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Abstract

Let m(G) denote the number of vertices covered by a maximum matching in a graph G.
The ultimate categorical matching m∗(G) is de0ned as m∗(G) = limn→∞m(Gn)1=n where the
categorical graph product is used. In (Discrete Math. 232 (2001) 1), Albert et al. ask that “Is
there a graph G, with at least one edge, such that for all graphs H; m∗(G×H) =m∗(G)m∗(H)?”.
Actually, m∗(G×H)=m∗(G)m∗(H) holds for any graphs G and H with the previous result of
Hsu et al. (Discrete Math. 65 (1987) 53). c© 2002 Elsevier Science B.V. All rights reserved.
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For the graph de0nition and notation we follow [2]. An (undirected simple) graph
G=(V; E) consists of a 0nite set (vertices) V and a subset (edges) E of {[u; v] | u �= v;
[u; v] is an unordered pair of elements of V}. Let m(G) denote the number of vertices
covered by a maximum matching in G.
Let G=(X; E) and H =(Y; F) be two graphs. the categorical product of G and H

is de0ned as the graph G×H =(Z; K), where Z =X ×Y , the Cartesian product of X
and Y , and edge set K = {[(x1; y1); (x2; y2)] | [x1; x2]∈E and [y1; y2]∈F}. In [1], the
ultimate categorical matching, m∗(G), is de0ned as limn→∞m(Gn)1=n. In [1] Albert
et al. ask that “Is there a graph G, with at least one edge, such that for all graphs
H; m∗(G×H)=m∗(G)m∗(H)?”.
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Given a graph G, the G-matching function, �G, assigns to any graph H to the
maximum integer k such that there are k disjoint copies of G as a subgraph of H . The
graph capacity function for G; PG :G→R, is de0ned as PG(H)= limn→∞[�G(Hn)]1=n.
Some properties of graph capacity functions are studied [3,4,5,6,7].
It is obvious that m(G)= 2× �K2 (G) for any graph G. Hence,

m∗(G)= lim
n→∞ [2× �K2 (G

n)]1=n= lim
n→∞[�K2 (G

n)]1=n=PK2 (G):

In [5], it is proved that PK2 (G×H)=PK2 (G)PK2 (H) for any graphs G and H . Hence,
m∗(G×H)=m∗(G)m∗(H) holds for any graphs G and H .
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