NH,

DISCRETE
Tl APPLIED
MATHEMATICS
ELSEVIER Discrete Applied Mathematics 121 (2002) 61-72

A simple algorithm to find the steps of double-loop
networks™

Robin Chi-Feng Chan, Chiuyuan Chen*, Zhi-Xin Hong

Department of Applied Mathematics, National Chiao Tung University, 1001 Ta-Hsueh Road,
Hsinchu 300, Taiwan

Received 28 June 2000; received in revised form 20 March 2001; accepted 9 April 2001

Abstract

Double-loop networks have been widely studied as architecture for local area networks and it
is well-known that the minimum distance diagram of a double-loop network yields an L-shape.
Given an N, it is desirable to find a double-loop network DL(N;s1,s2) with its diameter being
the minimum among all double-loop networks with N stations. Since the diameter can be easily
computed from an L-shape, one method is to start with a desirable L-shape and then asks
whether there exist s; and s, (also called the steps of the double-loop network) to realize it.
In this paper, we propose a simple and efficient algorithm to find s; and s>, which is based on
the Smith normalization method of Aguild, Esqué and Fiol. © 2002 Elsevier Science B.V. All
rights reserved.

Keywords: Double-loop network; L-shape; Diameter; Algorithm

1. Introduction

A double-loop network DL(N;sy,s) has N nodes 0,1,...,N — 1 and 2N links of
two types:

si-links : i —i4s; (modN), i=0,1,...,N—1,

sp-links : i — i+ s, (modN), i=0,1,...,N — 1.

Double-loop networks have been widely studied as architecture for local area networks.
For surveys about these networks, see [2,10,11,14].

Fiol et al. [8] proved that DL(N;s;,sy) is strongly connected if and only if
gcd(N, s1,50)=1. When DL(N;sy,s,) is strongly connected, then we can talk about

* This research was partially supported by the National Science Council of the Republic of China under
the grant NSC89-2115-M009-026.

* Corresponding author.

E-mail address: cychen@cc.nctu.edu.tw (C. Chen).

0166-218X/02/$ - see front matter © 2002 Elsevier Science B.V. All rights reserved.
PIl: S0166-218X(01)00245-1

62 R. Chi-Feng Chan et al. | Discrete Applied Mathematics 121 (2002) 61-72

2|6 31415
1]5 678
ola]8]3|7 012

DL(9;4,1) DL(9;1,6)

Fig. 1. Two examples of L-shapes.

l

Fig. 2. An L-shape with parameters.

a minimum distance diagram. This diagram gives a shortest path from node u to node
v for any u,v. Since a double-loop network is node-symmetric, it suffices to give a
shortest path from node 0 to any other node. Let 0 occupy cell (0,0). Then v occupies
cell (i,/) if and only if ia+ jb = v (mod N) and i+ is the minimum among all (i’, ;")
satisfying the congruence, where = means congruent modulo N. Namely, a shortest
path from 0 to v is through taking i s;-links and j s;-links (in any order). Note that in
a cell (4,), i is the column index and j is the row index. A minimum distance diagram
includes every node exactly once (in case of two shortest paths, the convention is to
choose the cell with the smaller row index, i.e., the smaller j). Wong and Coppersmith
[15] proved that the minimum distance diagram is always an L-shape (a rectangle is
considered a degeneration). See Fig. 1 for two examples.

An L-shape is determined by four parameters /, 4, p,n as shown in Fig. 2. These four
parameters are the lengths of four of the six segments on the boundary of the L-shape.
For example, DL(9;4,1) in Fig. 1 has /=5, h=3, p=3, and n=2. Let N=1[1h— pn.
Fiol et al. [8,9] and Chen and Hwang [3] proved that there exists a DL(N;s1,s2)
realizing the L-shape(/, A, p,n) if and only if [> n, h = p, and ged(/,h, p,n)=1.

The diameter d(N;si,s,) of a double-loop network DL(N;sy,s;2) is the largest dis-
tance between any pair of stations. It represents the maximum transmission delay be-
tween two stations. Therefore, it is desirable to minimize the diameter. This is the
problem discussed by many authors; see [1,5-7,9,12,15]. Let d(N) denote the best
possible diameter of a double-loop network with N stations. Wong and Coppersmith
[15] showed that d(N) > [v/3N] — 2.

Given an N, it is desirable to find a double-loop network DL(N;sy,s;) with its di-
ameter being equal to d(N). Since the diameter of a double-loop network DL(N;sy,s;)

R. Chi-Feng Chan et al. [Discrete Applied Mathematics 121 (2002) 61-72 63

can be readily computed from the dimensions of its L-shape, one method is to start
with a desirable L-shape and then asks whether there exist s; and s, to realize it.
Aguild, Esqué and Fiol [1,7] proposed the Smith normalization method to find s; and
s, for a given L-shape, but no explicit algorithm was given in their paper. In [3], Chen
and Hwang proposed a simple method, based on the sieve method in number theory,
to find s, and s, for a given L-shape.

In this paper, we propose a simple and efficient algorithm to find s; and s, for a
given L-shape. Our algorithm is based on the Smith normalization method of Aguild,
Esqué and Fiol [1,7], but unlike their method, our algorithm does not require any
matrix operation. Our algorithm takes at most O((log N)?) time and if ged(/,n)=1 or
ged(Z, p)=1 or ged(h, p)=1 or ged(h,n) =1, then our algorithm could find the steps
of a double-loop network in only O(logN) time.

2. Preliminary
It is well-known that

Lemma 1. If a and b are integers, not both zero, then there exist integers o. and
such that aa + fb=ged(a, b).

We now prove that
Lemma 2. If o,a, f,b are integers, not all zero, such that ca+pb =1, then gcd(a,)= 1.

Proof. Assume that o + fb=1 and ged(a, f)=k. Then k|a and k|B. Thus k|oa +
fhb=1.S0 k=1. [J

Theorem 3. If a and b are integers, not both zero, then there exist integers x and y
such that xa + yb=gcd(a,b) and (y,ged(a,b))=1.

Proof. Set r=gcd(a,b) for easy writing. By Lemma 1, there exist integers o and f§
such that aa+ fb=r. If gcd(f,r)=1, then we are done. In the following, assume that

ged(f,r)=4k > 1. Suppose k= p{' p3 - - - pin, where p; < p, < --- < p,, are the prime
Fm+1 Fm+2

factors of k and suppose » = p' p5* - pimpiiiy pors - pir, where py < py < -+ < py
are the prime factors of r. Since k|r, we have r; > s; for all i, 1 <i < m. Let

Tm+1 o m+2

= por plme - pl, a' =ajr, and b’ =b/r.

Note that ged(#, f) = 1; otherwise, we will have gcd(f,) > k. Since ged(+',) =1
and k|5, we have ged(#',k)=1. Since aa + fb=r, we have aa’ + b’ = 1. By Lemma
2, we have ged(d’, f)=1. Since ged(d’, f)=1 and k|, we have ged(a’,k)=1. Since
k|p and ged(#',k)=1 and ged(a’,k) =1, we have gcd(ff —r'a’,k)=1. Since ged(+’,)
=1 and #|¥'a’, we have gcd(f — r'd’,r')=1. Since ged(f — r'd’,k)=1 and

64 R. Chi-Feng Chan et al. | Discrete Applied Mathematics 121 (2002) 61-72
ged(B — r'd’,¥')=1 and every prime factor of r is either a prime factor of k or a
prime factor of r/, we have ged(f — r'a’,r)=1. Consider
x=a+rb and y=p-—rd.
Then xa + yb= (o + ¥'b)a+ (B — ¥'a’)b=r and ged(y,r)=ged(f —r'd’,r)=1. We

have this theorem. O

The proof of Theorem 3 leads to the following algorithm for finding x and y in
Theorem 3.

ALGORITHM-MODIFIED-EUCLIDEAN

Input: Integers a and b, not both zero, and » = gcd(a, b).
Output: Integers x and y such that xa + yb=r and gcd(y,7)=1.

1. Find integers o and f§ such that oa + ffb=r.
2. If ged(B,r)=1, then let x=0, y=f, return x, y and stop this algorithm.
3. Let k=gcd(f,r), ' =r, and d =k.
4. WHILE (d > 1) DO
BEGIN
r'=r'/d,
d=gcd(r, k);
END

5. Leta’ =ajr, ¥ =b/r, x=0+1r'd’ and y=f — r'a’. Return x, y.

We give an example to show how Step 4 is executed. Suppose before Step 4 is
executed, d =k =23 x 32 x 7% and ' =r=2% x 3% x 715 x 11 x 23. After the first
iteration of the while-loop, ' =2 x 3% x 7! x 11 x 23 and d =2 x 32 x 7*. After
the second iteration, ' =3* x 77 x 11 x 23 and d =3% x 7*. After the third iteration,
' =32x7°x11x23 and d = 3% x 7°. After the fourth iteration, » =11 x23 and d = 1.
Since d =1, we stop the iteration.

Theorem 4. ALGORITHM-MODIFIED-EUCLIDEAN is correct and it takes at
most O((log N)?) time, where N =max{a,b}.

Proof. Note that Steps 1, 2, 3, and 5 of ALGORITHM-MODIFIED-EUCLIDEAN are
translated directly from the proof of Theorem 3, so they are correct. Steps 1 and 2
take O(log N) time; Steps 3 and 5 take O(1) time. It remains to consider Step 4. Let

k=py'ps-- py and r=pp'py--- pipriipr - p be defined as in the proof of
Theorem 3. Note that ; > s; for all i, 1 <i < m. In the proof of Theorem 3, we need
r'=pytp - pir. The purpose of Step 4 is to derive ' = plry pis -+ pir.

Before Step 4 is executed, ' =r=p{'py--- pipriipes - pr. We then use a

while-loop to remove p}'py --- pi» from r’. Before an iteration of the while-loop, if
pi (where 1 <i < m) still exists in the current ' and its power in the current ' is

R. Chi-Feng Chan et al. [Discrete Applied Mathematics 121 (2002) 61-72 65

r/, then after the iteration, the power of p; is decreased by s; or r/, whichever is
smaller. At the end of Step 4, d =ged(r,k)=1; that is, r'= p»s\ pi5 -+ pir. Set
p=max{[r1/s1], [r2/s2],-.., [rm/sm]} for easy writing. Step 4 iterates p times. Thus
Step 4 takes O(plogN) time. Since p=O(logN), Step 4 takes at most O((logN)?)
time.

The above arguments show that ALGORITHM-MODIFIED-EUCLIDEAN is correct

and it takes at most O((logN)?) time. [

3. The Smith normalization method

Let L(/,h, p,n) be an L-shape such that / > n, h = p, and gcd(l,h, p,n)=1. Aguild
and Fiol [1], and also Esqué et al. [7] proposed the following method of computing s;
and s, such that DL(N;sy,s;) realizes L. They considered the integral matrix

%_<_Zn _hp>

and computed the Smith normal form of ./,

P(M)= (éﬁ)

Then S (M)=L MR, where ¥ and # are two nonsingular unimodular (determinant
+1) integral matrices. They proved that if

()

then s; =y (mod N) and s, =6 (mod N) in DL(N;sy,s;). No algorithm on computing
the Smith normal form was actually given in their paper except a reference to [13].
In [13], the reader was referred to three theorems (Theorem II.1, Theorem II.2, and
Theorem I1.9) for learning how to compute the Smith normal form.

The following is a brief description of what the three theorems in [13] say. Let o
and o, be two integers, no both zero, and let 6 = ged(o, ;). Theorem II.1 says that
there exists an integral matrix

o) O
(27)
with first row [o, o] and determinant §; note that the elements ¢ and p may be
determined by the Euclidean algorithm. Theorem II.2 uses Theorem II.1 to show that
the (1,1) element of a matrix may be replaced by the greatest common divisor of the
first column of the matrix. Theorem I1.9 uses Theorem I1.2 to derive the Smith normal

form. To make the readers easy to understand the Smith normalization method, we
now give an explicit algorithm for it.

66

R. Chi-Feng Chan et al. | Discrete Applied Mathematics 121 (2002) 61-72

THE-SMITH-NORMALIZATION-METHOD

Input: I, h, p,n of an L-shape L, where [> n, h = p, and gcd(l,h, p,n)=1.
Output: s; and s, such that DL(N;sy,s,) realizes the L-shape L(/,h, p,n).

1.

Let

(! -p
w=(L0):

Mo= M, i=0, j=0, k=0.

. Repeat sub-steps 2.1-2.2 until the (1,1) element of .#; divides both the (2,1) ele-

ment and the (1,2) element of .#;.

2.1 If the (1,1) element of .#; does not divide the (2,1) element of .#;, then let
i=i+1, j=j+ 1, and find a nonsingular unimodular integral matrix .#; such
that the (1,1) element of .#; = ;.4 ;_, is the greatest common divisor of the
first column of ./#;_;.

2.2 If the (1,1) element of .#; does not divide the (1,2) element of .#;, then let
j=Jj+1, k=k+1, and find a nonsingular unimodular integral matrix % such
that the (1,1) element of .#; = .4 ;_ 19 is the greatest common divisor of the
first row of .#;_;.

. If the (2,1) element of .#; is not zero, then let i=i+1, j=j+1, and find a nonsin-

gular unimodular integral matrix &; to make the (2,1) element of .#;= ;. ;_,
Zero.

. If the (1,2) element of .#; is not zero, then let j=j+1, k=k+1, and find a non-

singular unimodular integral matrix % to make the (1,2) element of .#; = .4 ;_ %)
Zero.

. If the (1,1) element of .#; does not divide the (2,2) element of .#;, then add

column 2 of .#; to column 1 of .#; and go to Step 2.

. Now .#; is the Smith normal form of .Z, i.e.,

1 0
Mi=Li - LoLV\MRNR - Ry =S (M) = <O N).

Let =%;--- L%, If

~(21)

then let s; =7 (mod N) and let s, =0 (mod N). Return sy, s5.

Since [1,7] did not provide the time complexity analysis of the Smith normalization
method, we now analyze its time complexity. Its time complexity is dominated by Step

2.

Each execution of Step 2 takes O(log/N) time. Since each execution of Step 2.1

and Step 2.2 makes the (1,1) element of .#; contains less prime factors than before,
Step 2 is executed at most O(log V) times. Therefore the Smith normalization method
takes at most O((log N)?) time.

R. Chi-Feng Chan et al. [Discrete Applied Mathematics 121 (2002) 61-72 67
4. The sieve method

Let L(l,h, p,n) be an L-shape such that [> n, h > p, and gcd(/,h, p,n)=1. Chen
and Hwang [3] (see also [11]) proposed the following method, based on the sieve
method in number theory, to find s; and s;.

For k=0,1,..., define

ay=kn+ h,

by =kl + p.

Let F} denote the set of prime factors of gcd(ax,br) and F denote the set of prime
factors of N. They proved that there exists a k& such that f & F} for all f € F; then
sy =a; (modN) and s, =b; (mod N) realize L. Note that if f € F appears in F; for
some k and ky is the smallest such k, then f appears in every fth k after k.

For example, suppose N =2x3x5x7x11x59, and L(L, h, p,n) = L(2*> x107,2% x3 x
5x7,2x3x5%7,3*x23). Then Fy=1{2,3,5,7}, Fy ={11}, and F ={2,3,5,7,11,59}.
Thus

2 € F appears in ag, by, az,by, ag, by, as,bg, as,bs, etc.,

3 € F appears in ag, by, as,bs, ag,bg, ay,by, etc.,

5 € F appears in ay, by, as,bs, ag,b10,a1s,b15, €tc.,

7 € F appears in ag, by, az,b7, ays, b4, azy,bz, etc.,

11eF appears in al,bl, alz,blz, 023,b23, a34,b34, etc.

The first pair ay, b, that is not crossed out by the sieve method is a;;,b;;. Thus
sy=ay; (modN) and s, =b;; (mod N) realize L.

The sieve method is simple and easy to implement. Note that [3,11] did not give
the time complexity analysis of the sieve method. Although we are also unable to
give an exact time complexity analysis for the method, we give an upper bound for
it. Let #(N) denote the number of prime factors of N and let P; denote the ith prime,
ie., P} =2,P, =3, etc. Since smaller primes cross out more pairs (a,b;) than larger
primes can cross out, the sieve method would take the longest time when N contains
the smallest #(N) primes. In this case, the final £ is bounded above by P,). Since
checking if f & F; for all f€F is equivalent to check if gcd(ged(ak,br), N)=1
(which could be checked by using the Euclidean algorithm twice), the sieve method
takes at most O(P,v)logN) time.

5. Our algorithm

Given an L-shape, we propose the following algorithm to find s; and s,.

ALGORITHM-COMPUTING-STEPS

Input: I,h, p,n of an L-shape L, where [> n, h = p, and ged(/,h, p,n)=1.

68 R. Chi-Feng Chan et al. | Discrete Applied Mathematics 121 (2002) 61-72

Output: s, and s, such that DL(N;sy,s;) realizes L.

Find r; =gcd(/, —n).

Find integers oy and f; such that o,/ + f1(—n)=ry.

Find r, = ged(ry, —o1 p + P1h).

Find integers op and f, such that opry + fo(—oy p+ f1h)=r, and ged(fr,2)=1.
. sy =0pn — frh (modN) and s, =0/ — frp (mod N).

For example, let /=5, h=3, p=3, and n=2. Then our algorithm derives r; =1,
u=1,p=2,rn=1,0p=—2,and f, =1. Thus s =—7 (mod 9) and s, =—13 (mod 9),
ie, s=2 and s;=5. It can Dbe verified that DL(9;2,5) realizes
L-shape(5,3,3,2).

We now prove that

N

Theorem 5. ALGORITHM-COMPUTING-STEPS is correct and it takes at most
O((logN)?) time.

Proof. Note that N =1h — pn. Let

(L7)

Consider column 1 of .#: it contains / and —n. After Step 1 is performed, we have
ry=ged(l,—n) and o;! + fi(—n)=r;. Let

$I:<°fj 5})
rnon
and let # =% .#4. Then

o f — ry —a1p+ Pih
()
non r

Consider row 1 of .#,: it contains r; and —o p + f1h. After Step 2 is performed,
we have ry = ged(r, —oy p+ f1h), aary + fa(—ay p+ f1h)=ry, and ged(f2,)= 1. Let

[~Capthi) |
B2 o
and let A, =.#12,. Then

r —op+ Pk o *<*mr7§7+ﬁlh) r 0
M2 = 0 N B rn “\ M N -
7 2 r2 non

Consider column 1 of .#,: it contains r, and Nf,/r1. Let r3 = gcd(r2, Nfa2/r1). Note
that in Step 2 we choose gcd(fy,72)=1. Thus

N N
ng <r25 ﬁ2> :ng (r29 > :ng <rla_(x1p + ﬁlh’ > .
r r

R. Chi-Feng Chan et al. [Discrete Applied Mathematics 121 (2002) 61-72 69

We claim that 73 = 1. Suppose this is not true and »3 > 1. Then every entry of .#, is
a multiple of r3. Since 4| =4, we have

1 L _p r —oup+pih
M=L My =—oune [T N
! det(ZL1) \ =% 0 —

r

That is,

l i —oupt+pih
%: 71 E _ﬂl r3 é “153 l .
det($1) *% o 0 %

Since 3 = ged(ry, —o p + Bk,]rvj),

ri —upt+pih

r3 r3

O N
nrs

is integral. Since det(¥;)= £ 1, every entry of .# must be a multiple of ;. Then
gcd(l,h, p,n) = r; > 1; this contradicts with the assumption that gcd(/, 4, p,n)=1.
Therefore 3 = 1.

Since r3 =gcd(ry, Nfy/r1) and r3 =1, by Lemma 1, there exist integers o3 and f3
such that o3, 4+ f3(NBa/r1)=1. Let

a3 P
ZLr=1| _np,
r r2

and let A3 =%>.#,. Then

o3 P3 rn 0] BN
ﬂ: _ = r .
H(B0)(82)-08
_BN
Ry = ! " .
0 1

and let A4 4= M3R,. Then

1 BY N [BN 10
My = 2 no| = =S(M).
N <o N)(O 1 <0N> (4)

From the above, &, L\ MR\ Ry = S (M). Moreover, £, L», # and #, are uni-
modular integral matrices. Let ¥ = % 1.%,. Then

17 B3 o By _ “3“1+/%na3ﬁ1+ﬂ%ll
B =2}) n L= —Npyou+rn =N Bi+rl .

r roor = "

Let

Using the facts that N = [h— pn and a;/+ f1(—n)=r and opr; + fo(—oy p+fi1h) =12,
we have (7Nﬂ20(1 + }"211)/7'1 =0on — ﬁgh and (7Nﬁ2ﬂ1 + l”zl)/l”l :(le — ﬁzp Thus if
S1=apn — frh (mod N) and s, =0/ — B p (mod N), then DL(N;sy,s,) realizes L.

70 R. Chi-Feng Chan et al. | Discrete Applied Mathematics 121 (2002) 61-72

It is clear that Steps 1, 2, and 3 can be done in O(log V) time by using the Euclidean
algorithm. Step 4 can be done in O((log N)?) time by using ALGORITHM-MODIFIED-
EUCLIDEAN. Step 5 can be done in O(1) time. Thus ALGORITHM-COMPUTING-
STEPS takes at most O((logN)?). [J

The following theorem will be used in the follow-up discussions.

Theorem 6 (Chen and Hwang [4]). Suppose s},s) realize L-shape(l,h,n, p). Let x and
v be integers such that shx — sjy=1. Then sy =nx — hy (modN) and s, =1Ix —
py (mod N) realize L-shape(l,h, p,n); moreover, sy,s, can be derived from si,s} in
O(logN) time.

Theorem 7. If ged(l,n)=1 or ged(l, p)=1 or ged(h, p)=1 or ged(h,n)=1, then
we could use ALGORITHM-COMPUTING-STEPS to find the steps s; and s, of
L-shape(l,h, p,n) in only O(logN) time.

Proof. There are four cases:

Case 1: gcd(l,n)=1. Then, clearly, r; =gcd(/,—n)=1. Hence r, =1 and Step 4 of
ALGORITHM-COMPUTING-STEPS takes only O(logN) time. Thus ALGORITHM-
COMPUTING-STEPS finds the steps s; and s, in only O(logN) time.

Case 2: gcd(/, p)=1. By an argument similar to that in Case 1, we could use
ALGORITHM-COMPUTING-STEPS to find the steps s} and s) of L-shape(/, 4, n, p)
in only O(logN) time. Then, by Theorem 6, sy,s, could be derived from sf,s) in
O(logN) time.

Case 3: gcd(h, p)=1. By an argument similar to that in Case 1, we could use
ALGORITHM-COMPUTING-STEPS to find the steps s} and s} of L-shape(#,/,n, p)
in only O(logN) time. Since L-shape(h,/,n, p) is the flipping of L-shape(/, A, p,n),
s1=s5 and s, =s7.

Case 4: ged(h,n)=1. Again, by an argument similar to that in Case 1, we could use
ALGORITHM-COMPUTING-STEPS to find the steps s{' and s3 of L-shape(h, I, p,n)
in only O(log N) time. Then, by Theorem 6, the steps s{,s5 of L-shape(#,/,n, p) could
be derived from s7,s5 in O(logN) time. Since L-shape(h,/,n, p) is the flipping of
L-shape(/,h, p,n), s1 =s5 and s, =s}. [

We now compare the three existing algorithms for computing the steps of double-loop
networks: the Smith normalization method [1,7], the sieve method [3,11], and our algo-
rithm. Both the Smith normalization method and our algorithm take at most O((log N)?)
time. In the Smith normalization method, one needs to find nonsingular unimodular in-
tegral matrices %;,..., %2, L1, R, R, ..., R such that

Lio L LVMINR - Ry = S (M),

Our algorithm is based on the Smith normalization method, but our algorithm does not
require any matrix operation; moreover, as could be seen from the proof of Theorem

R. Chi-Feng Chan et al. [Discrete Applied Mathematics 121 (2002) 61-72 71

5, we prove that there exist nonsingular unimodular integral matrices %>, £, %1, %>
such that

Lo LVMP Ry = S (M)

Therefore, our algorithm greatly simplifies the computation of the Smith normalization
method.

Both the sieve method and our algorithm are very simple and easy to implement.
The sieve method shows that the steps of a double-loop network are of the form

si=kn+h (modN), s,=kl+ p (modN),
and our algorithm shows that the steps of a double-loop network are of the form
Slzazn—ﬁzh (modN), Szzazl—ﬂzp (modN)

The sieve method takes at most O(P,v)log N) time. However, we are unable to predict
the value of P, and therefore unable to tell which algorithm is more efficient.

It is open whether the steps of a double-loop network can be found in O(loghN)
time. Note that Cheng and Hwang [5] gave an O(logN) time algorithm to com-
pute the L-shape of a double-loop network DL(N;si,s;). It is also open whether
we can find integers x and y such that xa + yb=gcd(a,b) and (y,gcd(a,b))=1 in
only O(logN) time, where ¢ and b are integers, not both zero. If this is true, then
ALGORITHM-COMPUTING-STEPS would take only O(logN) time and the steps of
a double-loop network can be find in O(log N) time.

Acknowledgements

We thank Prof. Frank K. Hwang for many helpful comments. We also thank the
referees for many constructive comments that greatly improve the presentation of this

paper.

References

[1] F. Aguildé, M.A. Fiol, An efficient algorithm to find optimal double loop networks, Discrete Math. 138
(1995) 15-29.

[2] J.-C. Bermond, F. Comellas, D.F. Hsu, Distributed loop computer networks: a survey, J. Parallel
Distribut. Comput. 24 (1995) 2-10.

[3] C. Chen, F.K. Hwang, The minimum distance diagram of double-loop networks, IEEE Trans. Comput.
49 (2000) 977-979.

[4] C. Chen, F.K. Hwang, Equivalent nondegenerate L-shapes of double-loop networks, Networks 36 (2000)
118-125.

[5] Y. Cheng, F.K. Hwang, Diameters of weighted double loop networks, J. Algorithms 9 (1988) 401-410.

[6] P. Erdés, D.F. Hsu, Distributed loop networks with minimum transmission delay, Theoret. Comput.
Sci. 100 (1992) 223-241.

[7] P. Esqué, F. Aguilo, M.A. Fiol, Double commutative-step diagraphs with minimum diameters, Discrete
Math. 114 (1993) 147-157.

72 R. Chi-Feng Chan et al. | Discrete Applied Mathematics 121 (2002) 61-72

[8] M.A. Fiol, M. Valero, J.L.A. Yebra, 1. Alegre, T. Lang, Optimization of double-loop structures for
local networks, Proceedings of the XIX International Symposium MIMI’82, Paris, France, 1982, pp.
37-41.

[9] M.A. Fiol, J.L.A. Yebra, I. Alegre, M. Valero, A discrete optimization problem in local networks and
data alignment, IEEE Trans. Comput. C-36 (1987) 702-713.

[10] F.K. Hwang, A survey on double-loop networks, in: F. Roberts, F.K. Hwang, C. Monma (Eds.),
Reliability of Computer and Communication Networks, AMS Series, 1991, pp. 143-151.

[11] F.K. Hwang, A complementary survey on double-loop networks, Theoret. Comput. Sci., to appear.

[12] F.K. Hwang, Y.H. Xu, Double loop networks with minimum delay, Discrete Math. 66 (1987) 109-118.

[13] M. Newman, Integral Matrices, Pure and Appl. Math. Series, Vol. 45, Academic Press, New York,
1972.

[14] J.M. Peha, F.A. Tobagi, Analyzing the fault tolerance of double-loop networks, IEEE Trans. Network
2 (1994) 363-373.

[15] C.K. Wong, D. Coppersmith, A combinatorial problem related to multimodule memory organizations,
J. Assoc. Comput. Mach. 21 (1974) 392-402.

