- 1aLE 1. Grain boundary energy barriers of boron-doped poly-Si and
rithm of the normalized sheet resistance is plotted as a funGoly-Sj, ;Ge, 5; samples for two boron concentrations.
tion of reciprocal temperature. For heavily doped samples;

Ugd

the sheet resistance contains barrier and bulk grain compo- qép (meV)
nents, so the bulk resistance must be subtracted fronilq. Sample B 6x10®¥cm™2 B 1x10%°cm™2
The obtained values fapy are listed in Table I. It is shown ;

. . . . Poly-Si 61 14
that the barrier height is lower for the ;SiGe,., samples Poly-SiGe 27 9

compared to the Si samples at equal doping levels. In the
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100 r r r —— tors decreases with increasing Ge content. On the basis of
e poly-Si ] their superior noise characteristics, poly-SiGe, resistors
101 | w a poly-SiGe | are preferable to_ poly-Si _reS|s_tors for analog circuit applica-
f 6x107cm tions. For poly-Sj_,Ge, with higher Ge content, the poten-
0l 1 t!al barrier of the grain boundgry is lower thar_1 in poly-Si
o 3 films, thereby reducing the noise from the grain boundary.
('*;_ Furthermore, we find that the noise in moderately doped re-
107 | 9 sistors decreases with increasing temperature. These noise
. N characteristics can be well predicted by using the carrier mo-
101 L g . —e ] bility fluctuation model.
1x10% cm™
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