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Abstract

The effective development of data mining techniques for the discovery of knowledge from training samples for

classification problems in industrial engineering is necessary in applications, such as group technology. This paper

proposes a learning algorithm, which can be viewed as a knowledge acquisition tool, to effectively discover fuzzy

association rules for classification problems. The consequence part of each rule is one class label. The proposed

learning algorithm consists of two phases: one to generate large fuzzy grids from training samples by fuzzy

partitioning in each attribute, and the other to generate fuzzy association rules for classification problems by large

fuzzy grids. The proposed learning algorithm is implemented by scanning training samples stored in a database

only once and applying a sequence of Boolean operations to generate fuzzy grids and fuzzy rules; therefore, it can

be easily extended to discover other types of fuzzy association rules. The simulation results from the iris data

demonstrate that the proposed learning algorithm can effectively derive fuzzy association rules for classification

problems. q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Data mining is a methodology for the extraction of new knowledge from data. This knowledge may

relate to a problem that we want to solve (Myra, 2000). Thus, data mining can ease the knowledge

acquisition bottleneck in building prototype systems (Hong & Chen, 1999; Hong, Wang, Wang, &

Chien, 2000). On the other hand, database-mining problems involving classification can be viewed

within a common framework of rule discovery (Agrawal, Imielinski, & Swami, 1993). These concepts

demonstrate that effective development of data mining techniques to discover knowledge from training

samples for classification problems is necessary. Moreover, it is necessary to develop effective methods

for classification problems in industrial engineering, such as group technology.
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Recently, the discovery of association rules from databases has become an important research topic,

and association rules have been applied to analyze market baskets to help managers determine, which

items are frequently purchased together by customers (Berry & Linoff, 1997; Han & Kamber, 2001;

Yilmaz, Triantaphyllou, Chen, & Liao, 2002). Initially, Agrawal, Mannila, Srikant, Toivonen, and

Verkamo (1996) proposed the Apriori algorithm to quickly find association rules. Han, Karypis, and

Kumar (2000) also proposed parallel data mining techniques implemented in large databases. Generally,

there are two phases for mining association rules. In phase I, we find large itemsets, whose supports are

larger than or equal to the user-specified minimum support. If there are k items in a large itemset, then we

call it a large k-itemset, and the Apriori property shows that any subset of a large itemset must also be

large (Han & Kamber, 2001). In phase II, we use large itemsets generated in phase I to generate effective

association rules. An association rule is effective, if its confidence is larger than or equal to the user-

specified minimum confidence.

In this paper, we propose a learning algorithm to discover fuzzy associative classification rules

for classification problems. We define that a fuzzy associative classification rule is a fuzzy if–

then rule, whose consequent part is one class label. Since the comprehensibility of fuzzy rules by

human users is a criterion in designing a fuzzy rule-based system (Ishibuchi, Nakashima, &

Murata, 1999), fuzzy associative classification rules with linguistic interpretation must be taken

into account. To cope with this problem, we consider that both quantitative and categorical

attributes are divided into many fuzzy partitions by the concept of the fuzzy grids, resulting from

fuzzy partitioning in feature space (Ishibuchi, Nozaki, Yamamoto, & Tanaka, 1995; Ishibuchi

et al., 1999). Since each fuzzy partition is a fuzzy number, a linguistic interpretation of each

fuzzy partition is easily obtained.

Each fuzzy partition distributed in either quantitative or categorical attributes is viewed as a

candidate one-dimension (1-dim) fuzzy grid used to generate large k-dim ðk $ 1Þ fuzzy grids. We

give the definitions of the fuzzy support and the fuzzy confidence to determine, which candidate

fuzzy grids are large and which fuzzy rules are effective, respectively. The proposed learning

algorithm also consists of two phases: one to generate large fuzzy grids from training samples by

fuzzy partitioning in each attribute, and the other to generate the fuzzy associative classification

rules from these large fuzzy grids. The proposed learning algorithm is implemented by scanning

training samples stored in databases only once and applying a sequence of Boolean operations to

generate fuzzy grids and fuzzy associative classification rules. Therefore, it can be easily

extended to discover other types of fuzzy association rules for market basket analysis. The well-

known iris data proposed by Fisher (1936) is often used to compare the performance between the

proposed learning algorithm and other classification methods, such as the genetic-algorithm-based

method (Ishibuchi et al., 1995), and some results are reported by Grabisch and Dispot (1992).

The simulation results reported in this paper demonstrate that the proposed learning algorithm

works well in comparison with other classification methods. Therefore, the proposed learning

algorithm may effectively derive fuzzy associative classification rules; moreover, the goal of

knowledge acquisition can also be easily achieved.

This paper is organized as follows. The concepts of fuzzy partitions are introduced in Section 2. In

Section 3, we give definitions for the fuzzy support and the fuzzy confidence, and the proposed learning

algorithm is also presented in this section. In Section 4, the performance of the proposed learning

algorithm is examined by computer simulation on the iris data. Discussions and conclusions are

presented in Sections 5 and 6, respectively.
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2. Fuzzy partitions

The notation used in this paper is as follows:

C total number of class labels

d total number of data attributes, where 1 # d

k dimension of one fuzzy grid, where 1 # k # d

K 0 maximal number of fuzzy partitions in each quantitative attribute

A
xm

K;im
im-th fuzzy partition of K fuzzy partitions defined in attribute xm; where 1 # m # d; 3 # K #

K 0 and 1 # i # K

m
xm

K;im
membership function of A

xm

K;im
tp p-th sample or tuple, where tp ¼ ðtp1

; tp2
;…; tpd

Þ; and p $ 1

Fuzzy sets were proposed by Zadeh (1965), who also proposed the concepts of a linguistic variable

and its applications to approximate reasoning (Zadeh, 1975a,b,c, 1976). A linguistic variable is a

variable, whose values are linguistic words or sentences in a natural language (Chen & Jong, 1997). The

division of the attributes into many fuzzy partitions has been also widely used in pattern recognition and

fuzzy reasoning. Examples are the application by Ishibuchi et al. to pattern classification (Ishibuchi,

Nozaki, & Tanaka, 1992; Ishibuchi et al., 1995; Ishibuchi, Murata, & Gen, 1998; Ishibuchi et al., 1999),

and fuzzy rules generation by Wang and Mendel (1992). In addition, some methods for partitioning an

attribute space were discussed by Sun (1994).

The discussions for fuzzy partitioning in quantitative and categorical attributes are introduced in

Sections 2.1 and 2.2, respectively.

2.1. Fuzzy partitioning in quantitative attributes

The proposed learning algorithm includes two methods resulting from fuzzy partitions: one is the M-

type (multiple type) division method (MTDM), and the other is the S-type (single type) division method

(STDM). The MTDM allows us to divide each quantitative attribute into ð3 þ 4 þ · · · þ K 0Þ fuzzy

partitions. That is, we sequentially divide each quantitative attribute into 3; 4;…;K 0 fuzzy partitions. As

for the STDM, only K 0 fuzzy partitions are defined. In these two methods, K 0 is pre-specified before

executing the proposed learning algorithm. Triangular membership functions are used for the fuzzy

partitions defined in the quantitative attributes. Hence, fuzzy partitions are fuzzy numbers, whereas a

fuzzy number is a fuzzy partition in the universe of discourse, that is, both convex and normal (Chen &

Jong, 1997). For example, by using the STDM, we describe K 0 ¼ 3 and K 0 ¼ 4 for attribute ‘Width’

(denoted by x1) that range from 0 to 60 in Figs. 1 and 2, respectively. Then, mWidth
K;i1

can be represented as

Fig. 1. K 0 ¼ 3 for Width.
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follows:

mWidth
K;i1 ðxÞ ¼ max 12f jx 2 aK

i1
=bK ; 0
���

o
ð1Þ

where

aK
i1
¼ mi þ ðma 2 miÞði1 2 1Þ=ðK 2 1Þ ð2Þ

bK ¼ ðma 2 miÞ=ðK 2 1Þ ð3Þ

where ma is the maximal value of the domain, and mi is the minimal value. Here, ma ¼ 60 and mi ¼ 0

for Width. Moreover, if we view Width as a linguistic variable, then the linguistic term AWidth
K;i1

can be

described in the sentences with different i1 :

AWidth
K;1 : Width is small; and below 60=ðK 2 1Þ ð4Þ

AWidth
K;K : Width is large; and above ½60 2 60=ðK 2 1Þ	 ð5Þ

AWidth
K;i1 : Width is close to ði1 2 1Þ½60 2 60=ðK 2 1Þ	; and between ði1 2 2Þ½60 2 60=ðK 2 1Þ	

and i1½60 2 60=ðK 2 1Þ	; for 1 , i1 , K
ð6Þ

Clearly, the set of candidate 1-dim fuzzy grids generated for the same K 0 by the STDM is contained in

the one generated by the MTDM. For example, when K 0 ¼ 4; then {AWidth
4;1 ;AWidth

4;2 ;AWidth
4;3 ;AWidth

4;4 } is

generated by the STDM, and {AWidth
3;1 ;AWidth

3;2 ;AWidth
3;3 ;AWidth

4;1 ;AWidth
4;2 ;AWidth

4;3 ;AWidth
4;4 } is generated by the

MTDM. If we divide both Width and ‘Length’ (denoted by x2) into three fuzzy partitions, then a feature

space is divided into nine 2-dim fuzzy grids, as shown in Fig. 3. For the shaded 2-dim fuzzy grid shown

in Fig. 3, we can use AWidth
3;1 £ A

Length
3;3 to represent it.

Note that, Ishibuchi et al. (1999) proposed another method to define fuzzy sets for discrete values of

Fig. 2. K 0 ¼ 4 for Width.

Fig. 3. Divide both Width and Length into three fuzzy partitions.
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quantitative attributes. For example, if one quantitative attribute has two attribute values {0, 1}, then we

may use the fuzzy sets ‘small’ and ‘large’ with degrees 0.0 and 1.0, respectively.

2.2. Fuzzy partitioning in categorical attributes

If the number of distinctly categorical attribute values is equal to n0 (where n0 is finite), then this

attribute can only be divided into n0 fuzzy partitions. At first, we view a categorical attribute as a

quantitative attribute. That is, each value of the categorical attribute can correspond to an integer

number. This is helpful for us in dividing the categorical attribute. A linguistic term A
xm

n0;im
ð1 # im # n0Þ

is defined in the partition ðim 2 1; im þ 1Þ ð1! 0Þ: The membership function of A
xm

n0;im
is 1.

For example, ‘class label’ is a linguistic variable, and suppose its values include ‘class 1’ and ‘class 2’

which correspond to 1 and 2, respectively. The result of partitions is shown in Fig. 4. We can see that

there are two fuzzy partitions distributed in class label, one is ð1 2 1; 1 þ 1Þ and the other is ð2 2

1; 2 þ 1Þ: Linguistic terms Aclass label
2;1 and Aclass label

2;2 can be interpreted as Eqs. (7) and (8), respectively.

The membership functions can be described in Eqs. (9) and (10). Sometimes, we can divide a

quantitative attribute with discrete values in this way (e.g. number of cars which a person owns)

Aclass label
2;1 : class label is class 1 ð7Þ

Aclass label
2;2 : class label is class 2 ð8Þ

mclass label
2;1 ðxÞ ¼ 1; 1 2 1 # x # 1 þ 1; 1! 0 ð9Þ

mclass label
2;2 ðxÞ ¼ 1; 2 2 1 # x # 2 þ 1; 1! 0 ð10Þ

Initially, each fuzzy partition distributed in either quantitative or categorical attributes is viewed as a

candidate 1-dim fuzzy grid. The next important task is how to use the candidate 1-dim fuzzy grids to

generate the other large fuzzy grids and fuzzy associative classification rules. Therefore, we propose the

learning algorithm described in Section 3.

3. Mining fuzzy associative classification rules

In this section, we first describe the learning model for generating fuzzy associative classification

rules in Fig. 5. From this figure, we can see that fuzzy associative classification rules are generated in the

two phases of the proposed algorithm. Large fuzzy grids and effective fuzzy associative classification

rules are generated in phases I and II, respectively. We describe the individual phases of the learning

model in Sections 3.1 and 3.2. The proposed learning approach is presented in Section 3.2.

Fig. 4. Class label is divided into two fuzzy partitions.
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3.1. Phase 1: generate large fuzzy grids

Suppose each attribute, xm; is divided into K 0 fuzzy partitions. Without loss of generality, given a

candidate k-dim fuzzy grid A
x1

K;i1
£ A

x2

K;i2
£ · · · £ A

xk21

K;ik21
£ A

xk

K;ik
; where 1 # i1; i2;…; ik # K; 3 # K # K 0

for the MTDM and K ¼ K 0 for the STDM, the degree to which tp belongs to this fuzzy grid can be

computed as m
x1

K;i1
ðtp1

Þm
x2

K;i2
ðtp2

Þ· · ·m
xk21

K;ik21
ðtpk21

Þm
xk

K;ik
ðtpk

Þ: To check whether this fuzzy grid is large or not,

we define the fuzzy support FSðA
x1

K;i1
£ A

x2

K;i2
£ · · · £ A

xk21

K;ik21
£ A

xk

K;ik
Þ as follows:

FS A
x1

K;i1
£ A

x2

K;i2
£ · · · £ A

xk21

K;ik21
£ A

xk

K;ik

� �
¼

Xn

p¼1

m
x1

K;i1
ðtp1

Þm
x2

K;i2
ðtp2

Þ· · ·m
xk21

K;ik21
ðtpk21

Þm
xk

K;ik
ðtpk

Þ

2
4

3
5=n ð11Þ

where n is the number of training samples. When FSðA
x1

K;i1
£ A

x2

K;i2
£ · · · £ A

xk21

K;ik21
£ A

xk

K;ik
Þ is larger than or

equal to the user-specified minimum fuzzy support (min FS), we can say that A
x1

K;i1
£ A

x2

K;i2
£ · · · £

A
xk21

K;ik21
£ A

xk

K;ik
is a large k-dim fuzzy grid. This is similar to defining a large k-itemset, whose support is

larger than the user-specified minimum support.
Table FGTTFSK is implemented to generate large fuzzy grids for K. FGTTFS consists of the

following substructures:

(a) Fuzzy grids table ðFGKÞ : each row represents a fuzzy grid, and each column represents a fuzzy

partition A
xm

K;im
:

Fig. 5. Learning model for generating fuzzy associative classification rules.
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(b) Transaction table ðTTKÞ : each column represents tp; while each element records the membership

degree of the corresponding fuzzy grid.

(c) Column FSK : stores the fuzzy support corresponding to the fuzzy grid in FG.

An initial tabular FGTTFS3 is shown as Table 1 as an example, from which we can see that there are

two tuples t1 and t2; and two attributes x1 and x2 in a given database. Both x1 and x2 are divided into three

fuzzy partitions (i.e. K 0 ¼ 3). In the learning process for K 0 ¼ 4; this means that FGTTFS3 and FGTTFS4

will be used for M-type division and only FGTTFS4 for S-type division. Assume that x2 is the attribute of

class labels. Since each row of FG is a bits string consisting of 0 and 1, FGK½u	 and FGK½v	 (i.e. u-th row

and v-th row of FGK) can be paired to generate certain desired results by applying the Boolean

operations. For example, if we apply the OR operation on two rows, FG3½1	 ¼ ð1; 0; 0; 0; 0; 0Þ and

FG3½4	 ¼ ð0; 0; 0; 1; 0; 0Þ; then ðFG3½1	 OR FG3½4	Þ ¼ ð1; 0; 0; 1; 0; 0Þ corresponding to a candidate

2-dim fuzzy grid A
x1

3;1 £ A
x2

3;1; is generated. Then, FSðA
x1

3;1 £ A
x2

3;1Þ ¼ TT3½1	TT3½4	 ¼ ½m
x1

3;1ðt11
Þm

x2

3;1ðt12
Þ þ

m
x1

3;1ðt21
Þm

x2

3;1ðt22
Þ	=2 is obtained to compare with the min FS.

However, any two fuzzy partitions defined in the same attribute cannot be contained in the same candidate

k-dim fuzzy grid ðk $ 2Þ:Therefore, (1,1,0,0,0,0) and (0,0,0,1,1,0) are all invalid. To solve this problem, we

implement a 1-dim array Group of Fuzzy Grids ðGFGKÞ: From GFGK ; we can easily distinguish, which

fuzzy partitions are defined in the same attribute. Each index of GFGK corresponds to a fuzzy partition, and

fuzzy partitions defined in the same attribute must be set to the same integer number. GFG3 is shown as an

example Table 2. For example, since GFG3½1	 ¼ GFG3½2	 ¼ 1; string (1,1,0,0,0,0) generated by

FG3½1	 OR FG3½2	 ¼ ð1; 0; 0; 0; 0; 0Þ OR ð0; 1; 0; 0; 0; 0Þ ¼ ð1; 1; 0; 0; 0; 0Þ is invalid.

In the Apriori algorithm (Agrawal et al., 1996), two large ðk 2 1Þ-itemsets are joined to be a candidate

k-itemset, and these two large itemsets share ðk 2 2Þ items. Similarly, a candidate k-dim ð3 # k # dÞ

fuzzy grid is derived by joining two large ðk 2 1Þ-dim fuzzy grids, and these two large grids share

ðk 2 2Þ fuzzy partitions. For example, we can use A
x1

3;2 £ A
x2

3;1 and A
x1

3;2 £ A
x3

3;3 to generate the

candidate 3-dim fuzzy grid A
x1

3;2 £ A
x2

3;1 £ A
x3

3;3; because A
x1

3;2 £ A
x2

3;1 and A
x1

3;2 £ A
x3

3;3 share the linguistic term

A
x1

3;2: However, A
x1

3;2 £ A
x2

3;1 £ A
x3

3;3 can also be generated by joining A
x1

3;2 £ A
x2

3;1 to A
x2

3;1 £ A
x3

3;3: This implies

that we must select one of many possible combinations to avoid redundant computations. To cope with

this problem, the method we adopt here is that if there exist integers 1 # e1 , e2 , · · · , ek # d; such

that FGK½u; e1	 ¼ FGK½u; e2	 ¼ · · · ¼ FGK½u; ek22	 ¼ FGK½u; ek21	 ¼ 1 and FGK½v; e1	 ¼

FGK½v; e2	 ¼ · · · ¼ FGK½v; ek22	 ¼ FGK½v; ek21	 ¼ 1; where FGK½u	 and FGK½v	 correspond to large

ðk 2 1Þ-dim fuzzy grids, then FGK½u	 and FGK½v	 can be paired to generate a candidate k-dim fuzzy grid.

Table 1

Initial table FGTTFS3

Fuzzy grid FG3 TT3 FS3

A
x1

3;1 A
x1

3;2 A
x1

3;3 A
x2

3;1 A
x2

3;2 A
x2

3;3 t1 t2

A
x1

3;1 1 0 0 0 0 0 m
x1

3;1ðt11
Þ m

x1

3;1ðt21
Þ FS(A

x1

3;1)

A
x1

3;2 0 1 0 0 0 0 m
x1

3;2ðt11
Þ m

x1

3;2ðt21
Þ FS(A

x1

3;2)

A
x1

3;3 0 0 1 0 0 0 m
x1

3;3ðt11
Þ m

x1

3;3ðt21
Þ FS(A

x1

3;3)

A
x2

3;1 0 0 0 1 0 0 m
x2

3;1ðt12
Þ m

x2

3;1ðt22
Þ FS(A

x2

3;1)

A
x2

3;2 0 0 0 0 1 0 m
x2

3;2ðt12
Þ m

x2

3;2ðt22
Þ FS(A

x2

3;2)

A
x2

3;3 0 0 0 0 0 1 m
x2

3;3ðt12
Þ m

x2

3;3ðt22
Þ FS(A

x2

3;3)
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3.2. Phase 2: generate effective fuzzy associative classification rules

The general type of the fuzzy associative classification rule R is stated as Eq. (12)

Rule R : A
x1

K;i1
£ A

x2

K;i2
£ · · · £ A

xk21

K;ik21
£ A

xk

K;ik
) A

xa
C;ia

with FCðRÞ ð12Þ

where xa ð1 # a # dÞ is the class label and FC(R ) is the fuzzy confidence of rule ‘A
x1

K;i1
£ A

x2

K;i2
£ · · · £

A
xk

K;ik
) A

xa
C;ia

’: The above rule represents that: if x1 is A
x1

K;i1
and x2 is A

x2

K;i2
, … and xk is A

xk

K;ik
; then xa is

A
xa
C;ia

: The left-hand-side of ‘ ) ’ is the antecedent part of R, and the right-hand-side is the consequent

part. FC(R ) can be viewed as the grade of certainty of R. R is generated by two large fuzzy grids, one is

A
x1

K;i1
£ A

x2

K;i2
£ · · · £ A

xk21

K;ik21
£ A

xk

K;ik
£ A

xa
C;ia

and the other is A
x1

K;i1
£ A

x2

K;i2
£ · · · £ A

xk21

K;ik21
£ A

xk

K;ik
: We define

the fuzzy confidence FC(R ) of R as follows:

FCðRÞ ¼ FS A
x1

K;i1
£ A

x2

K;i2
£ · · · £ A

xk21

K;ik21
£ A

xk

K;ik
£ A

xa
C;ia

� �
=FS A

x1

K;i1
£ A

x2

K;i2
£ · · · £ A

xk21

K;ik21
£ A

xk

K;ik

� �
ð13Þ

If FC(R ) is larger than or equal to the user-specified minimum fuzzy confidence (min FC), then R is
effective and can be reserved. This is similar to defining an effective association rule, whose confidence
is larger than or equal to the user-specified minimum confidence. We still apply Boolean operations to
obtain the antecedent part and consequent part of each fuzzy rule. For example, if there exists FG3½u	 ¼
ð1; 0; 0; 0; 0; 0Þ and FG3½v	 ¼ ð1; 0; 0; 1; 0; 0Þ corresponding to large fuzzy grids Lu and Lv; where Lv ,
Lu; respectively; then FG3½u	 AND FG3½v	 ¼ ð1; 0; 0; 0; 0; 0Þ; corresponding to the large fuzzy grid
A

x1

3;1; is generated to be the antecedent part of rule R. Then, FG3½u	 XOR FG3½v	 ¼ ð0; 0; 0; 1; 0; 0Þ;
corresponding to the large fuzzy grid A

x2

3;1; is generated to be the consequent part of rule R. Then,
FCðRÞ ¼ FSðA

x1

3;1 £ A
x2

3;1Þ=FSðA
x1

3;1Þ is obtained to compare with the min FC to determine R is effective or
not.

However, some redundant rules must be eliminated from the viewpoint in order to achieve the goal of

compactness. If there exist two rules R and S, having the same consequent part, and the antecedent part

of S is contained in that of R, then R is redundant and can be discarded, and S is temporarily reserved. For

example, if S is ‘A
x1

K;i1
£ A

x2

K;i2
£ · · · £ A

xk21

K;ik21
) A

xa
C;ia

’; then R can be eliminated. This can happen because

the number of antecedent conditions must be minimized.

The main difference between the MTDM with the STDM is that the MTDM needs to calculate the

total number of fuzzy partitions in each quantitative attribute, but STDM does not. Therefore, the

proposed learning algorithms for MTDM and STDM are almost the same. We describe the general

algorithm as following.

Algorithm: learning algorithm for mining fuzzy associative classification rules

Input:

a. A set of training samples selected from the specified classification problem

Table 2

One-dimensional array GFG3 (group of fuzzy grids)

Index

[1] [2] [3] [4] [5] [6]

1 1 1 2 2 2
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b. The minimum fuzzy support and the minimum fuzzy confidence are user-specified

c. K 0

Output:

Phase I: Generate large fuzzy grids

Phase II: Generate effective fuzzy associative classification rules

Method:

Phase I. Generate large fuzzy grids

Step 1. Fuzzy partitioning in each attribute

Divide each quantitative into fuzzy partitions by M-type or S-type division, and the number n0 is

also pre-determined for the categorical attribute class label of the specified classification problem

(e.g. n0 ¼ 3 for the iris data).

Step 2. Scan the training samples from a database, and then construct the initial table FGTTFS and

GFG

Step 3. Generate large fuzzy grids

For FGTTFSK (K ¼ 1; 2;…;K 0 for M-type division and K ¼ K 0 for S-type division ) do

3-1. Generate large 1-dim fuzzy grids

Set k ¼ 1 and eliminate the rows of initial FGTTFSK corresponding to candidate 1-dim fuzzy

grids that are not large.

3-2. Generate large k-dim fuzzy grids

Set k þ 1 to k. If there is only one ðk 2 1Þ-dim fuzzy grid, then go to phase II.

For two unpaired rows, FGTTFSK½u	 and FGTTFSK½v	 ðu – vÞ; corresponding to large

ðk 2 1Þ-dim fuzzy grids do

Compute (FGK½u	 OR FGK½v	) corresponding to a candidate k-dim fuzzy grid c.

3-2-1. From non-zero elements of (FGK½u	 OR FGK½v	), retrieve all corresponding values from

GFGK : If any two values are the same, then discard c and skip Steps 3-2-2, 3-2-3, and 3-2-4.

That is, c is invalid.

3-2-2. If FGK½u	 and FGK½v	 do not share ðk 2 2Þ linguistic terms, then discard c and skip Steps

3-2-3 and 3-2-4. That is, c is invalid.

3-2-3. If there exist integers 1 # e1 , e2 , · · · , ek # d such that ðFGK½u	 OR FGK½v	Þ½e1	 ¼

ðFGK½u	 OR FGK½v	Þ½e2	 ¼ · · · ¼ ðFGK½u	 OR FGK½v	Þ½ek21	 ¼ ðFGK½u	 OR FGK½v	Þ½ek	 ¼

1; then compute ðTTK½e1	TTK½e2	· · ·TTK½ek	Þ and the fuzzy support fs of c.

3-2-4. Add (FGK½u	 OR FGK½v	) to FGK ; ðTTK½e1	TTK½e2	· · ·TTK½ek	Þ to TTK and fs to FSK

when fs is larger than the minimum fuzzy support; otherwise, discard c.

End

3-3. Check whether any large k-dim fuzzy grid is generated or not

If any large k-dim fuzzy grid is generated, then go to Step 3-2. Note that the final FGTTFSK

stores only large fuzzy grids.

End

Phase II: Generate effective fuzzy associative classification rules

For FGTTFSK (K ¼ 1; 2;…;K 0 for M-type division and K ¼ K 0 for S-type division ) do

Step 1. Generate effective fuzzy rules

For two unpaired rows, FGK½u	 and FGK½v	 ðu , vÞ; corresponding to large fuzzy grids Lu and

Lv respectively do

1-1. Generate the antecedent part of fuzzy rule Rv:
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Compute the number of non-zero elements in FG to temp.

If the number of non-zero elements in (FGK½u	 AND FGK½v	) is equal to temp, then Lv , Lu is hold,

and the antecedent part of Rv is generated as (FGK½u	 AND FGK½v	) ¼ Lu; else skip Steps 1-2 and 1-3.

1-2. Generate the consequent part of fuzzy rule Rv:
Use (FGK½u	 XOR FGK½v	) to obtain the consequent part.

If (FGK½u	 XOR FGK½v	) contains only one fuzzy partition defined in the class label then generate Rv;

else skip Step 1-3.

1-3. Check whether R can be reserved or not.

FCðRvÞ ¼ FSðLvÞ=FSðLuÞ

If FC(Rv) $ min FC, then mark FGK½v	 to represent that Rv and FCðRvÞ are reserved; else discard Rv:
End

Step 2. Reduce redundant rules

For any two marked rows FGK½u	 and FGK½v	 ðu , vÞ corresponding to effective fuzzy rules Ru

and Rc respectively do

If FGK½u	 ¼ ðFGK½u	 AND FGK½v	Þ; then unmark FGK½v	:
End

End

Those marked rows of FGK are used for classification problems. The performance of the proposed

learning algorithm is mainly dependent on the size of candidate grids and the size of large grids for

phases I and II, respectively. Clearly, the proposed learning algorithm is implemented by scanning

training samples stored in a database only once and applying a sequence of Boolean operations to

generate fuzzy grids and fuzzy rules. In Section 4, some simulation results are presented to demonstrate

the effectiveness of the proposed learning algorithm.

4. Experiments

In this section, the performance of the proposed learning algorithm is examined. We employ the

proposed algorithm to discover fuzzy associative classification rules from the well-known iris data

proposed by Fisher (1936). The computer programs were coded using the Delphi ver. 5.0 system and

were executed on a personal computer with Pentium III-500 CPU and 128 MB RAM running Win98.

The iris data consists of three classes (Class 1: Iris setosa, Class 2: Iris versicolor, and Class 3: Iris

virginica) and each class consists of 50 data points (Ishibuchi et al., 1995). Moreover, Class 2 overlaps

with Class 3. These data are stored in a relational database. Suppose that attribute x1 is the sepal length,

attribute x2 is the sepal width, attribute x3 is the petal length, attribute x4 is the petal width, and attribute

x5 is the class label (i.e. n0 ¼ 3 for x5 is determined) to which tp ¼ ðtp1
; tp2

;…; tps
Þ ð1 # p # 150Þ

belongs. The pairs (ma,mi) for x1; x2; x3; and x4 are (79,43), (44,20), (69,10), and (25,1), respectively.

Although the iris data is a crisp data set, the fuzzy rules can be still extracted from these 150 data points

by using the proposed learning algorithm.

Now, we determine the class label of tp by applying the proposed learning algorithm to classify the iris

data. Without losing generality, if the antecedent part of a fuzzy associative classification rule Rt is

A
x1

K;i1
£ A

x2

K;i2
£ · · · £ A

xt
K;it

; then we can calculate the compatibility grade mtðtpÞ of tp as

m
x1

K;i1
ðtp1

Þm
x2

K;i2
ðtp2

Þ· · ·m
xt
K;it

ðtpt
Þ: Then, tp can be determined to categorize the class label, which is the
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consequent part of Rb; when

mbðtpÞFCðRbÞ ¼ max
j

{mjðtpÞFCðRjÞlRj [ TR} ð14Þ

where TR is the set of fuzzy rules generated by the proposed learning algorithm.
First, we consider K 0 ¼ 6 for each attribute except x5: No doubt that only three fuzzy partitions can be

defined in x5; they are Aclass label
3;1 : ‘tp belongs to Class 1’, Aclass label

3;2 : ‘tp belongs to Class 2’, and

Aclass label
3;3 : ‘tp belongs to Class 3’. Simulation results with different user-specified minimum support and

confidence are shown in Tables 3 and 4 using the MTDM and the STDM, respectively. From Tables 3

and 4, we can see that classification accuracy rates are more sensitive to larger min FS. Therefore, the

smaller min FS could be a better choice. On the other hand, rules generated by the MTDM are more

robust than those generated by the STDM with respect to different parameter specifications. For

example, rules generated by the MTDM work well for min FS ¼ 0:15 with different min FC; however,

much lower rates are obtained by rules generated by the STDM, when min FC is larger than 0.75.

From Tables 3 and 4, we can see that the best classification accuracy rate 96.67% is simultaneously

obtained in both tables with (min FS, min FC) ¼ (0.05,0.85) and (0.10,0.80); hence, these best parameter

specifications are used in subsequent simulations. For different values of K, we show the simulation

results in Tables 5 and 6 with (0.05,0.85) and (0.10,0.80), respectively. From Tables 5 and 6, we can see

that the classification accuracy rates are not sensitive to larger values of K 0 (i.e. K 0 ¼ 6–8). For

comparison, we show simulation results with the same best parameter specifications by the STDM in

Tables 7 and 8. From the comparison of Table 7 with Table 5 and Table 8 with Table 6, we can see that

the simulation results of the MTDM are more robustly than those of the STDM with respect to larger

values of K 0 (i.e. K 0 ¼ 6–8). By the same parameter specification, the training time of the STDM is

shorter than that of the MTDM for all values of K 0:
In the above simulation, all 150 data are used as training samples to generate fuzzy rules. To examine

the error rate of the proposed learning algorithm for testing samples, we perform the leaving-one-out

technique, which is an almost unbiased estimator of the true error rate of a classifier (Weiss &

Kulikowski, 1991). In each iteration of the leaving-one-out technique, fuzzy rules are generated from

149 training samples and tested on the single remaining data. This procedure is iterated, until all the

Table 3

Classification accuracy rate (%) by M-type division

Min fuzzy confidence Min fuzzy support

0.05 0.10 0.15 0.20

0.50 96.67 96.67 94.00 92.67

0.55 96.67 96.67 94.00 91.33

0.60 96.67 96.67 94.00 91.33

0.65 96.67 96.67 94.00 91.33

0.70 96.67 96.67 94.00 91.33

0.75 96.67 96.67 94.00 94.00

0.80 96.67 96.67 96.67 96.67

0.85 96.67 96.67 96.67 96.67

0.90 96.00 96.67 96.00 66.00
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given 150 data are used as a test sample. Classification rates with different parameter specifications are

shown in Table 9. From Table 9, we can see that the best result obtained by the MTDM and the STDM

are all 96.67%. However, some poor results (e.g. 91.33 and 92.67% for K 0 ¼ 7) are obtained by the

STDM resulting from overfitting the training samples.

Based on the leaving-one-out technique, we try to make a comparison between the proposed learning

algorithm and other fuzzy classification methods. Previously, Ishibuchi et al. (1995) proposed a genetic-

algorithm-based method to select the fuzzy classification rules from the iris data. They demonstrated that

the classification rate was 94.67% by the leaving-one-out technique. Some proper parameters, including

the stopping condition (1000 generations), population size, and biased mutation probability, were also

needed. It is clear that the best result (i.e. 96.67%) of the proposed learning algorithm outperforms that of

Ishibuchi et al.’s genetic-algorithm-based method.

Previously, error rates of nine fuzzy classification methods, including fuzzy integral with perception

criterion, fuzzy integral with the quadratic criterion, minimum operator, fast heuristic search with the

Sugeno integral, simulated annealing with the Sugeno integral, fuzzy k-nearest neighbor, fuzzy c-means,

fuzzy c-means for histograms and hierarchical fuzzy c-means, for the iris data estimated by the leaving-

one-out technique were reported by Grabisch and Dispot (1992). The best result (i.e. 96.67%) was

obtained by using the fuzzy integral with the quadratic criterion or the fuzzy k-NMR method. It is clear

that the best result of the proposed learning algorithm is equal to the best result of these nine fuzzy

methods. However, because a linguistic interpretation of each fuzzy associative classification rule is

Table 4

Classification accuracy rate (%) by S-type division

Min fuzzy confidence Min fuzzy support

0.05 0.10 0.15 0.20

0.50 95.33 94.67 92.67 88.67

0.55 95.33 94.67 92.67 88.67

0.60 95.33 96.00 92.67 88.67

0.65 95.33 96.00 92.67 88.67

0.70 95.33 96.00 92.67 88.67

0.75 95.33 96.00 66.00 66.00

0.80 96.00 96.67 66.67 66.00

0.85 96.67 94.67 66.67 66.00

0.90 94.67 94.67 66.67 66.00

Table 5

Simulation results by the MTDM with min FS ¼ 0:05; min FC ¼ 0:85

K 0 Classification accuracy rate (%)

3 66.67

4 92.67

5 94.00

6 96.67

7 96.67

8 96.67
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easily obtained, the goal of knowledge acquisition for users can be achieved by checking the fuzzy rules

generated from the proposed learning algorithm.

5. Discussions

Fuzzy associative classification rules with linguistic interpretation discovered by data mining

techniques are helpful to build a prototype fuzzy knowledge base of the fuzzy classifier system. For this,

the generation of fuzzy classification rules with linguistic interpretation from the training data becomes

quite necessary. The proposed learning algorithm can also be viewed as a knowledge acquisition tool for

classification problems.

The performance of the proposed learning algorithm is tested on the iris data. From some simulation

results, we can see that the classification rates are more sensitive to larger min FS, indicating that a

smaller min FS can be a better choice. This result demonstrates that smaller min FS can lead to reserve a

larger number of large fuzzy grids; that is, more valuable information can be reserved to generate fuzzy

rules. Moreover, the MTDM is not sensitive to larger values of K 0 (i.e. K 0 ¼ 6–8) and works more

robustly than the STDM. When examining the generalization ability for testing samples, we find that

some poor results (e.g. 91.33 and 92.67% for K 0 ¼ 7) resulted from larger values of K 0 (i.e. K 0 ¼ 7; 8) are

obtained by the STDM. That is, the STDM can suffer from overfitting the training samples, because

larger values of K can result in fine partitions in a feature space. From the viewpoint of improving

classification rates, it seems that it might be better for the proposed learning algorithm to use smaller min

FS and the MTDM to derive fuzzy rules with high classification capability. The downside is that the

number of rules increases as well to verify the generalization of this observation; it is reasonable for the

proposed learning algorithm to be further tested on other classification problems. Recently, automation

for the classification task of group technology become a significant research topic, e.g. the classification

of block-shaped parts by Chuang, Wang, and Wu (1999). After features and data from workpieces are

collected, then it is possible to employ the proposed learning algorithm to discover fuzzy rules and

classify the data.

The performance of the proposed learning algorithm for phase I and phase II is mainly dependent on

the size of candidate grids and the size of large grids, respectively. It seems that it will waste much more

time in phase I for generating candidate fuzzy grids. For simplicity, we briefly discuss the time

complexity of phase I for operating FGTTFSK : For FGTTFSK ; we need ðdK 0Þ2; nðdK 0Þ and ðdK 0Þ

operations for building FGK ; TTK ; and FSK ; respectively. In addition, the worst cases for operating FGK ;

Table 6

Simulation results by the MTDM with min FS ¼ 0:10 and min FC ¼ 0:80

K 0 Classification accuracy rate (%)

3 66.67

4 88.00

5 95.33

6 96.67

7 96.67

8 96.67
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TTK and FSK in generating candidate k-dim ðk $ 2Þ fuzzy grids are roughly measured as ðdK 0ÞC
sk21

2 ;
nC

sk21

2 ; and C
sk21

2 ; where si ði $ 1Þ denotes the number of large i-dim fuzzy grids, respectively. Therefore,

the worst case of phase I of the proposed learning algorithm could be roughly measured as ðdK 0Þ2 þ

nðdK 0Þ þ ðdK 0Þ þ
Pk21

i¼1 ðn þ dK 0 þ 1ÞC
sk

2 :
We stress the feasibility and the problem-solving capability of the proposed method for classification

problems, rather than providing formal methods to find general parameter specifications that can obtain

the best classification accuracy rate. That is, it seems relatively difficult to determine appropriate values

of K 0; minimum fuzzy support and fuzzy confidence. Previously, some tuning methods were proposed,

for example, ANFIS by Jang (1993), and design of fuzzy controllers by Homaifar and McCormick

(1995). On the other hand, Nozaki, Ishibuchi, and Tanaka (1996) demonstrated that the performance of

fuzzy rule-based systems can be improved by adjusting the grade of certainty of each rule. Therefore, to

develop methods for determining appropriate membership functions and the fuzzy confidence of each

rule to obtain higher classification rates by machine learning techniques, such as genetic algorithms or

neural networks, is quite appropriate and left for future research.

6. Conclusions

In this paper, we propose a learning algorithm to discover effective fuzzy associative classification

rules. As we have explained earlier, the proposed learning algorithm consists of two phases: one to

generate large fuzzy grids from training samples by fuzzy partitioning in each attribute, and the other to

generate fuzzy associative classification rules by large fuzzy grids. The proposed learning algorithm is

implemented by scanning training samples stored in a database only once and applying a sequence of

Table 7

Simulation results by the STDM with min FS ¼ 0:05 and min FC ¼ 0:85

K 0 Classification accuracy rate (%)

3 66.67

4 94.67

5 94.00

6 96.67

7 96.00

8 95.33

Table 8

Simulation results by the STDM with min FS ¼ 0:10 and min FC ¼ 0:80

K 0 Classification accuracy rate (%)

3 66.67

4 91.33

5 94.00

6 96.67

7 93.33

8 95.33
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table operations to generate fuzzy grids and fuzzy rules. Therefore, it can be easily extended to discover

other types of fuzzy association rules for market basket analysis that can help managers design different

store layouts and help retailers to plan which items to put on sale (Han & Kamber, 2001). Especially,

because each fuzzy partition is a fuzzy number, a linguistic interpretation of each fuzzy partition is easily

obtained.

The performance of the proposed learning algorithm is tested on the iris data. According to the

simulation results, the MTDM is not sensitive to larger values of K 0 (i.e. K 0 ¼ 6–8) and it works more

robustly than the STDM. Based on the leaving-one-out technique, we make a comparison between the

proposed learning algorithm and other fuzzy classification methods. It is clear that the best result

obtained by the proposed learning algorithm outperforms that of Ishibuchi et al.’s genetic-algorithm-

based method. The best result of the proposed algorithm is also equal to the best result reported by

Grabisch and Dispot (1992) for nine fuzzy classification methods. However, because a linguistic

interpretation of each fuzzy associative classification rule is easily obtained, the goal of knowledge

acquisition for users can be achieved by checking the fuzzy rules. The simulation results from the iris

data indicate that the proposed learning algorithm may effectively derive fuzzy associative classification

rules. On the other hand, from discussions in Section 5, it seems that it might be better for classification

problems to use the MTDM with smaller min FS to perform the proposed learning algorithm.
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