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Abstract

This paper presents the closed-form solutions for estimating the displacements in a transversely isotropic half-space

subjected to three-dimensional buried linearly varying, uniform, and parabolic rectangular loads. The loading types

include an upward linearly varying load, a downward linearly varying load, a uniform load, a concave parabolic load,

and a convex parabolic load on a rectangle. The planes of transverse isotropy are assumed to be parallel to the hor-

izontal surface of the half-space. The presented solutions are obtained from integrating of the point load solutions in a

Cartesian co-ordinate system for the transversely isotropic half-space. The solutions for a transversely isotropic medium

subjected to parabolic rectangular loads are never mentioned in the literature. The parabolic loads might be more

realistic than linear variable or uniform loads acting on foundations. The buried depth, the dimensions of loaded area,

the type and degree of material anisotropy, and the loading type for transversely isotropic half-spaces influence these

solutions. An illustrative example is presented to investigate the effect of the type and degree of rock anisotropy, and the

loading types on the displacement. The proposed solutions can provide reasonably results to estimate the induced

displacements in the isotropic/transversely isotropic geomaterials subjected to three-dimensional buried parabolic

rectangular loads for practical purposes.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The deformation response of the materials is an important factor in the design of foundations. In
general, the magnitude and distribution of the displacements in soils/rocks are predicted by using analytical
solutions that model the constituted materials as a linearly elastic, homogeneous and isotropic continuum.
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However, for soils are deposited through a process of sedimentation over a long period of time, or rock
masses cut by discontinuities, such as cleavages, foliations, stratifications, schistosities, joints, these solu-
tions should account for anisotropy. Especially, anisotropy rocks are often modeled as orthotropic or
transversely isotropic materials from the standpoint of practical considerations in engineering. In this
paper, elastic solutions of displacements for linearly varying, uniform, and parabolic loading problems in a
transversely isotropic half-space are relevant.

Foundation displacements are usually estimated by the use of the classical Boussinesq solution (1885) for
a point load acting on the surface of an isotropic half-space. It means that the soil/rock above the level of
the foundation is assumed to be taking no part in the distribution of displacement due to the load on the
foundation. In calculating the displacements within the soil/rock when the foundations are relatively deep,
it might be advisable to use solutions derived for the case of loads applied within the elastic medium
(Skopek, 1961). Moreover, Gazetas (1985) found that for most available solutions refer to loads acting
directly on the ground surface. To estimate the displacement of an embedded foundation, engineers apply
reduction factors (i.e., Fox, 1948) to the displacement of the corresponding surface foundation. However,
most reduction factors are purely empirical, and may grossly exaggerate the effect of the embedment.
Hence, to derive the closed-form solutions of displacements subjected to the buried loads applied at a
regular shape should be useful for practical engineers.

Solution of a concentrated force acting at a point in the interior of an elastic space is known as the
fundamental solution or the Green’s function solution of three-dimensional elasticity (Tarn and Wang,
1987). The solutions of displacements induced by a concentrated force for a transversely isotropic half-
space have been presented by numerous investigators (i.e., Lekhnitskii, 1963; Pan and Chou, 1979; Liao
and Wang, 1998). Nevertheless, the types of external loads of a half-space should be more complex than a
point load in most engineering cases. Hence, the closed-form solutions for the displacements in a half-space
subjected to various loads applied on different regions are needed for engineering design. Regarding the
transversely isotropic medium related to buried loads, Chowdhury (1987) utilized the methods of images
and Hankel transforms to obtain the exact solutions of surface displacements for a vertical circular load
applied in the interior of a transversely isotropic half-space. Hanson and Wang (1997) derived the elastic
fields of displacements by potential function subjected to concentrated ring loadings embedded in a full or
transversely isotropic half-space. Wang and Liao (1999) presented the elastic closed-form solutions for the
displacements in a transversely isotropic half-space induced by various buried loading types. The loading
types include finite line loads, uniform rectangular loads, and linearly varied rectangular loads in the x-
direction, respectively. Recently, they also proposed the closed-form solutions for the displacements in a
transversely isotropic half-space subjected to a buried right triangular loaded region (Wang and Liao,
2001). The loading types include uniform loads, linearly varied loads in the x-direction, and linearly varied
loads in the y-direction, respectively.

It is well known that for computing the displacement in transversely isotropic half-spaces subjected to an
arbitrary shape loaded area, the loaded area can be divided into many regularly-shaped sub-areas, such as
rectangles. However, except the earlier work by the authors (Wang and Liao, 1999), Lin et al. (1991)
presented the solutions of vertical surface displacement induced by uniform rectangular loads acting
normally to the surface of a transversely isotropic half-space. In many engineering practices, the load
actually is not uniformly distributed but more concentrated towards the center of the foundation (Hooper,
1976; Bauer et al., 1979). Therefore, the applied loads distributed in the forms of linearly varying or pa-
rabola of revolution might simulate more practical loading conditions. Nevertheless, corresponding to the
existing closed-form solutions of this subject for anisotropic half-spaces was limited to solving axisymmetric
problems. Gazetas (1982a,b) presented an analytical investigation on the effect of soil transversely isotropy
on surface displacement distributions subjected to axisymmetric parabolic vertical surface loading. To the
authors’ knowledge, no analytical solutions of displacements for a transversely isotropic half-space sub-
jected to three-dimensional buried parabolic rectangular loads have been presented. The closed-form
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solutions proposed in this paper can be obtained from directly integrated the point load solutions in a
Cartesian co-ordinate system (Wang and Liao, 1999), which were transformed by the same author’s so-
lutions in a cylindrical co-ordinate system (Liao and Wang, 1998). The presentation of these proposed
solutions is clear and concise. Also, they indicate that the displacements in transversely isotropic half-spaces
are affected by the buried depth, the dimensions of loaded region, the type and degree of material an-
isotropy, and the loading types. An illustrative example is given to investigate the effect of rock anisotropy,
and loading types on the vertical surface displacement in the isotropic/transversely isotropic rocks subjected
to a linearly varying, uniform, and parabolic rectangular load, respectively.

2. Point load solutions for a transversely isotropic half-space

In this paper, the solutions of displacements in transversely isotropic half-spaces subjected to three-di-
mensional buried linearly varying, uniform, and parabolic rectangular loads are directly integrated from the
point load solutions in a Cartesian co-ordinate system (Wang and Liao, 1999). The planes of transverse
isotropy are assumed to be parallel to its horizontal surface. The approaches for solving this boundary
value problem of displacements subjected to a static point load with components ðPr; Ph; PzÞ in a cylindrical
co-ordinate, which are expressed as the form of body forces, are shown in Fig. 1 (Liao and Wang, 1998).
Fig. 1 depicts that a half-space is composed of two infinite spaces, one acting a point load in its interior and
the other being free loading, and zero stress boundary conditions on the z ¼ 0 plane (rzz ¼ shz ¼ srz ¼ 0).
The field equations can be referred to the paper of Liao and Wang (1998), and the Hankel, Fourier
transforms with respect to r, h are employed for solving this problem, respectively. Hence, the solutions can
be derived from the governing equations for an infinite space (including the general solutions (I) and ho-
mogeneous solutions (II)) by satisfying the free traction on the surface of the half-space. The closed-form
solutions of displacements subjected to a point load ðPx; Py ; PzÞ acting at z ¼ h (from the surface) in the
interior of a transversely isotropic half-space can be expressed as follows (Wang and Liao, 1999):

upx ¼
Px
4p

k
m1

pd11

�
� k
m2

pd12 � T1pd1a þ T2pd1b þ T3pd1c � T4pd1d þ
1

u3A44

ðpd23 þ pd2eÞ
�

þ Py
4p

�
� k
m1

pd31 þ
k
m2

pd32 þ T1pd3a � T2pd3b � T3pd3c þ T4pd3d þ
1

u3A44

ðpd33 þ pd3eÞ
�

� Pz
4p

½kðpd41 � pd42Þ þ m1ðT1pd4a � T3pd4cÞ � m2ðT2pd4b � T4pd4dÞ� ð1Þ

Fig. 1. The approach for solving a point load problem (Liao and Wang, 1998).
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upy ¼
Px
4p

�
� k
m1

pd31 þ
k
m2

pd32 þ T1pd3a � T2pd3b � T3pd3c þ T4pd3d þ
1

u3A44

ðpd33 þ pd3eÞ
�

þ Py
4p

k
m1

pd21

�
� k
m2

pd22 � T1pd2a þ T2pd2b þ T3pd2c � T4pd2d þ
1

u3A44

ðpd13 þ pd1eÞ
�

� Pz
4p

½kðpd51 � pd52Þ þ m1ðT1pd5a � T3pd5cÞ � m2ðT2pd5b � T4pd5dÞ� ð2Þ

upz ¼
Px
4p

½�kðpd41 � pd42Þ þ m1ðT1pd4a � T2pd4bÞ � m2ðT3pd4c � T4pd4dÞ�

þ Py
4p

½�kðpd51 � pd52Þ þ m1ðT1pd5a � T2pd5bÞ � m2ðT3pd5c � T4pd5dÞ�

� Pz
4p

½m1ðkpd61 þ T1m1pd6a � T2m2pd6bÞ � m2ðkpd62 þ T3m1pd6c � T4m2pd6dÞ� ð3Þ

where:

• The generalized Hooke’s law for the transversely isotropic medium in a cylindrical co-ordinate system
can express the constitutive equations used in this paper as:

rrr ¼ A11err þ ðA11 � 2A66Þehh þ A13ezz ð4Þ

rhh ¼ ðA11 � 2A66Þerr þ A11ehh þ A13ezz ð5Þ

rzz ¼ A13ðerr þ ehhÞ þ A33ezz ð6Þ

srh ¼ A66crh ð7Þ

shz ¼ A44chz ð8Þ

srz ¼ A44crz ð9Þ
where Aij (i; j ¼ 1 � 6) are the elastic moduli or elasticity constants of the medium. For a transversely
isotropic material, only five independent elastic constants are needed to describe its deformational re-
sponse. In this paper, the five engineering elastic constants, E, E0, m, m0 and G0 are adopted and defined as:

1. E and E0 are Young’s moduli in the plane of transverse isotropy and in a direction normal to it,
respectively.

2. m and m0 are Poisson’s ratios characterizing the lateral strain response in the plane of transverse isot-
ropy to a stress acting parallel or normal to it, respectively.

3. G0 is the shear modulus in planes normal to the plane of transverse isotropy. Hence, Aij can be
expressed in terms of these elastic constants as:

A11 ¼
E 1� E

E0 m
02

� �
ð1þ mÞ 1� m � 2E

E0 m
02

� � ; A13 ¼
Em0

1� m � 2E
E0 m

02 ; A33 ¼
E0ð1� mÞ

1� m � 2E
E0 m

02 ; A44 ¼ G0;

A66 ¼
E

2ð1þ mÞ ð10Þ
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 mj ¼
ðA13 þ A44Þuj
A33u2j � A44

¼
A11 � A44u2j
ðA13 þ A44Þuj

ðj ¼ 1; 2Þ; k ¼ ðA13 þ A44Þ
A33A44 u21 � u22ð Þ ; T1 ¼

k
m1

u1 þ u2
u2 � u1

;

T2 ¼
k
m2

2u1ðu2 þ m2Þ
ðu2 � u1Þðu1 þ m1Þ

; T3 ¼
k
m1

2u2ðu1 þ m1Þ
ðu2 � u1Þðu2 þ m2Þ

; T4 ¼
k
m2

u1 þ u2
u2 � u1

;

pd1i ¼
1

Ri þ zi
� x2

RiðRi þ ziÞ2
; pd2i ¼

1

Ri þ zi
� y2

RiðRi þ ziÞ2
; pd3i ¼

xy

RiðRi þ ziÞ2
;

pd4i ¼
x

RiðRi þ ziÞ
; pd5i ¼

y
RiðRi þ ziÞ

; pd6i ¼
1

Ri
:


 Ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2i

q
ði ¼ 1; 2; 3; a; b; c; d; eÞ; z1 ¼ u1ðz� hÞ; z2 ¼ u2ðz� hÞ;

z3 ¼ u3ðz� hÞ; za ¼ u1ðzþ hÞ; zb ¼ u1zþ u2h; zc ¼ u1hþ u2z; zd ¼ u2ðzþ hÞ;
ze ¼ u3ðzþ hÞ:

• u3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A66=A44

p
, u1 and u2 are the roots of the following characteristic equation:

u4 � su2 þ q ¼ 0 ð11Þ

whereas

s ¼ A11A33 � A13ðA13 þ 2A44Þ
A33A44

; q ¼ A11

A33

:

The three categories of the characteristic roots, u1 and u2 are:

Case 1. u1;2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1=2½s�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2 � 4qÞ

p
�g

q
are two real distinct roots when s2 � 4q > 0;

Case 2. u1;2 ¼ �
ffiffiffiffiffiffiffi
s=2

p
;�

ffiffiffiffiffiffiffi
s=2

p
are double equal real roots when s2 � 4q ¼ 0;

Case 3. u1 ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþ 2

ffiffiffi
q

p Þ
p

� i 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�sþ 2

ffiffiffi
q

p Þ
p

¼ c � id, u2 ¼ c þ id are two complex conjugate roots (where
c cannot be equal to zero (Lekhnitskii, 1963; Tarn and Wang, 1987; Wang and Rajapakse, 1990))
when s2 � 4q < 0. In order to discuss the displacement is not going to be complex, we choice uPz in
Eq. (3) when subjected to a vertical point load (Pz) only, to support this point of view. Namely, Eq.
(3) is reduced to the following equation:

upz ¼ � Pz
4p

½m1ðkpd61 þ T1m1pd6a � T2m2pd6bÞ � m2ðkpd62 þ T3m1pd6c � T4m2pd6dÞ� ð12Þ

Since u1 and u2 are complex conjugate, it is convenient to assume pd61, pd62, pd6a, pd6b, pd6c, pd6d in Eq. (12)
as:

pd61 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ ½u1ðz� hÞ�2
q ¼ a� ib; pd62 ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ½u2ðz� hÞ�2

q ¼ aþ ib;

pd6a ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ ½u1ðzþ hÞ�2
q ¼ c� id; pd6d ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ½u2ðzþ hÞ�2

q ¼ cþ id;

pd6b ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ ðu1zþ u2hÞ2
q ¼ e� if ; pd6c ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðu2zþ u1hÞ2

q ¼ eþ if :

Therefore, Eq. (12) can be expressed by replacing u1 ¼ c � id, u2 ¼ c þ id, m1, m2, k , T1, T2, T3, T4, and pd61,
pd62, pd6a, pd6b, pd6c, pd6d as follows:
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upz ¼
Pz

8pA33A44cðc2 þ d2Þ
A11ðad

(
� bcÞ þ A44ðc2 þ d2Þðad þ bcÞ

� c
d
½A11ðcc þ ddÞ � A44ðc2 þ d2Þðcc � ddÞ�

þ ½A2
11 þ 2A11A13ðc2 � d2Þ þ A2

13ðc2 þ d2Þ2�
dðA13 þ A44Þ2

� e½A11

	
� A44ðc2 � d2Þ� þ A44f cd


)
ð13Þ

From Eq. (13), it is proved that even though the roots of the characteristic equation are complex, the
desired displacement is always real.

3. Linearly varying and parabolic rectangular loads solutions for a transversely isotropic half-space

3.1. Linearly varying rectangular loads

A three-dimensional upward linearly varying load, P linear
j (j ¼ x; y; z) (forces per unit area) distributed on

a rectangle with length L and widthW at the buried depth of h as shown in Fig. 2 is considered. The loading
type in Fig. 2 can be treated as the following form:

ePP linear
j ¼ P linear

j 1

�
þ a

jxj
L


þ jyj
W

� jxyj
LW

��
ð14Þ

where a is a constant. According to Eq. (14), a can be classified as three different loading cases:

Fig. 2. The case of upward linearly varying rectangular loads with LW area at the buried depth of h (a > 0).
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Case 1. a > 0, is the upward linearly varying load as depicted in Fig. 2;
Case 2. a ¼ 0, is the uniform load as seen in Fig. 3(a);
Case 3. a < 0, is the downward linearly varying load. Fig. 3(b) shows the zero contact stress at the edges of

Fig. 2 for the case of a ¼ �1.

To solve the displacements in the transversely isotropic half-spaces induced by this load, an elementary
force ePP linear

j dgd1 acting on an elementary surface dgdf is extracted from the rectangle. Replacing the
concentrated force Pj by ePP linear

j dfdg, y by (y � g), and x by (x� f) in Eqs. (1)–(3), the solutions of dis-
placements for the elementary force acting in the half-space are obtained. Then, the complete solutions can
be obtained by integrating the solutions induced by the elementary force with g from 0 to W, and f from 0
to L, respectively, as follows:

½U �linear ¼
Z L

0

Z W

0

½U �p dgd1 ð15Þ

where ½U � ¼ ½ux; uy ; uz�T (superscript T denotes that the transpose matrix) and the superscripts linear and p
express the displacement components that are induced by a linear varying rectangular load and a point
load, respectively. By mathematics operations (Gradshteynn and Ryzhik, 1994), the explicit solutions of the
displacements in a half-space can be regrouped as the forms of Eqs. (1)–(3). It means that the exact so-
lutions of this case are the same as Eqs. (1)–(3) except that the displacement elementary functions
pd1i; pd2i; . . . ; pd6i are replaced by the displacement integral functions M h1i

d1i � M h4i
d1i , M h1i

d2i � M h4i
d2i ; . . . ;

M h1i
d6i � M h4i

d6i (i ¼ 1; 2; 3; a; b; c; d; e) for ulinearx , ulineary , ulinearz (Fig. 2), respectively. For example, pd1i should be
replaced by M h1i

d1i � M h4i
d1i as:

½pd1i� ) M h1i
d1i þ a

jxj
L

�
þ jyj
W

� jxyj
LW

�
M h1i
d1i �

1

L
1


� jyj
W

�
M h2i
d1i �

1

W
1


� jxj
L

�
M h3i
d1i �

1

LW
M h4i
d1i

�
ð16Þ

Similarly, the solutions for different loading types given below also can be expressed as the forms of Eqs.
(1)–(3), except for the integral functions. Hence, only the displacement integral functions will be presented.

M h1i
d1i ¼ �ziðD1 � D2 þ D3Þ � xD4 þ x�D5 ð17Þ

M h2i
d1i ¼ � y

2
ðRi � Rx�iÞ þ

y�

2
ðRy�i � Rx�y�iÞ �

x2 þ z2i
� �

2
D4 þ

x�2 þ z2i
� �

2
D5 � zi yD6ð � y�D7Þ ð18Þ

Fig. 3. (a) The case of uniform rectangular loads with LW area at the buried depth of h (a ¼ 0), (b) the case of a completely downward

linearly varying rectangular loads with LW area at the buried depth of h (a ¼ �1).
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M h3i
d1i ¼ xðRi � Ry�iÞ � x�ðRx�i � Rx�y�iÞ þ zi xD8ð � x�D9Þ ð19Þ

M h4i
d1i ¼ 1

6
ðR3

i � R3
x�i � R3

y�i þ R3
x�y�iÞ þ

x2

2
ðRi � Ry�iÞ �

x�2

2
ðRx�i � Rx�y�iÞ �

y2

2
ðRi � Rx�iÞ

þ y�2

2
ðRy�i � Rx�y�iÞ þ

zi
2
x2D8

�
� x�2D9 � y2D6 þ y�2D7

�
ð20Þ

M h1i
d2i ¼ ziðD1 � D2Þ � yD10 þ y�D11 ð21Þ

M h2i
d2i ¼ yðRi � Rx�iÞ � y�ðRy�i � Rx�y�iÞ þ zi yD6ð � y�D7Þ ð22Þ

M h3i
d2i ¼ � x

2
ðRi � Ry�iÞ þ

x�

2
ðRx�i � Rx�y�iÞ �

ðy2 þ z2i Þ
2

D10 þ
ðy�2 þ z2i Þ

2
D11 � zi xD8ð � x�D9Þ ð23Þ

M h4i
d2i ¼ �

2x2 � 4y2 � z2i
� �

6
Ri þ

2x�2 � 4y2 � z2i
� �

6
Rx�i þ

2x2 � 4y�2 � z2i
� �

6
Ry�i

�
2x�2 � 4y�2 � z2i
� �

6
Rx�y�i �

zi
2
x2D8

�
� x�2D9 � y2D6 þ y�2D7

�
ð24Þ

M h1i
d3i ¼ �Ri þ Rx�i þ Ry�i � Rx�y�i � ziðD8 � D9Þ ð25Þ

M h2i
d3i ¼ � x

2
Ri
�

� Ry�i
�
þ x�

2
ðRx�i � Rx�y�iÞ �

y2 � z2i
� �

2
D10 þ

y�2 � z2i
� �

2
D11 þ ziðyD1 � y�D2Þ ð26Þ

M h3i
d3i ¼ exchanging with x; y in M h2i

d3i ð27Þ

M h4i
d3i ¼

LWzi
2

� 1

3
x yRi
��

� y�Ry�i
�
� x� yRx�i

�
� y�Rx�y�i

��
� 1

3
ðx3D4 � x�3D5 þ y3D10 � y�3D11Þ

þ zi
2

x2D12


� x�2D13 þ y2D1 � y�2D2 �

z3i
3
D3

�
ð28Þ

M h1i
d4i ¼ �xD12 þ x�D13 � yD6 þ y�D7 � ziðD4 � D5Þ ð29Þ

M h2i
d4i ¼

1

2
LW
�

� x2D12 þ x�2D13 þ y2D1 � y�2D2 þ z2i D3

�
þ zi yD10ð � y�D11Þ ð30Þ

M h3i
d4i ¼

zi
2
ðRi � Rx�i � Ry�i þ Rx�y�iÞ �

1

2
x2D8

�
� x�2D9 þ y2D6 � y�2D7

�
ð31Þ

M h4i
d4i ¼

LW ðy þ y�Þ
3

� 1

3
ðx3D8 � x�3D9 � y3D1 þ y�3D2Þ

þ zi
6
½xðRi � Ry�iÞ � x�ðRx�i � Rx�y�iÞ þ ð3y2 þ z2i ÞD10 � ð3y�2 þ z2i ÞD11� ð32Þ

M h1i
d5i ¼ exchanging with x; y in M h1i

d4i ð33Þ

M h2i
d5i ¼ exchanging with x; y in M h3i

d4i ð34Þ
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M h3i
d5i ¼ exchanging with x; y in M h2i

d4i ð35Þ

M h4i
d5i ¼

lwðxþ x�Þ
3

þ 1

3
x3D12

�
� x�3D13 � y3D6 þ y�3D7

�
þ zi

6
yðRi
�

� Rx�iÞ � y�ðRy�i � Rx�y�iÞ þ ð3x2 þ z2i ÞD4 � 3x�2
�

þ z2i
�
D5

�
ð36Þ

M h1i
d6i ¼ M h1i

d1i þM h1i
d2i ð37Þ

M h2i
d6i ¼ M h2i

d1i þM h2i
d2i ð38Þ

M h3i
d6i ¼ M h3i

d1i þM h3i
d2i ð39Þ

M h4i
d6i ¼ M h4i

d1i þM h4i
d2i ð40Þ

where x� ¼ x� L, y� ¼ y � W , Rx�i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�2 þ y2 þ z2i

p
, Ry�i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y�2 þ z2i

p
, Rx�y�i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�2 þ y�2 þ z2i

p
(i ¼ 1; 2; 3; a; b; c; d; e);

D1 ¼ tan�1 y
2 þ ziðRi þ ziÞ

xy
� tan�1 y

2 þ ziðRx�i þ ziÞ
x�y

;

D2 ¼ tan�1 y
�2 þ ziðRy�i þ ziÞ

xy�
� tan�1 y

�2 þ ziðRx�y�i þ ziÞ
x�y�

;

D3 ¼ tan�1 xy
ziRi

� tan�1 x�y
ziRx�i

� tan�1 xy�

ziRy�i
þ tan�1 x�y�

ziRx�y�i
;

D4 ¼ ln
Ry�i þ y�

Ri þ y

���� ����; D5 ¼ ln
Rx�y�i þ y�

Rx�i þ y

���� ����; D6 ¼ ln
Rx�i þ zi
Ri þ zi

���� ����; D7 ¼ ln
Rx�y�i þ zi
Ry�i þ zi

���� ����;
D8 ¼ ln

Ry�i þ zi
Ri þ zi

���� ����; D9 ¼ ln
Rx�y�i þ zi
Rx�i þ zi

���� ����; D10 ¼
Rx�i þ x�

Ri þ x

���� ����; D11 ¼ ln
Rx�y�i þ x�

Ry�i þ x

���� ����;
D12 ¼ tan�1 x

2 þ ziðRi þ ziÞ
xy

� tan�1 x
2 þ ziðRy�i þ ziÞ

xy�
;

D13 ¼ tan�1 x
�2 þ ziðRx�i þ ziÞ

x�y
� tan�1 x

�2 þ ziðRx�y�i þ ziÞ
x�y�

:

The Eqs. (1)–(3), (16), and (17)–(40) can be easily automated to calculate the displacements in transversely
isotropic half-spaces subjected to three-dimensional buried linearly varying rectangular loads.

3.2. Parabolic rectangular loads

For the case of subjected loads with non-linear distributions, we use a non-linear three-dimensional
buried load with concave parabolas on a rectangle (Fig. 4) to present the results. Fig. 4 depicts that the
concave parabolic load is applied over a rectangular region with sides L and W. The loading type in Fig. 4
can be expressed similarly as the form of Davis and Selvadurai (1996):

ePP par
j ¼ P par

j 1

�
þ b

x2

L2


þ y2

W 2
� x2y2

L2W 2

��
ð41Þ
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where b is a constant, and also can be presented as the following three cases:

Case 1. b > 0, is the concave parabolic load as shown in Fig. 4;
Case 2. b ¼ 0, is the uniform load; and this case is identical with the condition of a ¼ 0 (Fig. 3(a));
Case 3. b < 0, is the convex parabolic load. Fig. 5 depicts the zero contact stress at the edges of Fig. 4 for

the case of b ¼ �1.

The elementary force Pj acting on a small rectangle also can be expressed as ~PP par
j dfdg (j ¼ x; y; z) (forces

per unit area). Similarly, by the same approach as the case of a linear varying rectangular load, the so-
lutions of displacements for this case can be obtained by directly integrating as follows:

½U �par ¼
Z L

0

Z W

0

½U �p dgd1 ð42Þ

Fig. 4. The case of concave parabolic rectangular loads with LW area at the buried depth of h (b > 0).

Fig. 5. The case of completely convex parabolic rectangular loads with LW area at the buried depth of h (b ¼ �1).
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where the superscripts par and p express the displacement components that are induced by a parabolic load
and a point load, respectively. The explicit solutions of displacements in the half-space can also be
regrouped as the forms of Eqs. (1)–(3). Hence, the displacement elementary functions pd1i; pd2i; . . . ; pd6i in
Eqs. (1)–(3) are replaced by the displacement integral functions M h1i

d1i � M h9i
d1i , M

h1i
d2i � M h9i

d2i ; . . . ;M
h1i
d6i � M h9i

d6i
(i ¼ 1; 2; 3; a; b; c; d; e) for uparx , upary , uparz (Fig. 4), respectively. In this loading case, for instance, pd1i should
be replaced by M h1i

d1i � M h9i
d1i as:

½pd1i� ) M h1i
d1i þ b

x2

L2

�
þ y2

W 2
� D14

�
�M h1i

d1i �
2x
L2

� D15 �M h2i
d1i �

2y
W 2

� D14 �M h3i
d1i �

4xy
L2W 2

�M h4i
d1i

þ D15

L2
�M h5i

d1i þ
D14

W 2
�M h6i

d1i þ
1

L2W 2
2x �M h7i

d1i

�
þ 2y �M h8i

d1i �M h9i
d1i

��
ð43Þ

where D14 ¼ 1� ðx2=L2Þ, D15 ¼ 1� ðy2=W 2Þ; The displacement integral functions for M h1i
d1i � M h4i

d1i ,

M h1i
d2i � M h4i

d2i ; . . . ;M
h1i
d6i � M h4i

d6i were presented in Eqs. (17)–(40). Hence, only the integral functions for

M h5i
d1i � M h9i

d1i , M
h5i
d2i � M h9i

d2i ; . . . ;M
h5i
d6i � M h9i

d6i will be given as follows:

M h5i
d1i ¼ LWzi �

1

3
½xðyRi � y�Ry�iÞ � x�ðyRx�i � y�Rx�y�iÞ� þ zi y2D1


� y�2D2 þ

z2i
3
D3

�
� x3

3
D4

þ x�3

3
D5 �

y y2 � 3z2i
� �

3
D10 þ

y�ðy�2 � 3z2i Þ
3

D11 ð44Þ

M h6i
d1i ¼ �LWzi þ

1

2
½xðyRi � y�Ry�iÞ � x�ðyRx�i � y�Rx�y�iÞ� þ

x x2 � z2i
� �

2
D4 �

x� x�2 � z2i
� �

2
D5

� ziðx2D12 � x�2D13Þ ð45Þ

M h7i
d1i ¼�2LWziðxþ x�Þ

3
þ
y 9x2 � 6y2 þ z2i
� �

24
Ri�

y 9x�2 � 6y2 þ z2i
� �

24
Rx� i�

y� 9x2 � 6y�2 þ z2i
� �

24
Ry� i

þ
y� 9x�2 � 6y�2 þ z2i
� �

24
Rx�y�iþ

3x2 � z2i
� �2

24
D4 �

3x�2 � z2i
� �2

24
D5 �

2zi
3

x3D12


� x�3D13 þ

y3

2
D6 �

y�3

2
D7

�
ð46Þ

M h8i
d1i ¼

2LWziðy þ y�Þ
3

þ xð6x2 � 3y2 þ z2i Þ
12

Ri �
x�ð6x�2 � 3y2 þ z2i Þ

12
Rx�i �

xð6x2 � 3y�2 þ z2i Þ
12

Ry�i

þ x�ð6x�2 � 3y�2 þ z2i Þ
12

Rx�y�i �
ð3y4 � 6y2z2i � z4i Þ

12
D10 þ

ð3y�4 � 6y�2z2i � z4i Þ
12

D11

þ 2zi
3

y3D1


� y�3D2 þ

x3

2
D8 �

x�3

2
D9

�
ð47Þ

M h9i
d1i ¼ � LWziðx

2 þ xx� þ x�2 � y2 � yy� � y�2Þ
2

þ xyð9x2 � 6y2 þ z2i Þ
30

Ri �
x�yð9x�2 � 6y2 þ z2i Þ

30
Rx�i

� xy�ð9x2 � 6y�2 þ z2i Þ
30

Ry�i þ
x�y�ð9x�2 � 6y�2 þ z2i Þ

30
Rx�y�i þ

x3ð9x2 � 5z2i Þ
30

D4 �
x�3ð9x�2 � 5z2i Þ

30
D5

� y3ð3y2 � 5z2i Þ
15

D10 þ
y�3ð3y�2 � 5z2i Þ

15
D11 �

zi
2

x4D12


� x�4D13 � y4D1 þ y�4D2 þ

z4i
15
D3

�
ð48Þ
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M h5i
d2i ¼ �LWzi þ

1

2
½xðyRi � y�Ry�iÞ � x�ðyRx�i � y�Rx�y�iÞ� � ziðy2D1 � y�2D2Þ þ

yðy2 � z2i Þ
2

D10

� y�ðy�2 � z2i Þ
2

D11 ð49Þ

M h6i
d2i ¼ LWzi �

1

3
½xðyRi � y�Ry�iÞ � x�ðyRx�i � y�Rx�y�iÞ� þ zi x2D12


� x�2D13 þ

z2i
3
D3

�
� xðx2 � 3z2i Þ

3
D4 þ

x�ðx�2 � 3z2i Þ
3

D5 �
y3

3
D10 þ

y�3

3
D11 ð50Þ

M h7i
d2i ¼

2LWziðxþ x�Þ
3

�
y 3x2 � 6y2 � z2i
� �

12
Ri þ

y 3x�2 � 6y2 � z2i
� �

12
Rx�i þ

y� 3x2 � 6y�2 � z2i
� �

12
Ry�i

�
y� 3x�2 � 6y�2 � z2i
� �

12
Rx�y�i �

3x4 � 6x2z2i � z4i
� �

12
D4 þ

3x�4 � 6x�2z2i � z4i
� �

12
D5

þ 2zi
3

x3D12


� x�3D13 þ

y3

2
D6 �

y�3

2
D7

�
ð51Þ

M h8i
d2i ¼ � 2LWziðy þ y�Þ

3
� xð6x2 � 9y2 � z2i Þ

24
Ri þ

x�ð6x�2 � 9y2 � z2i Þ
24

Rx�i þ
xð6x2 � 9y�2 � z2i Þ

24
Ry�i

� x�ð6x�2 � 9y�2 � z2i Þ
24

Rx�y�i þ
ð3y2 � z2i Þ

2

24
D10 �

ð3y�2 � z2i Þ
2

24
D11

� 2zi
3

x3

2
D8


� x�3

2
D9 þ y3D1 � y�3D2

�
ð52Þ

M h9i
d2i ¼

LWziðx2 þ xx� þ x�2 � y2 � yy� � y�2Þ
2

� xyð6x2 � 9y2 � z2i Þ
30

Ri þ
x�yð6x�2 � 9y2 � z2i Þ

30
Rx�i

þ xy�ð6x2 � 9y�2 � z2i Þ
30

Ry�i �
x�y�ð6x�2 � 9y�2 � z2i Þ

30
Rx�y�i �

x3ð3x2 � 5z2i Þ
15

D4 þ
x�3ð3x�2 � 5z2i Þ

15
D5

þ y3ð9y2 � 5z2i Þ
30

D10 �
y�3ð9y�2 � 5z2i Þ

30
D11 þ

zi
2

x4D12


� x�4D13 � y4D1 þ y�4D2 �

z4i
15
D3

�
ð53Þ

M h5i
d3i ¼ �ðx2 � 2y2 þ z2i Þ

3
Ri þ

ðx�2 � 2y2 þ z2i Þ
3

Rx�i þ
ðx2 � 2y�2 þ z2i Þ

3
Ry�i �

ðx�2 � 2y�2 þ z2i Þ
3

Rx�y�i

þ ziðy2D6 � y�2D7Þ ð54Þ

M h6i
d3i ¼ exchanging with x; y in M h5i

d3i ð55Þ

M h7i
d3i ¼

LWziðy þ y�Þ
3

þ xð6x2 � 3y2 � z2i Þ
12

Ri �
x�ð6x�2 � 3y2 � z2i Þ

12
Rx�i �

xð6x2 � 3y�2 � z2i Þ
12

Ry�i

þ x�ð6x�2 � 3y�2 � z2i Þ
12

Rx�y�i �
ð3y4 þ z4i Þ

12
D10 þ

ð3y�4 þ z4i Þ
12

D11 þ
2zi
3

x3D8


� x�3D9 þ

y3

2
D1 �

y�3

2
D2

�
ð56Þ

M h8i
d3i ¼ exchanging with x; y in M h7i

d3i ð57Þ
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M h9i
d3i ¼

1

5
½ð2x4 � x2y2 þ 2y4ÞRi � ð2x�4 � x�2y2 þ 2y4ÞRx�i � ð2x4 � x2y�2 þ 2y�4ÞRy�i

þ ð2x�4 � x�2y�2 þ 2y�4ÞRx�y�i� þ
LWziðxþ x�Þðy þ y�Þ

4
þ zi

2
ðx4D8 � x�4D9 þ y4D6 � y�4D7Þ

� z2i
30

ðR3
i � R3

x�i � R3
y�i þ R3

x�y�iÞ þ
z4i
10

ðRi � Rx�i � Ry�i þ Rx�y�iÞ ð58Þ

M h5i
d4i ¼

LW ðxþ x�Þ
6

� 1

3
½x3D12 � x�3D13 � y3D6 þ y�3D7 � z3i ðD4 � D5Þ�

� 2zi
3
½yðRi � Rx�iÞ � y�ðRy�i � Rx�y�iÞ� ð59Þ

M h6i
d4i ¼ M h4i

d5i ð60Þ

M h7i
d4i ¼

LW ðx2 þ xx� þ x�2 þ y2 þ yy� þ y�2Þ
4

þ 1

4
ðx4D12 � x�4D13 þ y4D1 � y�4D2Þ

þ zi
12

½xðyRi � y�Ry�iÞ � x�ðyRx�i � y�Rx�y�iÞ� þ
zi
3

x3D4


� x�3D5 þ y3D10 � y�3D11 �

z3i
4
D3

�
ð61Þ

M h8i
d4i ¼

LW ðxþ x�Þðy þ y�Þ
8

� 1

4
ðx4D8 � x�4D9 � y4D6 þ y�4D7Þ þ

zi
12

½ðx2 � 5y2 � 2z2i ÞRi

� ðx�2 � 5y2 � 2z2i ÞRx�i � ðx2 � 5y�2 � 2z2i ÞRy�i þ ðx�2 � 5y�2 � 2z2i ÞRx�y�i� ð62Þ

M h9i
d4i ¼

LW ðxþ x�Þð2x2 þ 2x�2 þ y2 þ yy� þ y�2Þ
10

þ 1

5
ðx5D12 � x�5D13 þ y5D6 þ y�5D7Þ

þ zi
20

f½ðx2 � 6y2 � z2i ÞRi � ðx�2 � 6y2 � z2i ÞRx�i�y � ½ðx2 � 6y�2 � z2i ÞRy�i

� ðx�2 � 6y�2 � z2i ÞRx�y�i�y� þ ð5x4 � z4i ÞD4 � ð5x�4 � z4i ÞD5g ð63Þ

M h5i
d5i ¼ M h4i

d4i ð64Þ

M h6i
d5i ¼ exchanging with x; y in M h5i

d4i ð65Þ

M h7i
d5i ¼ exchanging with x; y in M h8i

d4i ð66Þ

M h8i
d5i ¼ M h7i

d4i ð67Þ

M h9i
d5i ¼ exchanging with x; y in M h9i

d4i ð68Þ

M h5i
d6i ¼ M h5i

d1i þM h5i
d2i ð69Þ

M h6i
d6i ¼ M h6i

d1i þM h6i
d2i ð70Þ

M h7i
d6i ¼ M h7i

d1i þM h7i
d2i ð71Þ

M h8i
d6i ¼ M h8i

d1i þM h8i
d2i ð72Þ
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M h9i
d6i ¼ M h9i

d1i þM h9i
d2i ð73Þ

The Eqs. (1)–(3), (17)–(40), (43), and (44)–(73) can be utilized to compute the displacements in a trans-
versely isotropic half-space subjected to three-dimensional buried parabolic rectangular loads. Also, the
displacements in the media due to non-uniform irregularly shaped loads can be estimated by superposition
of values corresponding to the rectangular sub-areas. A flow chart that illustrates the presented solutions
for computing the displacements induced by linearly varying, uniform, and parabolic rectangular loads in a
transversely isotropic half-space is presented in Fig. 6.

4. Illustrative example

A series of parametric study is conducted to verify the solutions derived and investigate the effect of the
type and degree of rock anisotropy, and the loading types on the displacements. An illustrative example as
depicted in Figs. 7 and 8 includes a vertical linear-varying, uniform, and parabolic load acting on a rect-
angle. The hypothetical constituted foundation materials include several types of isotropic and transversely
isotropic rocks. Their elastic properties are listed in Table 1 with E=E0 and G=G0 ranging between 1 and 3,
and m=m0 varying between 0.75 and 1.5. The values adopted in Table 1 of E and m are 50 GPa and 0.25,
respectively. The chosen domains of variation are based on the suggestions of Gerrard (1975) and Amadei
et al. (1987). The loads act on the horizontal surface (h ¼ 0) of isotropic/transversely isotropic rocks. The
degree of anisotropy including the ratios E=E0, m=m0, and G=G0 is accounted for investigating its effect on the
displacements.

Fig. 6. Flow chart for computing the displacements for a transversely isotropic half-space subjected to presented loading types.
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Based on Eqs. (1)–(3), (16), (17)–(40), and Eqs. (1)–(3), (17)–(40), (43), (44)–(73) for linearly varying, and
parabolic loading types, a FORTRAN program was written to calculate the displacements, respectively. In
this program, all the components of displacement at any point in the half-space can be computed. However,
the vertical settlement is usually the most interesting quantity in foundation analysis. Hence, in this study,

Fig. 7. Effect of the type and degree of rock anisotropy on vertical surface displacement induced by the case of (a) a ¼ �1, (b) b ¼ �1,

(c) a ¼ b ¼ 0, (d) a ¼ 1, (e) b ¼ 1.
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only the vertical surface displacement at the right corner (point C) of the loaded area was presented. Figs. 7
and 8 show the results for this example. The normalized vertical surface displacement (ulinearz =LP linear

z or
uparz =LP par

z ) at the corner induced by a completely downward linearly varying load (a ¼ �1), a completely
convex parabolic load (b ¼ �1), a uniform load (a ¼ b ¼ 0), an upward linearly varying load (a ¼ 1), and a
concave parabolic load (b ¼ 1) over a rectangular area vs. the non-dimensional ratio of the loaded side
(W =L) is given in Fig. 7(a)–(e), respectively. Knowing the loading types and magnitudes, the dimensions of
loaded area, and rock types, the vertical surface displacement at point C can be estimated from these
figures. The same displacement that induced by as already mentioned loads (a ¼ �1, b ¼ �1, a ¼ b ¼ 0,
a ¼ 1, b ¼ 1) for Rocks 1–7 (Table 1) is also given in Fig. 8 (a)–(g), respectively. According to the results
reported in Figs. 7 and 8, the effect of the type and degree of rock anisotropy, the loading types, and the
dimensions of loaded region on the displacement induced by surface loads is investigated below.

Fig. 7(a)–(e) indicate that the vertical surface displacement increases with the increase of E=E0 with
m=m0 ¼ G=G0 ¼ 1 (Rocks 1, 2, and 3), m=m0 with E=E0 ¼ G=G0 ¼ 1 (Rocks 1, 4, and 5), and G=G0 with
E=E0 ¼ m=m0 ¼ 1 (Rocks 1, 6 and 7) for a given shape. Especially, the increases of the ratio of E=E0 and G=G0

do have a great influence on the vertical displacement. It reflects the fact that the displacement increases
with the increase of deformability in the direction parallel to the applied load. However, the variation of
m=m0 in this displacement is little for all the cases. The results of this figure indicate that the displacement
induced by the presented loading types strongly depend on the type and degree of rock anisotropy. Fig. 8
(a)–(g) show the vertical surface displacement for Rocks 1–7 that induced by loading cases of a ¼ �1,
b ¼ �1, a ¼ b ¼ 0, a ¼ 1, b ¼ 1. The trend of these figures (Fig. 8(a)–(g)) for each rock is similar. However,
the calculated results for each loading case are quite different. The vertical surface displacement induced
by a uniform load (a ¼ b ¼ 0) is approximately 2.4 times of that induced by the average of a com-
pletely downward linearly varying load (a ¼ �1) and a completely convex parabolic load (b ¼ �1) for all
constituted rocks. Nevertheless, the induced displacement by the average of an upward linearly varying
load (a ¼ 1) and a concave parabolic load (b ¼ 1) is probably 1.6 times of that induced by a uniform

Fig. 7 (continued )
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load (a ¼ b ¼ 0). It means that the induced displacement also strongly depends on the loading types for
isotropic/transversely isotropic rocks. From Figs. 7 and 8, it also can be found that the vertical surface

Fig. 8. Effect of the loading types on vertical surface displacement for (a) Rock 1, (b) Rock 2, (c) Rock 3, (d) Rock 4, (e) Rock 5,

(f) Rock 6, (g) Rock 7.
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displacement increases with the increase of the ratio W =L for all rocks. It implicates that the displacement
calculated from plane strain solution is larger than that obtained from three-dimensional solution.

Fig. 8 (continued )
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Employing the example, the results show that the displacement in the isotropic/transversely isotropic
rocks subjected to various loading types on a rectangle are easy and correct to be calculated by the pre-
sented solutions. Also, the results indicate that the displacement are affected by the effect of rock aniso-
tropy, and different loading types. Hence, in engineering practice, it is not suitable to compute the
displacements by the traditional isotropic solutions, or assuming the load is always uniformly distributed
over a rectangular area in a transversely isotropic half-space.

5. Conclusions

The point load solutions of displacements in a Cartesian co-ordinate system for a transversely isotropic
half-space can be expressed in terms of several elementary functions. Integrating of these elementary
functions, the solutions of displacements subjected to three-dimensional buried linearly varying, uniform,
and parabolic rectangular loads can be derived. The planes of transverse isotropy in this paper are assumed
to be parallel to the horizontal surface of the half-space. The loading types include an upward linearly
varying load, a downward linearly varying load, a uniform load, a concave parabolic load, and a convex
parabolic load distributed over a rectangular region. The presented elastic solutions of displacements are
influenced by the buried depth (h), the dimensions of loaded area (L or W), the type and degree of material
anisotropy, and the loading types (a > 0, a ¼ b ¼ 0, a < 0, b > 0, b < 0) for a transversely isotropic half-
space.

The following conclusions can be drawn from the results of parametric studies: (1) The vertical surface
displacement increases with the increase of deformability in the direction parallel to the applied load; es-
pecially, the increases of the ratio of E=E0 and G=G0 do have a great influence on it; (2) the usage of plain
strain solution will overestimate the induced displacement than that calculated from three-dimensional
solution; (3) the induced displacement strongly depends on the type and degree of rock anisotropy, and
different loading cases.

Since the presentation of the derived solutions for displacements is clear and concise, the computation of
induced displacements by various loading types distributed over a rectangular region in transversely iso-
tropic half-spaces is fast and correct. These solutions can simulate more actually loading conditions as well
as provide reasonably results for practical purposes. Regarding the elastic solutions of stresses for the
identical loading cases acting on the transversely isotropic half-space can be derived by the same approach.
The results will be presented in the forthcoming papers.
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Table 1

Elastic properties and root types for different rocks

Rock type E=E0 m=m0 G=G0 Root type

Rock 1: isotropic 1.0 1.0 1.0 Equal

Rock 2: transversely isotropic 2.0 1.0 1.0 Complex

Rock 3: transversely isotropic 3.0 1.0 1.0 Complex

Rock 4: transversely isotropic 1.0 0.75 1.0 Complex

Rock 5: transversely isotropic 1.0 1.5 1.0 Distinct

Rock 6: transversely isotropic 1.0 1.0 2.0 Distinct

Rock 7: transversely isotropic 1.0 1.0 3.0 Distinct
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