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Abstract

In this study, we present a systematic self-consistent multiclass multilane tra$c model derived
from the vehicular Boltzmann equation and the tra$c dispersion model. The multilane domain
is considered as a two-dimensional space and the interaction among vehicles in the domain is
described by a dispersion model. The reason we consider a multilane domain as a two-
dimensional space is that the driving behavior of road users may not be restricted by lanes,
especially motorcyclists. The dispersion model, which is a nonlinear Poisson equation, is derived
from the car-following theory and the equilibrium assumption. Under the concept that all kinds of
users share the 6nite section, the density is distributed on a road by the dispersion model. In ad-
dition, the dynamic evolution of the tra$c %ow is determined by the systematic gas-kinetic model
derived from the Boltzmann equation. Multiplying Boltzmann equation by the zeroth, 6rst- and
second-order moment functions, integrating both side of the equation and using chain rules, we
can derive continuity, motion and variance equation, respectively. However, the second-order
moment function, which is the square of the individual velocity, is employed by previous
researches does not have physical meaning in tra$c %ow. Although the second-order expan-
sion results in the velocity variance equation, additional terms may be generated. The velocity
variance equation we propose is derived from multiplying Boltzmann equation by the individual
velocity variance. It modi6es the previous model and presents a new gas-kinetic tra$c %ow
model. By coupling the gas-kinetic model and the dispersion model, a self-consistent system is
presented. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

During the recent 6ve decades by developing kinetic tra$c %ow model, it is pos-
sible to model more realistic tra$c phenomena for tra$c scientists in laboratories.
Kinetic tra$c %ow models describe and forecast the time variant tra$c variables,
such as density, tra$c volume and velocity. In addition, the performance of the
tra$c-control alternatives and the network design can be evaluated by tra$c
simulation.
Since Lighthill and Whitham [1] and Richards [2] 6rst proposed their kinetic model,

the related subjects are broadly researched and debated. The LWR model was extended
to second-order model, which includes the continuity equation and a phenomenolog-
ical velocity equation. The second-order model was named PW model [3–14]. How-
ever, this kind of models has a lot of arguments, so families of gas-kinematic mod-
els [15–40] are presented. The development of gas-kinetic models includes the dis-
cussion of multilane, multiclass users and overtaking, lane-changing, relaxation and
interaction maneuvers. As the review of Boltzmann equation, Boltzmann equation is
a phase-plane distribution. The macroscopic quantities are derived as follows. The
6rst step is multiplying Boltzmann equation by the moment functions. The second
step is integrating both sides of the equations and using the chain rules. At last, the
macroscopic quantities are obtained. Therefore, the resulting macroscopic quantity and
the moment function must have physical meanings. From the previous researches, the
second-order moment function multiplied to Boltzmann equation is the square of indi-
vidual velocity [18,19,22,30–40]. Nevertheless, the square of individual velocity, which
denotes the individual kinetic energy in physics, is meaningless in tra$c. Although
the second-order expansion results in the velocity variance equation, additional terms
may be generated. For this reason, we multiply Boltzmann equation by the individ-
ual velocity variance in order to modify the derivation of velocity variance equation
herein.
A complete dynamic system should include motion equations and state equations.

The state equation considered in this study is the vehicular dispersion model [41]. The
model is derived from the car-following theory and the equilibrium assumption. Under
a speci6c macroscopic situation, the most possible microscopic combination is de6ned
as the equilibrium state. And the system is assumed to tend toward the equilibrium
state. According to the dispersion model, density is distributed on the road. By coupling
the dispersion model to the kinetic system, a self-consistent system is obtained. Further-
more, we consider the multilane model in a two-dimensional space because the driving
behavior of road users may not be restricted to drive one by one, especially motor-
cyclists [41,42].
The rest of this paper is organized as follows. Section 2 presents the historical

evolution from LWR model to gas-kinetic tra$c %ow models brie%y. Section 3
introduces the concept of tra$c 6eld and the derivation from Boltzmann equation
to macroscopic systems. In Section 4, the model of the multiclass users is
presented. After that, the paper concludes with some perspectives in
Section 5.
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2. Historical evolution of dynamic macroscopic tra�c �ow models

LWR model and the extended models are the most popular macroscopic dynamic
tra$c %ow models. LWR model describes that tra$c is like %uid continuum %owing
on highways. Researches based on the model extend the discussion to shock wave
analyses, higher order eJect, tra$c control applications, multilane tra$c, and so on.
As the purpose of this study is developing a dynamic macroscopic tra$c %ow system,
the historical evolution of dynamic macroscopic tra$c %ow models is mentioned 6rst
in this section.

2.1. The LWR-like models

Lighthill and Whitham [1] and Richards [2] are the 6rst persons who presented
the macroscopic kinetic tra$c %ow model. They used kinematical concepts to describe
waves in tra$c. The basic premises of their model are that tra$c is conversed and that
there exists a one-to-one relationship between velocity and density. The LWR model
can be viewed as a good and basic approximation. Mathematically, LWR model states
that the density k and %ow Q satisfy

@k(x; t)
@t

+∇ · Q(x; t) = 0 ; (1)

where t denotes time and x denotes position. Eq. (1) expresses the conservation of
vehicles. In addition, Q; k and velocity u are assumed to satisfy Q = ku(k). From
these assumption, Eq. (1) has the solution k = F(x − ct), where F is an arbitrary
function (the initial condition), c is the wave speed and c = dQ=dk. Eq. (1) implies
that inhomogeneities, such as, changes in density of cars, propagate along a stream of
cars with constant wave speed c with respect to a stationary observer.
The LWR model is a simple but su$cient tra$c theory if the size and end location

of a queue is the things that one only cares about; such as, the time-space trajectory of
a shock. Unfortunately, tra$c %ow phenomena are very complex, and some important
phenomena that we are also interested in elude the LWR model. One such phenomenon
is the stop–start waves in long queues often observed on congested freeways. There-
fore, the development of continuum models extends the LWR model by replacing the
instantaneous %ux function with a dynamic one. This is referred to higher order models,
which is also named the PW model.

2.2. The PW-like models

The assumption of u=u(k) is a steady state assumption of velocity, which means that
velocity changes instantaneously as density changes. It is certainly not valid in some
tra$c %ow situations. To overcome the steady state assumption of velocity, Payne [4]
used a motion equation to obtain time variant speed.

@u
@t

+ u(∇ · u) =−1
k
∇ · (Pe(k)) + 1



(ue(k)− u) ; (2)
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where ue(k) is an equilibrium speed–density relation. The motion equation (or the
so-called momentum conservation) coupled with the continuity equation is referred to
PW model since the concept of employing a higher order function in LWR model
is proposed by Whitham 6rst. The term −∇ · (Pe(k))=k = −[P′

e (k)(∇ · k)]=k is an
anticipation term, which takes it into account that drivers beware of the preceding tra$c
condition, where Pe(k) is an equilibrium tra$c pressure. Payne used an anticipation
term determined by P′

e (k) = (1=2
)|u′e(k)|. In general, we have Pe(k) = k�e(k), where
�e(k) denotes the equilibrium velocity variance. Papageorgiou et al. [5] substituted an
Euler-like discrete form for the anticipation term and then Michalopoulos et al. [6]
developed a semi-viscous model. Zhang [7] also proposed a new additional model to
a long list of existing momentum equation. Also, diJerent models are determined by
diJerent assumptions of ue(k) and �e(k). For example, KNuhne [8], and Kerner and
KohnhNauser [9,10] suggested that �e(k) be a constant value c20, whereas Phillips [11]
suggested that �e(k) be a linear relation �e(k) = �m(1 − k=km). The explicit functions
of ue(k) and �e(k) can be derived from the equilibrium distribution function of kinetic
theory, respectively.
Daganzo [12] mentioned that although the result of higher order model is a little bet-

ter than 6rst-order model, it needs more computation. He also pointed out higher order
models bring the wrong result; that is, in some cases, vehicle speed will be negative.
Aw and Rascle [13] explained that the phenomena is caused by the wrong assumption
of tra$c pressure. Recently, GNunther et al. [14] presented a modeling procedure to
ensure that the PW-like models describe all situations correctly.

2.3. The gas-kinetic models

Gas-kinetic theory is a further modeling methodology. This kind of models is 6rst
employed to describe tra$c %ow by Prigogine and his colleagues [15–17] and is
referred to the Boltzmann-like model. Hoogendoorn and Bovy [18–20] classi6ed the
gas-kinetic models mesoscopic models. Boltzmann equation is widely applied in
applied science, such as, gas dynamics, population analysis, tra$c %ow, semiconduc-
tor and so on [21]. Generally, Boltzmann equation is used to describe properties of a
%uid in the large domain by examining the statistics of motion of constituent particles.
Prigogine described a tra$c %uid with a probability density for the velocity (v) of an
individual car, f(x; v; t), which may vary with a function of time t and the coordinate
x along the highway. This density is assumed to satisfy the equation

@f
@t

+ v
@f
@x

=
(
@f
@t

)
relaxation

+
(
@f
@t

)
interaction

: (3)

The 6rst term of the right-hand element of Eq. (3) stems from the fraction that
f(x; v; t) diJers from some desired velocity distribution f0(v). The second term
describes that a fast car will slow down owing to the in%uence of a slow car. The
interaction term has been criticized. It has been argued that the collision term is
only valid in the situation, which describes the incoming vehicle passes each
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single car in the queue independently. Therefore, Paveri-Fontana [22] proposed an
improved model to overcome the shortcoming of Prigogine’s approach. He generalized
the phase-plane distribution as f̃(x; v; v0; t), where v0 is the individual desired velocity.
f(x; v; t)=

∫
f̃(x; v; v0; t) dv0. Nevertheless, his model still considered that the maneuver

on the lanes of a multilane road is the same and his model does not take queueing
eJects into account. Transitory and stationary solutions and numerical simulations are
proposed by researches [24–29] under diJerent interaction, relaxation, and adjustment
terms.
The nature of the equilibrium solutions of a Boltzmann-like equation is likely to

be re%ected in the nature of the associated hydrodynamic models [18,19,22,30–40].
Helbing [30] presents a gas-kinetic model for tra$c operations. In contrast to the
model of [22], the model of [30] considers additional terms. The 6rst is a veloc-
ity diJusion term, which takes the individual %uctuations of the velocity into account
due to imperfect driving. The other one is the rate of vehicles entering and leav-
ing the roadway. The macroscopic systematic equation Helbing [30] obtained from
the mesoscopic equation has one more equation than PW-like model. The equation
is the velocity variance equation. The previous models handle the velocity variance
as an equilibrium quantity. However, in nonequilibrium situations, the velocity vari-
ance may be better treated as a dynamic variable with a further equation describ-
ing its evolution. In particular, to predict tra$c jams, an increase of the variance
appears to be a very important indicator. The velocity variance equation is shown
as

@�
@t

+ u(∇ · �) =−2�(∇ · u) + 2
�
k
(∇ · u)2 + 2



(�e(k)− �)

+
�
k
∇ · (∇u) +

�
k
∇ · (∇�) ; (4)

where � is velocity variance, �; � are coe$cients, 
 is relaxation time and �e is equi-
librium velocity variance. �e is assumed to depend on k only as it is assumed in the
PW-like models. Helbing [30] employed a numerical simulation and obtained following
results:

(a) The section of high density induces low speed and small speed variance.
(b) The section of low density induces high speed and large speed variance.
(c) The largest speed variance takes place at the highest speed behind a platoon.

Empirical studies were also employed by Helbing [34,36] to validate the model. Mul-
tilane tra$c can also be extended by the model [37,40]. Besides, Hoogendoorn and
Bovy [18–20] derived a multiple user-classes tra$c %ow model from Boltzmann equa-
tion by a similar approach. From the works of Paveri-Fontana, Helbing, Hoogendoorn
and Bovy, macroscopic models can be derived from Boltzmann-like model, which is a
microscopic model. Boltzmann-like models can be developed with behavioral analysis.
Therefore, the macroscopic models derived from them improve the lack of behavioral
analyses of macroscopic models.



H.-J. Cho, S.-C. Lo / Physica A 312 (2002) 342–362 347

3. Derivation from Boltzmann equation to macroscopic models

Since macroscopic models derived from Boltzmann equation can aggregate the
microscopic behavior to be group behavior, this study proposes a Boltzmann equa-
tion and derives it to macroscopic models. There are three main diJerences between
this study and previous studies. The 6rst one is that a multilane road is considered
as a two-dimensional domain. The second one is that the acceleration eJect of Boltz-
mann equation is considered as the in%uence of tra$c 6eld. The last one is that the
second-order moment function considered herein is individual velocity variance. Tra$c
6eld is derived from car-following theory, which describes the interaction between ve-
hicles. The detail of derivation of tra$c 6eld is illustrated in Section 3.2. The concept
of tra$c 6eld not only describes the interaction between vehicles, but also makes the
macroscopic system consistent. Before introducing tra$c 6eld, de6nitions of variables
and the relations among variables should be mentioned 6rst.

3.1. De5nitions

By reason of some driving behavior of road users cannot be restricted in one lane
or even they derive in one lane they still not be restricted to drive one after one,
such as, driving behavior of motorcycles. Therefore, a multilane highway is regarded
as a two-dimensional space in this study. We assume that there exists a phase-plane
distribution function f(x; v; t) at a given time and at a given point, where x = (x; y)
denotes position, v = (vx; vy) denotes individual velocity and t denotes time. Since, v
denotes individual velocity, it is impossible to restrict a speci6c velocity at a speci6c
time and place. Thus, v is independent to position x and t, i.e., ∇xv = 0, ∇x · v =
0; @v=@t = 0.
In addition, dx=dt = v and dv=dt = eE, where E denotes tra$c 6eld and is going

to derive in detail in Section 3.2. By Taylor’s expansion or total derivation of f, the
changing of f is shown by

df(x; v; t)
dt

=
@f(x; v; t)

@t
+ v · ∇xf(x; v; t) + eE · ∇vf(x; v; t)

=
(
@f(x; v; t)

@t

)
coll

; (5)

f(x; v; t)|@�v = 0 ; (6)

where f is de6ned on � and @� is the boundary of � · @�v is the boundary of
individual velocity. Since f is a distribution function, it is reasonable to assume that
f is equal to 0 at the extreme value (i.e., boundary @�v). Thus, density is given by

k(x; t) =
∫
v
f(x; v; t) dv (7)
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and %ow density, which is de6ned by Cho and Lo [14], is given by

q(x; t) =
∫
v
vf(x; v; t) dv = k(x; t)u(x; t) ; (8)

where u(x; t) denotes average velocity (or the so-called group velocity), which is
de6ned as

u(x; t) =

∫
vf(x; v; t) dv∫
v f(x; v; t) dv

: (9)

Flow is denoted by Q(x; t) =
∫
y q(x; t) dy, where y is the width of the road.

Next, three kinds of velocity variance are de6ned. The 6rst one is total velocity vari-
ance, which is velocity variance between individual velocity and equilibrium velocity.
Total velocity variance is de6ned by

�(x; t) =

∫
v ‖v − ue‖2f(x; v; t) dv∫

v f(x; v; t)
: (10)

The second one is individual velocity variance, which is the velocity variance
between individual velocity and group velocity. Individual velocity variance is given
by

�a(x; t) =

∫
v ‖v − u(x; t)‖2f(x; v; t) dv∫

v f(x; v; t)
: (11)

The last one is group velocity variance, which is the velocity variance between group
velocity and equilibrium velocity. Group velocity variance is given by

�e(x; t) =

∫
v ‖u(x; t)− ue‖2f(x; v; t) dv∫

v f(x; v; t)
=

‖u(x; t)− ue‖2
∫
v f(x; v; t) dv∫

v f(x; v; t)
: (12)

If tra$c %ow is uniform, individual velocity is equal to average velocity �a(x; t) =
0. If tra$c %ow is equilibrium, average velocity is equal to equilibrium velocity
�e(x; t) = 0. The relationship among three diJerent velocity variances is

�(x; t) =

∫
v ‖v − u(x; t) + u(x; t)− ue‖2f(x; v; t) dv∫

v f(x; v; t)

= �a(x; t) + �e(x; t) ;

since ∫
v
[2(v − u(x; t)) · (u(x; t)− ue(k))]f(x; v; t) dv = 0 : (13)

That implies: (a) total velocity variance is equal to the summation of individual and
group velocity variance, (b) �¿ �a¿ 0 and �¿ �e¿ 0, (c) �=0 implies �a=�e=0.

Furthermore, equilibrium average velocity and equilibrium average variance are
denoted by ue(k; u; �) and �e(k; u; �), respectively. An equilibrium state is de6ned
as the most possible microscopic state under a speci6c macroscopic state. Since ue
depends upon k; u and � only, ∇xue = 0; ∇x · ue = 0; @ue=@t = 0.
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Another variable, which appears in the derivation, is skewness. It is de6ned by

#(x; t) =

∫
v (v − u(k))‖v − u(k)‖2f(x; v; t) dv∫

v f(x; v; t)
; (14)

which is the bias of the distribution. From the empirical study by Helbing [34,36],
#(x; t) ≈ 0. Since the in%uences of the third or higher order moment functions are
negligible, we do not have to expand the higher order conservation laws. The basic
variables k; Q; �; �a and �e are scalar and q; u; #(x; t) are vectors.
The basic idea of deriving macroscopic models from Boltzmann equation is the

same as 6nding the expectation of a random variable. Therefore, 6nding the individual
variables that are meaningful and multiplying them to distribution f will obtain macro-
scopic variables (average or group quantities). The individual variables are named as
moment functions and denoted as �(x; v; t). The moment functions chosen by related
researches are 1, v, and v2. However, v2 does not have physical meaning in tra$c.
For this reason, the moment functions chosen herein are 1, v, and ‖v − ue‖2, where
‖v − ue‖2 is individual velocity variance. Thus, multiplying Eq. (16) by �(x; v; t), we
have

@f(x; v; t)
@t

�(x; v; t) + [v · ∇xf(x; v; t)]�(x; v; t) + [eE · ∇vf(x; v; t)]�(x; v; t)

=
(
@f(x; v; t)

@t

)
coll

�(x; v; t) : (15)

The integration form of Eq. (15) is illustrated as∫
v

df(x; v; t)
dt

�(x; v; t) dv

=
∫
v

@f(x; v; t)
@t

�(x; v; t) dv +
∫
v
[v · ∇xf(x; v; t)]�(x; v; t) dv

+
∫
v
[eE · ∇vf(x; v; t)]�(x; v; t) dv

=
∫
v

(
@f(x; v; t)

@t

)
coll

�(x; v; t) dv : (16)

By substituting 1, v, and ‖v − ue‖2 for �(x; v; t) in Eq. (16), the macroscopic system
will be obtained. The derivation is shown from Sections 3.3–3.5. Before deriving the
macroscopic model from Boltzmann equation, the concept of tra$c 6eld [41] should
be mentioned in brief 6rst.

3.2. Tra6c 5eld

Tra$c 6eld is employed to describe the tra$c pressure and the accelerated eJect in
this study. Since the tra$c 6eld distributes density on a road, the relation between the
tra$c 6eld and the density is named as the dispersion model. The derivation of the
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dispersion model starts with the discussion of the interaction between a single vehicle
and other vehicles by car-following theory [43–46]. Two assumptions are made. The
6rst one is that the in%uence of cars in the same lane is M times larger than that
in the adjacent lanes, where M is a scalar. The second one is that the tra$c 6eld is
independent of velocity. For the sake of safety, one vehicle on a road adjusts its velocity
and spacing according to the relative position between other vehicles so as to avoid the
accident. It is assumed that each vehicle has its own 6eld. Vehicles exclude each other
by their own 6eld. Thus, the interaction (in terms of tra$c force or tra$c pressure,
which is denoted by F), which is produced by the tra$c 6eld (Ẽ), among vehicles
is a resistance. To simplify the complication of the problem, Ẽ is assumed to depend
on spacing and to satisfy the inverse-square law (the gravity model), which means the
in%uence of other vehicles is larger when the spacing is smaller. If we consider the
interaction between two vehicles (vehicle 0 and 1), the tra$c 6eld produced by vehicle
1 (leader) will act on vehicle 0 (follower). The tra$c 6eld acting on vehicle 0 can be
formulated as

Ẽ01 =
e
 0

(
x̃0 − x̃1
|x̃0 − x̃1|3 i +

ỹ 0 − ỹ 1

M 2|ỹ 0 − ỹ 1|3
j
)

; (17)

where e is the passenger car equivalent,  0 is the interacting parameter and (x̃0; ỹ 0) and
(x̃1; ỹ 1) are the position of vehicle 0 and 1, respectively. The in%uence between two
vehicles is larger as the distance between them decreases. Therefore, the assumption of
the inverse-square law is reasonable herein. For convenience, we transform the domain
from �̃ to �, that is, let x = x̃; y = Mỹ and tra$c 6eld acting on vehicle 0 in � is
denoted by

E=
N∑
i

(eiXi= i‖Xi‖3) ; (18)

where N is the number of vehicles on the road, Xi denotes the spacing. In the contin-
uous space, Eq. (19) can be represented as

E=
e
 

∫
�
((k − ks)=‖X‖2) d� ; (19)

where e denotes the passenger car equivalent and  denotes the interacting parameter,
if vehicles and driving behavior on the road are the same. k is the actual density and ks
is the unrestrained density that is the density which vehicles do not interfere with each
other. The transformed tra$c 6eld is a conservative 6eld. Then, a potential function #
exists by the potential theory. The potential function # satis6es E=−∇x#. Thus, the
magnitude of tra$c 6eld is illustrated as

divE=−R#= e(k − ks)= + Ka ; (20)

where divE denotes the magnitude of tra$c 6eld, Ka = Ka(x), which depends on the
position x, is the adjust term of the road condition if the road condition is ideal

Ka = 0:
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3.3. Continuity equation (conservation of vehicle numbers)

After introducing tra$c 6eld and Poisson equation, derivation from Boltzmann equa-
tion to the macroscopic system is presented. Firstly, let � = 1, so Eq. (16) becomes
Eq. (21), which is expectation of density.

∫
v

@f(x; v; t)
@t

dv +
∫
v
[v · ∇xf(x; v; t)] dv +

∫
v
[eE · ∇vf(x; v; t)] dv

=
∫
v

(
@f(x; v; t)

@t

)
coll

dv : (21)

Each term in Eq. (21) is discussed separately; the 6rst term of left-hand side (LHS)
can be obtained from the de6nition (Eq. (7)):

∫
v

@f(x; v; t)
@t

dv =
@
@t

[∫
v
f(x; v; t) dv

]
=

@k(x; t)
@t

: (22)

Since individual velocity is independent of position and Eq. (8), the second term of
LHS is given by

∫
v
v · ∇xf(x; v; t) dv =

∫
v
[∇x · (fv)− f · ∇xv] dv =∇x · q(x; t) : (23)

From Eq. (6), the third term of LHS is represented as

∫
v
[eE · ∇vf(x; v; t)] dv= eE ·

[∫
v
∇vf(x; v; t) dv

]

= eE · [f(x; v; t)|@�v ]

= 0 : (24)

At last, the collision term is assumed to be equal to zero. Thus right-hand side
(RHS) of Eq. (21) is given by

∫
v

(
@f(x; v; t)

@t

)
coll

dv = 0 : (25)

Therefore, Eqs. (22)–(25) give the 6rst conservation law; that is, conservation of
vehicle numbers.

@k(x; t)
@t

+∇x · q(x; t) = 0 : (26)
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3.4. Motion equation (conservation of momentum)

The motion equation is derived by substituting the 6rst order moment function, v,
for � in Eq. (16). Then the expectation function of velocity is illustrated as∫

v

@f(x; v; t)
@t

v dv+
∫
v
[v · ∇xf(x; v; t)]v dv+

∫
v
[eE · ∇vf(x; v; t)]v dv

=
∫
v

(
@f(x; v; t)

@t

)
coll

v dv : (27)

Each term in Eq. (27) is also discussed separately; the 6rst term of LHS is obtained∫
v

@f(x; v; t)
@t

v(v) dv=
∫
v

@
@t
[f(x; v; t)v(v)] dv −

∫
v
f(x; v; t)

@
@t
[v(v)] dv

=
@(ku)
@t

: (28)

By vector analysis, Eqs. (29) and (30) are true,

[v · ∇f(x; v; t)] =∇ · (fv)− (f · ∇v) =∇ · (fv); (29)

[v · ∇f(x; v; t)]v(v) =∇ · (fv)v =∇ · (fvv)− fv · ∇v

=∇ · (fvv): (30)

Thus,∫
v
[v · ∇xf(x; v; t)]v(v) dv=

∫
v
∇x · (fvv) dv

=∇x ·
(∫

v
fvv dv

)
; (31)

where

vv= (v − u + u − ue + ue)(v − u + u − ue + ue)

= [(v − u)(u − ue) + (v − u)ue + (u − ue)(v − u) + ue(v − u)]

+ [uu] + (v − u)(v − u) (32)

is a tensor. With
∫
v f(v− u)(u− ue) dv= k(u− u)(u− ue) = 0 and

∫
v f(v− u)ue dv=

k(u − u)ue = 0. Eq. (31) becomes∫
v
[v · ∇xf(x; v; t)]v(v) dv=∇x ·

(∫
v
fvv dv

)

=∇x ·
[∫

v
f(v − u)(v − u) dv +

∫
v
fuu dv

]
: (33)
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Assume the in%uence of velocity is dominated by the component of the same direc-
tion, i.e., (vx − ux)2ii�(vx − ux)(vy − uy)ij and (vy − uy)2jj�(vx − ux)(vy − uy)ji.

De6ne
∫
v f(v− u)(v− u) dv ≈ ∫

v f(vv− uu)I dv ≡ kXa where I is the 2× 2 identity
matrix. The summation of diagonal of Xa equals to �a, i.e., tr(Xa) = �a.
Since∫

v
fuu dv= uu

∫
v
f dv = kuu ;

the second term of LHS becomes∫
v
[v · ∇xf(x; v; t)]v(v) dv =∇x · (kXa + kuu) : (34)

The third term of LHS is computed by∫
v
[eE · ∇vf(x; v; t)]v dv= eE ·

∫
v
∇v(fv) dv − eE ·

∫
v
f∇vv dv

= eE · [(fv)|@�v ]− eE ·
∫
v
f dv

=− ekE : (35)

The RHS of Eq. (27) is assumed to satisfy the relaxation time approximation, i.e.,∫
v

(
@f(x; v; t)

@t

)
coll

v dv=
[

@
@t

(ku)
]
coll

=−ku − kue

m

; (36)

where 
m is the velocity relaxation time. Eq. (36) means that if the average veloc-
ity does not equal the equilibrium velocity, it will become the equilibrium velocity
gradually after a period of time 
m(k). Therefore, Eq. (27) becomes

@(ku)
@t

+∇x · (kXa + kuu) = ekE− ku − kue

m

: (37)

From Eq. (26), Eq. (37) is represented as

@u
@t

+ u�x · u =−1
k
[∇x · (kXa)] + eE− u − ue


m
; (38)

if k 	=0. Thus, the conservation of momentum is obtained, which describes the changing
of group velocity. Therefore, Eq. (38) also is known as a motion equation.
From Eq. (37), the explicit form of %ow density can be derived as follows:

q = ku =−
mk
@u
@t

− 
mku�x · u − 
m[∇x · (kXa)] + 
meE+ kue : (39)

Under steady state and homogeneous velocity assumption, it’s reasonable to assume
that u˙ ue. Let ku − kue = &ku and � = 
m=&. Eq. (39) becomes

q =−�[∇x · (kXa)] + ek�E= ek�E− v · ∇xk ; (40)
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where average velocity variance matrix equals to the equilibrium velocity variance
(Xa =(e), and v = �(e. The 6rst term of Eq. (40) is called the drift term, which is
induced by velocity (or 6eld). The second term of Eq. (40) is called the diJusion term,
which is induced by distribution of density. Eq. (40) is the same as the fundamental
diagram with diJusion eJect q=ekudrift−' ·∇xk, where udrift=�E=
mE=&. The result
can also be derived from Fick’s law. Eq. (40) can be employed when velocity and
velocity variance are homogeneous and stationary. Generally, Eq. (38) is employed as
the explicit function of %ow density.

3.5. Variance equation (conservation of energy)

The last equation considered herein is the variance equation, which is obtained
by substituting the second moment function, ‖v − ue‖2, for � in Eq. (16). Then the
expectation function of velocity variance is illustrated as∫

v

@f(x; v; t)
@t

‖v − ue‖2 dv +
∫
v
[v · ∇xf(x; v; t)]‖v − ue‖2 dv

+
∫
v
[eE · ∇vf(x; v; t)]‖v − ue‖2 dv

=
∫
v

(
@f(x; v; t)

@t

)
coll

‖v − ue‖2 dv : (41)

Also, the derivation is done by each term of Eq. (41). The 6rst term of LHS is∫
v

@f(x; v; t)
@t

‖v − ue‖2 dv=
∫
v

@
@t
(f‖v − ue‖2) dv −

∫
v
f

@
@t
(‖v − ue‖2) dv

=
@(k�)
@t

: (42)

The second term of LHS is∫
v
[v · ∇xf]‖v − ue‖2 dv

=
∫
v
∇x · 
fv(‖v − u‖2 + 2(v − u) · (u − ue) + ‖u − ue‖2)� dv

−
∫
v
fv · ∇x(‖v − ue‖2) dv

=∇x · [(k#) + (k�au) + 2k(u − ue)Xa + (k�eu)]

≈ ∇x · [(k�u) + 2kXa · (u − ue)] ; (43)

since, ∫
v
(fu(v − u) · (u − ue)) dv =

[∫
v
(f(v − u)) dv · (u − ue)

]
u = 0; # ≈ 0 ;
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and ∫
v
fv · ∇x(‖v − ue‖2) dv = 0

as mentioned before.
The third term of LHS is∫

v
[eE · ∇vf(x; v; t)]‖v − ue‖2 dv= eE ·

∫
v
∇v(f‖v − ue‖2) dv

− eE ·
∫
v
f∇v‖v − ue‖2 dv

= eE · [(f‖v − ue‖2)|@�v ]

− eE ·
∫
v
f(2v − 2ue) dv

=−2eE · k(u − ue) : (44)

The last term is the RHS of Eq. (41), which is also assumed to satisfy the relaxation
time approximation, i.e.,∫

v

(
@f(x; v; t)

@t

)
coll

‖v−ue‖2 dv=
[

@
@t

(k�)
]
coll

−
∫
v
(f(x; v; t))coll

@
@t
‖v−ue‖2 dv

=−k�− k�e


e
; (45)

where 
e is the relaxation time of velocity variance. Therefore,
@(k�)
@t

+∇x · [(k�u) + 2k(u − ue)Xa] =−2ekE · (u − ue)− k�− k�e


e
(46)

is obtained. From Eq. (26), Eq. (46) is represented as
@�
@t

+ u · ∇x�=−2eE · (u − ue)− �−�e


e
− 2

k
∇x · [k(u − ue)Xa] ; (47)

if k 	=0. Thus, the conservation of energy is obtained, which describes the changing
of group velocity variance.
Other conservation laws can be derived by multiplying higher order moment func-

tions to Boltzmann equation as long as the moment functions are meaningful and
the macroscopic quantities obtained are signi6cant. As mentioned by Helbing [34,36],
Boltzmann equation multiplied by the third-order moment function produces the
expectation function of skewness, which is near zero. Therefore, higher order moment
functions are not discussed in this study.
The system equations developed above includes three conservation laws derived from

Boltzmann equation and Poisson equation derived from tra$c 6eld. These four equa-
tions are transient equations, which describe the changing of variables. However, a
complete dynamic system not only needs transient equations, but also needs state equa-
tions, which describe the state of variables. A state equation is needed so as to make
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the system self-consistent. In this study, the dynamic system is assumed to become
the equilibrium state gradually. Therefore, the equilibrium distribution is employed to
be the state equation in the system. The derivation of the equilibrium distribution is
shown in the following section.

3.6. Derivation of the equilibrium distribution

Since the tra$c 6eld aJects the movement of vehicles, density should be distributed
by the 6eld (or potential). The relation between density and potential is obtained from
the assumption that density will tend to become its equilibrium state under a spe-
ci6c tra$c situation. The equation is derived by solving the following mathematical
programming:

Max W = N !

/∏
i

ni! ∀i∈� ; (48)

s:t:
∑

i

ni = n1 + n2 + · · ·+ nm = N ∀i∈� ; (49)∑
i

ni�i = n1�1 + n2�2 + · · ·+ nm�m =�tol ∀i∈� ; (50)

where i is the number of intervals on the road, ni is the vehicle number of interval i,
�tol is the total velocity variance, and �i is the velocity variance in interval i. The
velocity variance of individual car is de6ned as ‖ Tui − ue‖2, where Tui is the average
velocity of interval i and ue is the equilibrium velocity. Eq. (48) is the objective
function and Eqs. (49) and (50) are the given macroscopic phenomena. Eq. (48) 6nds
out the most possible combination of ni if the total number of cars on the road is N .
Eq. (48) is a simpli6ed form, which neglects total number of all-possible combination
at denominator, since the denominator is a constant. Eq. (49) is the conservation of
vehicle numbers and Eq. (50) is the conservation of total variance. The mathematical
programming can be solved by the KKT condition. The solution obtained is the most
possible density distribution, which is denoted by k = k(�). However, variance is
not considered in some models, such as, LWR model and PW model. Therefore, the
function k=k(�) must be converted to k=k(#). The transformation is made as follows.
Since the tra$c pressure F is proportional to the acceleration, i.e., F˙ du=dt, we have
F˙ −∇� from the relation between acceleration and energy because variance � can
be referred to energy. From the relation among the tra$c pressure, tra$c 6eld and
tra$c potential, F ˙ E = −∇#, we have � = e# while passenger car equivalent e
is a relative scalar. Through the transformation, the equilibrium distribution of density
not only can be coupled with the gas-kinetic model, but also can be coupled with the
LWR-like model and PW-like model. Transforming velocity variance into potential,
the equilibrium distribution is given as

k = K0 exp ((e − e#)=�e) ; (51)

where K0 is the essential density, �e is the equilibrium velocity variance,  is the
potential equivalent of the velocity variance threshold.  is named as the potential
barrier here. We can infer several points from Eq. (51). The 6rst one is that density
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Fig. 1. The density curves of diJerent potential barrier and equilibrium velocity variance, where
k1 = K0 exp((e 1 − e#)=�e1), k2 = K0 exp ((e 1 − e#)=�e2) and k3 = K0 exp ((e 2 − e#)=�e1) ·�e1 ¿�e2
and  1 ¿ 2.

decreases as tra$c potential increases. The second one is as the equilibrium velocity
variance increases, the variation of density increases, which means the tra$c is sen-
sitive. The third one is as the potential barrier is low, the density is small; that is,
drivers are aggressive. The three points are also illustrated in Fig. 1.
By coupling Eqs. (20) and (51), the nonlinear dispersion model is obtained. If a

set of boundary conditions of the tra$c potential is applied, vehicles are forced to
drive through the road according to the path, which has the least resistance. Therefore,
vehicles on the two-dimensional research domain will not move forward and backward
or circle round. They will try to pass through the road as soon as possible.

3.7. Closure relations

The system presented herein also needs closure relations so as to determine the
equilibrium velocity ue(k; u; �), equilibrium variance �e(k; u; �), and relaxation time

m and 
e in Eqs. (37) and (46). There are a variety of possible closure relations,
which could be adopted from previous studies. [3,8–11,13,14,20,40]. The ue and �e

proposed in study are represented by

ue(k; u; �) = u0 − 
mpb(k)k� (52)

and

�e(k; u; �) = 
epp(k) · k�u ; (53)

respectively. u0 is the average desired velocity, pb(k)∈ [0; 1] is the braking proba-
bility vector, and pp(k)∈ [0; 1] is the passing probability vector. The explicit forms
are obtained by specifying expressions for pb(k) and pp(k). Eq. (52) means that the
equilibrium velocity decreases as pb(k) increases. On the other hand, the equilibrium
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variance increases as pp(k) increases. Since ue(k) and �e(k; u) are equilibrium equa-
tions, the functions suggested in this study are

ue(k) =

∫
v vfe(x; v; t) dv∫
v fe(x; v; t) dv

(54)

and

�e(k) =

∫
v ‖v − ue‖2fe(x; v; t) dv∫

v fe(x; v; t) dv
(55)

respectively. fe denotes the steady state homogeneous solution of Boltzmann equation.
The relaxation time 
m and 
e are shown as


m(k) =
Tm

g(k)
and 
e(k) =

Te

g(k)
; (56)

which are modi6ed from the suggestion of Helbing [38]. g(k) is the proportion of
freely moving vehicles, Tm is the reaction time of velocity and Te is the reaction time
of variance. As fe, g(k) Tm and Te are determined, the closure relations are expressed
speci6cally. Then, the self-consistent system is complete.

4. Multiclass users model

Dynamic multilane tra$c %ow model proposed in the previous studies includes three
conservation laws, which control the motion of vehicles, and a nonlinear Poisson equa-
tion, which distribute the density on the road. The set of equations can only describe
one driving behavior. Fortunately, the system can be extended to multi-class users
model by employing the concept of Hoogendoorn and Bovy [18–20]. They considered
that:

(a) each class has diJerent behavior and is described by diJerent conservation laws;
(b) space of a road section is limited and all class of users share the space.

The 6rst assumption is easy to achieve. According to diJerent driving behavior, a
speci6c Boltzmann equation is derived. With the same procedure mentioned in Section
3, the macroscopic kinetic system of each class of user is derived from the speci6c
Boltzmann equation. The concept of Hoogendoorn and Bovy’s second assumption is
the same as Poisson equation (Eq. (20)) of our system. If there are i classes of users
or vehicles on the road, Eq. (19) is modi6ed as

E=
∑

i

ei
 i

∫
�

ki(x; y)
‖X‖2 d� − e

 
ks + Ka ; (57)

where the subscript i denotes the variables of user i. Thus,

divE=−R#=
∑

i

eiki
 i

− e
 
ks + Ka : (58)
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The other equations in the multi-class users’ system are illustrated as follows:

qi(x; t) = ki(x; t)ui(x; t) ; (59)

@ki(x; t)
@t

+∇x · qi(x; t) = 0 ; (60)

@ui
@t

+ ui∇x · ui =− 1
kc

[∇x · (kiXia)]− ei∇#− ui − uie

im

; (61)

@�i

@t
+ ui · ∇x�i = 2ei∇# · (ui − uie)− �i −�ie


ie
− 2

ki
∇x · [ki(ui − uie)Xia] ;

(62)

ki = Ki0 exp
(
−ei#− ei i

�ie

)
: (63)

The system equations above mean that each class of user is controlled by his own
conservation laws. By coupling with the Poisson equation (Eq. (57)), a self-consistent
multi-class users dynamic tra$c %ow model is obtained. Total %ow density and total
density are represented as

q(x; t) =
∑

i

eiqi(x; t) =
∑

i

eiki(x; t)ui(x; t) (64)

and

k(x; t) =
∑

i

eiki(x; t) ; (65)

respectively.

5. Conclusions and perspectives

In this paper we have derived a macroscopic multilane tra$c model for multiple
classes users. The system is a self-consistent system; it can be solved with proper
initial conditions and boundary conditions. Our consideration is based on the following
assumptions:

(a) A multilane road is considered as a two-dimensional domain;
(b) the whole system will tend toward equilibrium;
(c) each class of user has diJerent behavior and is described by diJerent conservation

laws (the gas-kinetic model);
(d) the individual velocity variance is employed as the second moment function;
(e) the space of a road section is limited and all classes of users share the space.

Considering a multilane road as a two-dimensional domain allows us to handle
the driving behaviors, which are not restricted to drive one by one in a single lane.
Another advantage of this consideration is to avoid modeling complicated lane-changing
behavior. Lane-changing behavior is controlled by the nonlinear Poisson equation. If the
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Fig. 2. The relationship between models.

research area is only a single lane road, the system can be reduced to a one-dimensional
model.
This study derives a dynamic macroscopic tra$c %ow system from Boltzmann equa-

tion. Boltzmann equation employed herein includes accelerated eJect, which is con-
trolled by Poisson equation. Helbing [30–40] and Hoogendoorn and Bovy [18,19]
followed Paveri-Fontana [22] to multiply Boltzmann equation by 1, v and v2 so as to
derive macroscopic systems. However, the second-order moment v2 does not make
sense in tra$c %ow. Although multiplying Boltzmann equation by v2 can obtain
velocity variance equation, it may also generate some meaningless terms. This study
modi6es the second moment function as ‖v − ue‖2, which is individual velocity vari-
ance, and reformulates velocity variance equation to be more reasonable. This study
exposes three moment functions. If there still exists the other meaningful moment, it
should be considered as its in%uence is signi6cant.
In addition, the Poisson equation plays an important role in the system. Since Poisson

equation distributes vehicles on a road, it becomes the key point to extend the system
to multiclass user tra$c. Besides, the equilibrium distribution is employed to determine
the state of tra$c %ow. Thus, the system is self-consistent.
The system equations and the relationship among them are illustrated in Fig. 2. From

Fig. 2, the system equations can be simpli6ed to adapt diJerent tra$c condition because
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not all variables are signi6cant in each tra$c condition. For example, in uniform and
equilibrium tra$c %ow, the in%uence of velocity variance equation may be ignored.
The simpli6cation is needed because computation of the whole system takes a lot of
time. According to diJerent tra$c conditions, simpli6cation should be discussed and
validated further. Also, numerical methods should be developed to solve the system.
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