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ABSTRACT

Given a set of homologous or functionally related
RNA sequences, the consensus motifs may repre-
sent the binding sites of RNA regulatory proteins.
Unlike DNA motifs, RNA motifs are more conserved
in structures than in sequences. Knowing the struc-
tural motifs can help us gain a deeper insight of
the regulation activities. There have been various
studies of RNA secondary structure prediction, but
most of them are not focused on ®nding motifs from
sets of functionally related sequences. Although
recent research shows some new approaches to
RNA motif ®nding, they are limited to ®nding rela-
tively simple structures, e.g. stem±loops. In this
paper, we propose a novel genetic programming
approach to RNA secondary structure prediction. It
is capable of ®nding more complex structures than
stem±loops. To demonstrate the performance of our
new approach as well as to keep the consistency of
our comparative study, we ®rst tested it on the
same data sets previously used to verify the current
prediction systems. To show the ¯exibility of our
new approach, we also tested it on a data set that
contains pseudoknot motifs which most current
systems cannot identify. A web-based user interface
of the prediction system is set up at http://bioinfo.
cis.nctu.edu.tw/service/gprm/.

INTRODUCTION

Transcriptional regulation is an important topic in bioinfor-
matics. Much effort has been made to develop useful
analysis tools to accelerate the progress in this research. An
equally important but much less studied topic is post-
transcriptional regulation. Similar to transcriptional regula-
tion, post-transcriptional regulation is often accomplished by
the binding of proteins to speci®c motifs in mRNA molecules
(1±3). Unlike DNA binding proteins, which recognize motifs
composed of conserved sequences, RNA protein binding sites
are more conserved in structures than in sequences. The motif
prediction algorithms that only consider conserved sequence
pro®les (4±8) may fail to identify RNA motifs. A set of post-
transcriptionally coregulated RNAs can be characterized by

base-pair interactions that organize the molecules into
domains and provide a framework for functional interactions.
If a new sequence is found to contain the common motifs, it
may have the same characteristics as those coregulated RNAs.
We are interested in ®nding the consensus motifs in a family
of coregulated RNA sequences.

There has been much work on RNA secondary structure
prediction. The current main approaches include free-energy
minimization (9±12) and comparative sequence analysis
(13±15). Although they show positive results of predicting
secondary structures of a single sequence, it is questionable to
use these methods to ®nd common motifs in a set of
sequences. Other approaches such as stochastic context-free
grammar, e.g. COVE (16), and genetic algorithms (GAs) (17)
have been applied to multiple sequences, but they are aimed at
®nding a global alignment instead of consensus motifs.

A dynamic programming approach called FOLDALIGN,
which takes into account both sequence similarity and
structure constraints, was ®rst developed to discover RNA
motifs in a set of sequences (18). However, its time
complexity is too high for practical use. Recently, a new
system called SLASH (19) has been developed. By combining
FOLDALIGN and COVE, the time complexity of SLASH is
acceptable for real applications, but it is currently limited to
®nding stem±loop motifs.

In this paper we introduce a new approach called genetic
programming for RNA motifs (GPRM), which is capable of
discovering structural motifs more complicated than stem±
loop structures. To prove GPRM is comparable to the latest
approaches, we tested it on the same data sets as used in the
experiments of SLASH. Furthermore, we tested GPRM on a
published pseudoknot data set to demonstrate its capability
that most current prediction methods lack.

MATERIALS AND METHODS

Motif prediction can be seen as a concept learning problem,
that is, learning a target concept (i.e. motifs) from a set of
training examples (i.e. biosequences) (20). According to its
objective and the training examples given, concept learning
can be regarded as supervised or unsupervised. From pre-
classi®ed training examples, supervised learning is to learn a
discriminative concept to distinguish between examples of
different classes. On the other hand, unsupervised learning is
to learn a characteristic concept to describe a set of unlabeled
training examples.
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We consider motif prediction a supervised learning
problem. Unlike most current approaches, we use both
positive and negative examples. Positive examples are a
family of coregulated RNA sequences; negative examples are
the same number of sequences randomly generated based on
the observed frequencies of a sequence alphabet in
positive examples. We learn the motifs that can be used to
distinguish the given coregulated sequences from the random
sequences.

As RNA motifs may vary in both sequences and structures,
we need an expressive representation to describe a wide
variety of motifs, and an effective strategy to search a large
problem space for the right motifs. Genetic programming
(GP) operates on a population of concept hypotheses.
Individuals in the population can be described by linear
structures, trees or graphs (21). Unlike conventional GAs,
GP does not require an encoding scheme to encode
putative solutions into bit strings before the evolutionary
process, or a decoding scheme to decode ®nally converged bit
strings back to an interpretable representation. By GP, the
hypotheses can converge to the comprehensible target
concept through evolution. Because of its generality and
effectiveness, we adapt GP to develop GPRM. Since RNA
secondary structures are typically formed by base-pairing
interactions, GPRM is focused on ®nding Watson±Crick
complementary base pairs. There are three components in
GPRM. The ®rst is a population of putative structural motifs.
The second is a ®tness function that measures the quality of
each motif. The third is the genetic operators that simulate the
natural evolution process. The details are described in the
following sections.

Representing individuals in a population

Each individual in a population is a putative motif. We use two
kinds of segments to describe structural motifs. A segment is
either a Watson±Crick complementary segment or a non-
pairing segment. A Watson±Crick complementary segment is
a helix, and it may also contain GU wobble pairs. A non-
pairing segment, on the other hand, is single-stranded. With
different combinations of segments, a wide variety of RNA
motifs can be easily represented. For example, in Figure 1A,
we show an interior loop in AUACUCCCAACUAGUUC-
CUUGUAAC, CGGCCGUCAAGGUAUACGACCACGG-
CGA and ACAAAAGGAAUUAAUUAAAGAAAUGAAA.
The common motif is composed of four complementary
segments and two non-pairing segments. It is described as
[2:5(4)]-{4:6}-[3:4(3)]-[3:4(2)]-{4:5}-[2:5(1)]. In this repre-
sentation, we use brackets to indicate a complementary
segment; braces, a non-pairing segment. The range of segment
length is kept inside the brackets and braces, e.g. {4:6} means
the length of the non-pairing segment is between 4 and 6 nt.
The number within parentheses in a complementary segment
is the index of its corresponding pairing segment, e.g. (4) in
complementary segment [2:5(4)] means that this segment is
paired with the fourth complementary segment in the motif.
Similarly, in Figure 1B, we show a hairpin motif in
AAGGGACUCCUCAGUCCCCA, GGAGGACCCCUC-
GUCCCA and CCGAGACCCCUUGUCUCCAAA.

To ®nd the motifs from a family of RNA sequences, the user
of GPRM is required to specify the maximum number of
segments and the range of segment length allowed in a motif.

According to the speci®cation, GPRM generates the initial
population of putative motifs. The number of segments and the
segment length in each motif are randomly assigned but
conform to the user's speci®cation. The pairing relation
between complementary segments is determined at random.
After the initial population is created, GPRM applies genetic
operators to the population to generate a better population of
motifs. This evolution process is repeated until no improve-
ment can be found.

Fitness function

In GP, the ®tness function is used to measure the quality of
individuals in a population. The higher the ®tness of an
individual, the better its chances of survival to the next
generation. We are interested in the motifs that can re¯ect the
characteristics conserved in a family of coregulated RNA
sequences, e.g. the RNA protein binding sites. We design a
®tness function that assigns higher values to those motifs
commonly shared by the given set of RNAs, and rarely
contained in random sequences.

Our ®tness function is derived from the F-score (22) used in
the ®eld of information retrieval with the aim to balance the
importance of two measures, recall (i.e. sensitivity) and
precision (i.e. positive predictive value). Given a positive
example set and a negative example set, we de®ne the ®tness
function as follows:

Figure 1. (A) A common internal loop motif of three sequences, AUA-
CUCCCAACUAGUUCCUUGUAAC, CGGCCGUCAAGGUAUACGA-
CCACGGCGA and ACAAAAGGAAUUAAUUAAAGAAAUGAAA. The
internal loop is composed of four complementary segments and two non-
pairing segments. (B) A common hairpin motif of three sequences, AAG-
GGACUCCUCAGUCCCCA, GGAGGACCCCUCGUCCCA and CCG-
AGACCCCUUGUCUCCAAA. The hairpin is composed of two
complementary segments and one non-pairing segment.
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Fitness�motifi� � 2 � Recall�motifi� � Precision�motifi�
Recall�motifi� � Precision�motifi�

Recall�motifi� � No: of positive examples containing motifi

No: of total positive examples

Precision�motifi� � No: of positive examples containing motifi

No: of examples containing motifi

The motif that will be chosen to participate in the genetic
operation, e.g. mutation, is dependent on ®tness. Motifs with
higher ®tness have better chances of being selected. We adapt
the tournament selection mechanism. It parallels the compe-
tition in nature among individuals for the right to take part in
evolution. Unlike ®tness-proportionate selection, tournament
selection does not need a centralized calculation of the average
®tness of the population, and it is somewhat faster than rank
selection (23,24). It ®rst randomly picks two individuals from
the population. Then the one with better ®tness gets selected
for the genetic operation.

Genetic operators

Reproduction models the self-replication process in nature.
Instead of selecting one motif at a time, and passing it to the
next generation, GPRM accelerates the reproduction process
by passing the better half of the population sorted by ®tness
from generation to generation.

Similar to the mutation operation in nature that causes
sporadic and random alterations in the genetic materials,
GPRM's mutation operator changes the segment con®guration
of a motif selected from the population. It ®rst randomly picks
a segment of the motif for alteration. If a complementary
segment is selected, its corresponding pairing segment and its
length range are then randomly changed. For example, a
segment of 5±7 nt in length previously paired with the third
complementary segment may be changed to a new segment of
4±6 nt in length now paired with the fourth complementary
segment. On the other hand, if a non-pairing segment is
chosen, only its length range is changed. Note that the segment
length can only be randomly altered within the range speci®ed
by the user.

Unlike mutation, the crossover operation is performed on
two individuals. Its purpose is to exchange the segment
con®guration between two tentative motifs to generate two
offspring. After two motifs are selected from the population,
either a pair of complementary segments or a non-pairing
segment is chosen at random for exchange.

Implementation

GPRM is an optimization procedure that iteratively applies
genetic operators to improve the ®tness of tentative solutions.
After the creation of the initial population, GPRM goes
through three basic steps in each optimization cycle. The three
steps are ®tness evaluation, individual selection and popula-
tion generation. The process is repeated until no improvement
of ®tness can be found, or it reaches the limit of generations.
The pseudocode of GPRM is shown in Figure 2. By masking
out the motifs already found in sequences, we can repeatedly

apply GPRM to ®nd multiple motifs if they exist in a set of
RNA sequences.

The ®rst step of GPRM is to ®nd all possible pairs of
complementary segments in the training examples, and put
them in POOL. Suppose the lower and the upper bound of
complementary segment length are l and u, and let f = u ± l + 1.
The time complexity of ®nding all possible pairs of comple-
mentary segments is O(f´L2´N) = O(L3´N) if f » L, where L is the
maximum sequence length and N is the number of total
sequences. GPRM computes the ®tness of each putative motif
in the population by iteratively comparing each complemen-
tary segment of the motif with the entire POOL. Let the
maximum number of complementary segments in a motif be
m, which is speci®ed by the user. The time complexity of
®tness computation is O(m2´L3´N´P) where P is the constant
population size. Compared with the ®tness evaluation, the time
complexity of crossover and mutation operations is negligible.
The total time complexity of GPRM is thus O(L3´N) +
O(m2´L3´N´P´G) = O(m2´L3´N), where P is the constant
population size, and G is the constant generation limit. In the
current version of GPRM, P and G are set to be 1000 and 50,
respectively. Note that m is the maximum number of
complementary segments speci®ed by the user. Given a family
of coregulated RNAs, we are interested in the common motifs
for the RNA regulatory protein binding sites instead of a global
alignment. Therefore, the number of complementary segments
in a motif is relatively small. If m << L and m << N, the total
time complexity can be reduced to O(L3´N).

RESULTS

There are two purposes of our experiments. The ®rst is to
demonstrate that GPRM is competitive with current RNA
motif prediction systems. The second is to show that GPRM
can identify complicated motifs that most current systems
cannot ®nd.

It is important to use the same data sets in experiments to
keep the consistency of a comparative study. As SLASH (19)
is the latest RNA motif prediction system, we ®rst tested

Figure 2. Pseudocode of GPRM.
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GPRM on the same data sets as used in SLASH's experiments
to show GPRM's competitive performance. Moreover, we
used a published pseudoknot data set to demonstrate GPRM's
¯exibility that is lacking in most current systems, including
SLASH. These data sets are described in the following
sections.

Data sets

The ®rst data set is one of the data sets used to test SLASH. It
contains 34 archaea 16S ribosomal sequences (19). This data
set was originally derived from a set of 311 sequences extracted
from the SSU rRNA database (http://www-rna.uia.ac.be/ssu/)
(25). The archaea set of 311 sequences was further reduced to
34, ®ltering out the sequences that miss base assignments or are
>90% identical. The ®nal 34 sequences are the following,
where the number in parentheses is its GenBank accession
number: Acidianus brierleyi (D26489), Caldococcus nobo-
ribetus (D85038), Cenarchaeum symbiosum (U51469),
Desulfurococcus mobilis (M36474), Metallosphaera sp.
(D85508_D38776), Pyrobaculum aerophilum (L07510),
Pyrodictium occultum (M21087), Stygiolobus azoricus 2
(D85520), Sulfolobus metallicus 2 (D85519), Sulfolobus
solfataricus 2 (D26490), Sulfurisphaera ohwakuensis (D85507_
D38775), Thermo®lum pendens (X14835), Thermoproteus
tenax (M35966), Archaeoglobus fulgidus (X05567_Y00275),
Bacterial sp. 34 (X92171), Bacterial sp. 36 (X92172),
Haloarcula vallismortis (U17593), Halobacteriaceae gen.
sp. 2 (AJ002946), Halorubrum sodomense (D13379), Natrono-
bacterium magadii (X72495), Methanobacterium sp.
(AF028690), Methanobacterium thermoautotrophicum 5
(AE000940_AE000666), Methanothermus fervidus (M32222),
Methanococcus jannaschii 3 (U67517_L77117), Methano-
coccus vannielii (M36507), Methanoculleus marisnigri
(AF028693), Methanosarcina frisius (X69874), Methano-
spirillum hungatei (M60880), Methanothrix soehngenii
(X16932_X51423), Pyrococcus sp. 2 (Z70247), Thermo-
coccus mexicalis (Z75218), Thermococcus stetteri (Z75240),
Ferromonas metallovorans (AJ224936) and Thermoplasma
acidophilium (M38637_M20822). To ensure that the
sequences can only be aligned locally, Gorodkin et al. (19)
further randomly truncated each sequence at both ends by up to
20 nt.

The second data set is another data set used in the
experiments of SLASH. It is the ferritin IRE-like data set
(iron response element) constructed by Gorodkin et al. (19).
They ®rst obtained 14 sequences from the UTR database (26).
Since the selected IRE regions are signi®cantly conserved not
only in structure but also in sequence, even sequence motif
®nding algorithms can identify them within the UTRs.
Therefore, they modi®ed the IREs and their UTRs to make
the search more dif®cult. By iteratively shuf¯ing the sequences
and randomly adding 1 nt to the IRE conserved region, they
obtained a set of 56 IRE-like sequences from the 14 IRE UTRs.
The new structure motifs are as shown in schemes 1 and 2
below.

where the parentheses indicate base pairing, N Î {A, G, C, T},
W Î {A, U}, H Î {A, C, U}, and X is a random nucleotide.
They are highly variable in sequence, but with conserved
structure.

The third data set includes 18 viral 3¢-UTRs each of which
contains a pseudoknot. Seven of the RNA sequences are the
soil-borne rye mosaic viruses; the others are the soil-borne
wheat mosaic viruses. We ®rst retrieved the pseudoknot
sequences from PseudoBase (27) (http://wwwbio.leidenuniv.
nl/~Batenburg/PKB.html). Their accession numbers in
PseudoBase are listed as PKB183±PKB189 and PKB194±
PKB204. The pseudoknot sequences and base pairings are
presented below.

As the pseudoknots are relatively short, to make the search
for the pseudoknots more challenging, we randomly include
the ¯anking of 5±70 nt at both ends of each pseudoknot
sequence. All the data sets above are downloadable from
http://bioinfo.cis.nctu.edu.tw/service/gprm/.
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Evaluation

We applied the Matthews correlation coef®cient (28) to
quantify the agreement between the predicted motif and the
actual structure assignment. For each sequence in the data set,
two secondary structure assignments were compared by
counting the number of true positives Pt (base pairs exist in
actual assignment and are predicted), true negatives Nt (base
pairs do not exist in actual assignment and are not predicted),
false positives Pf (base pairs do not exist in actual assignment
but are predicted) and false negatives Nf (base pairs exist in
actual assignment but are not predicted), respectively. The
Matthews correlation coef®cient can then be computed as:

C � PtNt ÿ PfNf���������������������������������������������������������������������������Nt � Nf��Nt � Pf��Pt � Nf��Pt � Pf�
p

Given that the sequence length is suf®ciently large, the
Matthews correlation coef®cient can be approximated in the
following way (19):

C �
���������������������������������

Pt

Pt � Nf

� Pt

Pt � Pf

r

With the published/curated alignments, we can evaluate the
performance of our approach by calculating the Matthews
correlation coef®cient. Due to its stochastic characteristics,
GPRM was repeatedly tested 30 times on each of the data sets.
The correlation coef®cients averaged over 30 runs are
presented in Table 1, and Table 2 is the GP tableau for the
RNA secondary structure prediction problem. Owing to
limited space, a partial result of the predicted RNA motifs is
shown in Figure 3, and a complete GPRM sample output can
be found at http://bioinfo.cis.nctu.edu.tw/service/gprm/.

The crossover rate and the mutation rate can affect GPRM's
performance. As the two operators may interact with each
other, in order not to complicate the experiments, we ®xed one
rate at 0.5 and varied the other from 0.5 to 0.9 to measure its
effect on the Matthews correlation coef®cient. Figure 4 shows
the change of correlation coef®cients along with varying
crossover rates, and Figure 5 presents the results when
applying different mutation rates. According to Figure 4, the
correlation coef®cient for the viral 3¢-UTR data set is more
sensitive to the change of crossover rate. Its SD is 0.007.
Compared with the viral 3¢-UTRs, GPRM is more stable when
applied to the other two data sets. The SDs of their correlation
coef®cients are 0.001 and 0.003, respectively. Similarly,
Figure 5 shows that the performance of GPRM on the viral
3¢-UTRs varied with different mutation rates more noticeably
than on the other two data sets, 0.008 compared with 0.0009
and 0.003.

Currently, GPRM uses a random negative set of the same
size as the positive set. To investigate the effect of the negative
set size on the correlation coef®cient, we repeated our
experiments with negative sets of different sizes, varying
from 1 to 10 times of the positive set size. The correlation
coef®cients are presented in Figure 6. It shows that the
performance for the viral 3¢-UTRs data set was affected the

most. In addition, we examined the effects of varying
complementary segment length ranges on convergence. We
®xed the minimum length to 8 bp, and varied the maximum
length from 15 to 20 bp for the 16S rRNAs data set. We
recorded the ®tness values at different generations to see how
the segment lengths affect GPRM's convergence behavior.
The result is shown in Figure 7A. Similarly, for the IRE-like
and the viral 3¢-UTR data sets, we ®xed the minimum length
to 3 bp, and varied the maximum from 10 to 20 bp. The
results are presented in Figure 7B and C, respectively.
Figure 7 indicates no signi®cant effects of varying segment
lengths. For each test data set, GPRM's ®tness values
converged before 50 generations. Similar experiments were
also performed on varying non-pairing segment length
ranges. The results also showed no signi®cant differences
(data not shown).

DISCUSSION

We developed a GP approach to ®nding common structural
motifs in a set of coregulated RNA sequences. Those methods
designed to identify only consensus sequences are not reliable
to ®nd RNA motifs. With ¯exible GP operators and structural
motif representations, our new method, GPRM, is able to
identify general RNA secondary motifs.

To show GPRM is comparable to the latest RNA motif
prediction systems, we tested it on the same data sets
previously used in order to maintain consistency. We ®rst
tested GPRM on a set of archaeal rRNA sequences that
contain locally aligned stem±loop regions. By comparing
them with the curated database alignment, we were able to

Table 2. Tableau for RNA secondary structure prediction problem

Objective Given a family of functionally related RNA
sequences, predict the common structure motifs

Terminal set User-speci®ed pairing and non-pairing segment
length ranges, and pairing segment indices

Functional set Watson±Crick complementarity and structure
element connections

Fitness measure F-score based on precision and recall
Selection method Tournament selection
Parameters Population size = 1000, maximum number of

generations = 50, crossover rate = 50%, mutation
rate = 90%, reproduction rate = 50%

Table 1. The experimental results of GPRM on three data sets

Data set Archaea rRNA IRE-like Viral 3¢-UTR

Total sequences 34 56 18
Minimum sequence length 90 117 37
Maximum sequence length 108 330 137
Average sequence length 97.59 202.93 63.89
Sequence length SD 3.77 59.31 25.95
Average coef®cient 0.87 0.99 0.76
Coef®cient SD 0.02 0.02 0.05

The ®rst row shows the total number of sequences in each data set. Rows
2±4 present the minimum, the maximum and the average sequence length,
respectively. The ®fth row gives the SD of sequence length. Rows 6 and 7
provide the correlation coef®cient averaged over 30 runs, and its SD. In
each run, we used a random negative set of the same size as the positive
set.
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evaluate our new approach quantitatively by the Matthews
correlation coef®cient. We obtained a 0.87 correlation
coef®cient between the predicted structural alignment and
the curated database alignment. This is similar to the
published experimental results (19). We also tested GPRM
on the ferritin IRE-like data set created by Gorodkin et al.

(19), and obtained a 0.99 correlation coef®cient. GPRM was
further tested on a a set of viral 3¢-UTR pseudoknot regions
extracted from PseudoBase (25). We used this data set to
demonstrate its capability that current RNA motif
®nding algorithms lack. We obtained promising correlation
coef®cients from 0.75 to 0.83 as shown in Figure 6.

Figure 4. The correlation coef®cients for different crossover rates. We ®xed
the mutation rate at 0.5, and varied the crossover rate from 0.5 to 0.9. For
all experiments, the size of the negative data set was set the same as the
positive data set size.

Figure 5. The correlation coef®cients for different mutation rates. We ®xed
the crossover rate at 0.5, and varied the mutation rate from 0.5 to 0.9. For
all experiments, the size of the negative data set was set the same as the
positive data set size.

Figure 3. A partial result of the predicted RNA motifs. The numbers above the sequences are the indices of the nucleotides. The predicted and the published
motifs are both shown for reference. A complete sample result can be found at http://bioinfo.cis.nctu.edu.tw/service/gprm/.
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GPRM can be further improved in two directions. First, the
current ®tness function of GPRM is only based on motif
occurrences in training examples. We plan to enhance the
®tness function by incorporating background knowledge such
as thermodynamic (9,10) or phylogenetic (29) information.
Secondly, GPRM is currently limited to ®nd base-pairing
structures. We will extend the motif representation and the
genetic operators to deal with more complex structures,
e.g. multiple compound stem±loops or structures with multi-
branch loops.
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