
Supporting unified interface to wrapper generator in Integrated

Information Retrieval

Yue-Shan Chang a, Min-Huang Hob,*, Wen-Chen Sunc, Shyan-Ming Yuanb

aDepartment of Electronic Engineering, Minghsin Institute of Technology, Taiwan
bDepartment of Computer and Information Science, National Chiao Tung University, 1001 Ta Hsueh Road, Hsin-Chu 300, Taiwan

cEmbedded System Lab, Institute for Information Industry, Taiwan

Received 6 October 2001; received in revised form 5 December 2001; accepted 9 February 2002

Abstract

Given the ever-increasing scale and diversity of information and applications on the Internet, improving the technology of

information retrieval is an urgent research objective. Retrieved information is either semi-structured or unstructured in format

and its sources are extremely heterogeneous. In consequence, the task of efficiently gathering and extracting information from

documents can be both difficult and tedious. Given this variety of sources and formats, many choose to use mediator/wrapper

architecture (Y. Papakonstantinou, A. Gupta, H. Garcia-Molina, J. Ullman, A Query Translation Scheme for Rapid Implemen-

tation of Wrappers, International Conference on Deductive and Object-Oriented Databases, Singapore, 1995), but its use

demands a fast means of generating efficient wrappers. In this paper, we present a design for an automatic eXtensible Markup

Language (XML)-based framework with which to generate wrappers rapidly. Wrappers created with this framework support a

unified interface for a meta-search information retrieval system based on the Internet Search Service using the Common Object

Request Broker Architecture (CORBA) standard. Greatly advantaged by the compatibility of CORBA and XML, a user can

quickly and easily develop information-gathering applications, such as a meta-search engine or any other information source

retrieval method. The two main things our design provides are a method of wrapper generation that is fast, simple, and efficient,

and a wrapper generator that is CORBA and XML-compliant and that supports a unified interface. D 2002 Elsevier Science

B.V. All rights reserved.

Keywords: XML; Information retrieval; Wrapper generation; CORBA

1. Introduction

1.1. Background and motivation

The scale and diversity of documents and informa-

tion on the Internet nowadays is immense. Generally,

search engines are the means of retrieving desired

information, but no single search engine is up to the

scale of the task [12,13]. For this reason, for extensive

searches, a meta-search engine is the method usually

preferred [1,2]. However, the format of most retrieved

documents from the Internet is either semi-structured

or unstructured. Given their great number and variety,

a mechanism that can perform the tasks of gathering

and classifying such heterogeneously sourced docu-

ments automatically is urgently needed.

To efficiently handle documents in such quantity

and variety, many use mediator/wrapper architecture

0920-5489/02/$ - see front matter D 2002 Elsevier Science B.V. All rights reserved.

PII: S0920 -5489 (02)00016 -8

* Corresponding author. Tel.: +886-6-572-2201; fax: +886-3-

559-1402.

E-mail address: minhuang@ms4.hinet.net (M.-H. Ho).

www.elsevier.com/locate/csi

Computer Standards & Interfaces 24 (2002) 291–309

with a meta-search system [20]. In this architecture, the

mediator plays a role of mediating single common or

standard format queries submitted from the user to spe-

cific wrappers for specific information sources. These

wrappers have the task of wrapping queries into appro-

priate formats for those sources and of translating the

results from them into specific structures for the user.

That is, a mediator accepts a user query and dispatches

it to a specific wrapper for a specific information

source. The wrapper then translates the query into an

appropriate query string or command for the specified

Internet or Intranet information source. Upon receiving

the result from the source, the wrapper extracts the

desired information and returns it to the mediator. Each

information source connected to the information re-

trieval system has its own wrapper. The source codes of

the wrapper are tightly coupled with the format or

structure of the source. That is, if the format of the

information source is changed, then the source codes of

the wrapper must also be changed. Many information

sources constantly change content and format and new

information sources are continually added. To over-

come these problems, the information retriever requires

an automatic framework for wrapper generation.

Many recent attempts to solve information retrieval

problems with mediator/wrapper architecture have

been made [1–9,11]. Most of them have focused on

analyzing and translating heterogeneously sourced

documents retrieved by wrappers. Many have also

proposed automatic or semi-automatic frameworks to

generate distinct wrappers for handling this [3–9,11].

The effort has mainly gone into designing wrappers to

translate the returns into a specific representation for

queries from the mediator. In fact, for the retrieval

application developer faced with multiple information

sources, it is important for the available retrieval

applications to have a uniform programming interface.

It is for that fact that we propose our Integrated

Information Retrieval methodology with a unified

interface, as shown in Ref. [18]. The flexible archi-

tecture here has a unified programming interface and

an information retrieval application for querying a

variety of sources. We use an Integrated Information

Retrieval (IIR) service based on Common Object

Service Specification (COSS) of Common Object

Request Broker Architecture (CORBA). The meta-

data of the sources is defined by Document Type

Definition (DTD) of eXtensible Markup Language

(XML). With this system, an information retrieval

developer can easily design applications or agents to

collect desired information via a high-level uniform

programming interface.

The proposed architecture is ideal for the informa-

tion retrieval task. However, because of the multiple

sources, a supportive framework is necessary. In

addition, the framework must ensure that information

retrieval application developers can generate wrappers

that are simple and fast and that are both XML and

CORBA-compliant. Being XML-compliant enables

data exchange between different information sources,

and being CORBA-compliant enables communication

between heterogeneous systems. With practice, em-

ploying this framework in an SQL-like high-level

query scheme, the user or the client program (e.g.,

an information retrieval application) can perform the

extraction from a variety of sources.

1.2. Related works

As mentioned earlier, a wrapper is tightly associated

with an information source. An information retrieval

application has to prepare many different wrappers for

each information source. In addition, the content and

structure of the documents of information sources

change constantly. The information retriever needs a

fast and simple methodology for generating wrappers.

Among the available wrapper-generating methods are

TSIMMIS [7,8,20], XWRAP [4], W4F [11], JEDI [9],

as well as those in Refs. [3,5,6,15,16]. The first,

TSIMMIS, is a logical template-based approach for

wrappers for specified information sources. The au-

thors of that method provided a fast acting toolkit for

generating wrappers from a set of high-level descrip-

tions for information extraction. That is, the wrapper

implementer must specify a set of rules written in a

distinct high-level declarative language.

The next, XWRAP, is an XML-enabled wrapper

construction framework. It provides a user-friendly

interface environment for generating appropriate wrap-

pers in a semi-automatic way. It allows users to enter a

URL, upon which the system automatically analyzes

and generates rules for retrieving remote documents.

These are then checked for syntax and requisite parse

trees for semi-structured documents are generated.

With the implementer’s help, the system creates infor-

mation extraction rules. Finally, the rules and the

Y.-S. Chang et al. / Computer Standards & Interfaces 24 (2002) 291–309292

source-specific meta-data provided by the wrapper

developer are used to generate an executable wrapper

program for the given information source. The files

provided by the wrapper implementer are all described

using the XML template-based extraction specification

language of XWRAP. The main use of XWRAP is for

web documents (especially in HTML format).

The W4F method is a complete wrapper toolkit.

First, it uses a set of retrieval rules to define the

interface between the wrapper and the information

source in the Retrieval Layer. Second, it uses an HTML

Extraction Language (HEL) to express the desired data

field in the Extraction Layer. Any retrieved information

is stored in Nested String Lists (NSL) format. Finally,

an XML template file in Mapping Layer uses querying

operators to map the information to XML.

JEDI is a meta-data system for mediator/wrapper

architecture. It supports an attributed-grammar-based

extraction language to express the desired data fields of

a document. It also provides a fault-tolerant parser to

extract data from an information source by a specified

grammar. Any wrapper it creates extracts data from the

information source and maps it to an XML file.

1.3. Our approach

Most of the above-mentioned wrapper develop-

ment methods have difficulty with designing query

and extraction rules because a good knowledge of

web documents and of the syntax of rules is required.

Wrapper implementers find designing rules such dif-

ficult and tedious. In many systems on the Internet,

the returned information is designed for user, not for a

program. In addition, a wrapper is an important

software component between the information retrieval

system and the information source. A well-defined

wrapper with a uniform communication interface

improves the performance of a heterogeneous infor-

mation retrieval system. However, writing this kind of

wrapper increases the workload of the wrapper pro-

grammer. Our solution to that problem is an automatic

generating framework for an XML-based wrapper

with a CORBA-based unified interface. With this

framework, the XML data model is used to express

the meta-data of information sources, and the output

file of the results is also in XML format. CORBA is

an open system model that supports communication

between the software components within distributed

environments and is used to define the uniform inter-

face for the meta-search system proposed in Refs.

[1,18]. With this framework, an information retrieval

application can use the CORBA standard to commu-

nicate with a variety of wrappers and acquire the

results based on a standardized object model. In

addition, because XML is now a popular standard

for representing and exchanging data, the wrapper

programmer has no need to learn a new extraction

language to generate wrappers.

The rest of the paper is organized as follows. Sec-

tion 2 presents a brief overview of the unified inter-

face meta-search system. Section 3 introduces the

architecture of the framework. In Section 4, we

explain how the system operates. An example of a

generated wrapper is demonstrated in Section 5,

followed by discussion in Section 6 and conclusions

in Section 7.

2. Overview of wrapper

2.1. Wrapper architecture

A wrapper is a software component that embraces

an information source. Its main objective is to be the

interface between the client program and information

source. Because of the heterogeneous information

sources, it is best to support a wrapper with a uniform

interface. A typical uniform interface wrapper has

three tasks. First, it receives user requests from a

mediator and then translates them into a query string

format (typically into URL form for web information

sources) or into a query command (typical in the

RDBMS system) acceptable to the information

source. Second, it retrieves Internet or the Intranet

documents from which it extracts desired information

according to extraction rules provided by the user.

Last, it stores the desired information in a specific

form and provides an interface to allow a user or client

to retrieve data in a high-level and structured way.

The typical architecture of a wrapper supporting

for Ref. [18] is shown in Fig. 1. It has seven com-

ponents: (1) Query String Translator, (2) Parameter

Encapsulator, (3) Document Parser, (4) Information

Extractor, (5) Result Packer, (6) Network Transmis-

sion Interface, and (7) Server Skeleton Interface. Each

component is a stand-alone Java class, and can be

Y.-S. Chang et al. / Computer Standards & Interfaces 24 (2002) 291–309 293

developed and replaced independently. All the data

passing through these components are created as

XML DOM objects. Consequently, the wrapper uses

standard DOM API to develop the application.

Because XML is a structured and meaningful data

format, each component easily understands the con-

tent of the received data and treats it appropriately in

an explicit and precise way. Our automatic framework

for wrapper generation uses the advantages of XML.

We now discuss the architecture of the XML-based

wrapper shown in Fig. 1 in more detail. On the right

of the figure is Network Transmission Interface,

which is the gateway between the wrapper and the

information source. Its task is to provide an interface

such that the wrapper can send the appropriate query

string to the individual information source and then

retrieve the results through the interface. On the left is

Server Skeleton Interface, which is the interface

mapped to the stub of the client program based on

CORBA standard. It follows that the interface defined

by IDL is such that the wrapper receives through the

Server Skeleton the SQL-like request (e.g., SELECT

URL FORM ALTAVISTA WHERE KEYWORD=wrap-

per) from the Client Stub of the client application. The

Query String Translator has the task of parsing the

user request, extracting such parameters as URL,

ALTAVISTA, KEYWORD=wrapper and packing them

into a DOM object. It then passes the object to

Parameter Encapsulator, the main task of which is

to encapsulate the parameters into an appropriate

query string and send that to a specified search engine

or information source. For example, the base query

string for AltaVista (http://www.altavista.com) is in

the form of http://www.altavista.com/cgi/query?

q=DT. . ., and all the parameters (e.g., KEYWORD=

wrapper) are appended to that string in the appropriate

way. The query string with parameters is sent by

Network Transmission Interface to the specified

search engine (e.g., AltaVista). Next, Network Trans-

mission Interface retrieves the results and passes the

data to Document Parser.

Document Parser then parses the content into an

XML parse tree. Information Extractor extracts the

desired fields according to user-defined extraction

rules. Obviously, four major fields (URL, TITLE,

DESCRIPTION, and RELATED PAGE) are given in

the returned AltaVista document, and Information

Extractor consequently extracts from it any URL that

contains the keyword ‘wrapper’. Finally, Results

Packer packs into standard format all the information

needed by the user into the Client Stub that is gen-

erated by CORBA IDL compiler.

Fig. 1. Basic architecture of XML-based wrapper.

Y.-S. Chang et al. / Computer Standards & Interfaces 24 (2002) 291–309294

2.2. Wrapper’s interface

To support the uniform interface of the integrat-

ing information retrieval environment proposed in

Ref. [18], the generated wrappers have to be re-

conciled with Integrated Information Retrieval (IIR)

interfaces. There are five IIR interfaces: Infor-

mationRetriever, Wrapper, MetaData, Collector,

and Iterator. The first of these is explained as

follows:

The interface of InformationRetriever has two

methods, Get_meta() and prepare(). The purpose of

Get_meta() is to obtain a object reference ofMetaData

object. The purpose of prepare() is to prepare a query

request with appropriate parameters for a specified

information source and then to obtain an object refer-

ence of Wrapper object to start the query process. The

Wrapper interface is explained as follows:

The interface of Wrapper allows a mediator to start

the retrieval process by invoking the Query() method

of the Wrapper interface. InformationRetriever then

dispatches an appropriate wrapper to handle a speci-

fied information source according to the information

obtained from Get_meta(). The interface of MetaData

is explained as follows:

The interface of MetaData provides data retrieval

robustness while retrieving any information source.

By the appropriate assignment of each field of Meta-

Data, the client can obtain the format of a query

request and the schema of the result. For the detail of

MetaData, refer to Ref. [18].

The last two interfaces, Collector and Iterator, are

responsible for collecting information from sources.

They are explained on the opposite page:

Y.-S. Chang et al. / Computer Standards & Interfaces 24 (2002) 291–309 295

As may now be seen, a client program has two

methods of retrieving desired data. The first is

random retrieval, which uses Result_size() and retrie-

ve_element_at(). The second is sequential retrieval,

using create_iterator(). This last creates an Iterator

object, which provides a simple interface for data

retrieval. For detailed information about the unified

interface integrating information environment, refer

to Ref. [18].

3. System architecture of an automatic wrapper

generator

3.1. System overview

To generate a wrapper for a specified search engine

or information source correctly, the wrapper implemen-

ter must provide adequate information to the wrapper

generator in the following forms: Query Template file,

Pattern file, and Scheme file. The role of each in our

wrapper generation framework is shown in Fig. 2.

Within the framework, wrapper generation has three

phases: (1) Query Translation, (2) Documents Ret-

rieval, and (3) Results Translation.

In Fig. 2, we consider the developed information

retrieval application. The application communicates to

the wrapper according to the interface defined by IDL

files. In the Query Translation phase, the wrapper

translates the user’s high-level SQL-like queries from

the application via the CORBA standard into an

acceptable format for the specified search engine or

information source, for both of which, the wrapper

generator must also know the query command pat-

terns. The wrapper implementer in the QUERYTEM-

PLATE file must provide the query format.

In theDocument Retrieval phase, using the QUERY

TEMPLATE file, the wrapper attempts document

retrieval from a specified information source by the

appropriate query string or command. If the informa-

tion provided by user is correct and the network

connection is good enough, the desired documents is

quickly retrieved into local data storage. Most returned

documents from information sources are either semi-

structured or unstructured. One of the responsibilities

of the wrapper generation in this phase is to parse

documents, extract desired information, and then store

it into XML DOM objects. The wrapper implementer

must provide in advance a PATTERN file that regu-

lates the handling of the specified data fields for the

document parsing process. In addition, for proper

management of the data in the specified fields, detailed

information about the data type and variable name of

the user-interested fields has to be provided in the

SCHEMA part of the PATTERN file. The QUERY-

TEMPLATE, PATTERN, and SCHEMA files are all

written in XML syntax.

Following the Document Retrieval phase, the user-

interested information is stored in the data structure of

a wrapper in the form of XML DOM objects. In the

Result Translation phase, obtaining the information

from these objects via the CORBA standard is fast

Y.-S. Chang et al. / Computer Standards & Interfaces 24 (2002) 291–309296

and simple for the client program. One of the respon-

sibilities of the wrapper in this phase is to prepare the

results extracted from DOM objects in appropriate

format and send them back to the client program via

CORBA.

The interface between the wrapper and the client

program is also an important part of the framework.

A concise and standard interface is needed here, so

we adopt Interface Definition Language (IDL) of the

CORBA standard to define it. The CORBA standard

is language independent, so that the wrapper gen-

erated within the framework can be communicated

to the client program whatever the language or ope-

rating system is. That is, a wrapper generated within

the framework is an XML-based and CORBA-

enabled component over the network. In this way,

wrappers fully support the integrated heterogeneous

information retrieval system we propose in Ref.

[18].

3.2. Workflow of wrapper generation

As discussed earlier, most information sources con-

stantly change content or even structure.Wrapper codes

are tightly coupled with the structure of a specified

information source. If the information source changes

the document structure, the wrapper implementer must

also change the wrapper codes. Such constant modifi-

cation is both time-consuming and tedious. Conse-

quently, an information retrieval application developer

welcomes an automatic wrapper generation system that

decreases the workload. Unlike what is proposed in

otherworks, theXML-basedwrappergeneration frame-

workwe present is automatic and consequently answers

the need. Not only is it XML-compliant and CORBA-

enabled, but the generating procedure is simple and fast.

The workflow for the framework is shown in Fig. 3.

There are many editing tools for XML and IDL

files. The wrapper implementer must select the appro-

Fig. 2. An overview of the wrapper generator.

Y.-S. Chang et al. / Computer Standards & Interfaces 24 (2002) 291–309 297

priate tools to define and prepare the QUERYTEM-

PLATE, PATTERN, SCHEMA, and IDL files shown

in Fig. 3. Consider the Wrapper Generation phase

shown in this figure. First, an IDL compiler is em-

ployed to compile a user-defined IDL file and pro-

duce a client stub and server skeleton for the interface

between the client application and the CORBA-based

generated wrapper. The information retriever uses the

client stub to develop a client program that communi-

cates to the wrapper in an appropriate way. The server

skeleton together with the QUERYTEMPLATE, PAT-

TERN, and SCHEMA files are required in the wrapper

generation procedure. Employing these user-defined

files, the generator selects the appropriate components

stored in the Component Repository to produce the

desired wrapper. At Runtime Phase, the new wrapper

can be invoked by to retrieve the request in the client

program via the CORBA interface defined in the IDL

file formation.

3.3. Architecture of wrapper generation

The architecture of our wrapper generator is shown

in Fig. 4. Three XML-formed files, QUERYTEM-

PLATE, SCHEMA, and PATTERN, are required. An

XML parser parses them and stores the desired infor-

mation into DOM objects defined by W3C. That is,

following XML Parsing Phase, three DOM objects are

produced. Then, Query Rules Analysis Phase creates

the Query Transfer Rules and the Query String accord-

ing to the DOM objects coming from the QUERY-

TEMPLATE file. The Data Extract Rules are generated

at Data Extract Rule Analysis Phase according to the

DOM objects generated from the SCHEMA file. The

Pattern Sample is produced by Pattern Analysis Phase

according to the DOM object generated from PAT-

TERN file. The Code Generator shown in Fig. 4 then

chooses suitable components from the Component

Repository in accordance with all these information

Fig. 3. The workflow of the proposed wrapper generation.

Y.-S. Chang et al. / Computer Standards & Interfaces 24 (2002) 291–309298

(Query Transfer Rules, Query String, Data Extract

Rules, and Pattern Sample). Finally, Binder binds Code

Generator-chosen components and Server Skeleton

code fragments produced by the IDL compiler into

the desired new wrapper.

4. System implementation

4.1. Implementation basics

The proposed wrapper generator is implemented

entirely in Java Language. We use JDK 1.3 to develop

all the codes, and any new wrapper is consequently

Java coded. The XML parser is a Xerces Java Parser

1.3.0, an Open Source Software published by

APACHE XML Project [19]. The components in the

Component Repository are also Java coded. We use

XML tags to construct the Component Repository,

which allows the system to use the tags to extract

appropriate components.

4.2. DTD files for the system

The wrapper generator collects information about

the specifications of a new wrapper by analyzing the

three XML files prepared by the wrapper imple-

menter. To facilitate usage of the XML tags, certain

DTD files for the XML files are provided within the

framework. They are (1) QUERYTEMPLATE.DTD,

(2) SCHEMA.DTD, and (3) PATTERN.DTD. The

QYERYTEMPLATE.DTD file is shown in Fig. 5.

The purpose of QUERYTEMPLATE.XML is to de-

fine the format of a querying string or command for a

specified information source. Consequently, QUERY-

TEMPLATE.DTD is to define all the requirements

about the definition of a querying string or commands

for any information source. In addition, SCHE-

Fig. 4. Architecture of automatic wrapper generator.

Y.-S. Chang et al. / Computer Standards & Interfaces 24 (2002) 291–309 299

MA.XML and PATTERN.XML guide a new wrapper

in parsing and extracting user-interested information

from retrieved documents. This framework also must

provide the new wrapper with DTD files as a guideline

for parsing the XML files. In fact, these two files are

always combined into one file called PATTERN.DTD.

The content of PATTERN.DTD is shown in Fig. 6.

According to the specifications defined in XML

files, the system generates codes for a new wrapper by

integrating components chosen from the Component

Repository. As before, the generated codes are all Java

codes that can be compiled by Java Compiler (JDK

1.3) into Java class.

4.3. Component Repository

In our design, the wrapper is composed of several

independent components. The Java codes of the com-

ponents are written in advance and stored in the Com-

ponent Repository. For simplicity of management, each

component has its own meta-data XML file, in which

the component name, author, descriptions, and tag are

defined. In this way, while at the generation stage, the

essential components in a wrapper are combined

according to the attributes. That is, the components

are written in Java code and managed by the XML

meta-data files. With practice, the wrapper developer

Fig. 5. The source code of ‘‘QUERYTEMPLATE.DTD’’.

Fig. 6. The source code of ‘‘PATTERN.DTD’’.

Y.-S. Chang et al. / Computer Standards & Interfaces 24 (2002) 291–309300

can not only create components independently, but can

also reuse them with ease.

5. Example demonstration

Fig. 7 features a real example of a generatedwrapper

for retrieving information from an AltaVista search

engine. For such a search engine, the basic fields of

interest to a user are the Title, Description, and URL in

the returned pages for some keywords searched. A

wrapper generated in this framework accepts the SQL-

like query string via the CORBA standard from the

mediator of an Integrated Information Retrieval sys-

tem, and then feeds an appropriate query string to the

search engine. On obtaining the results, the wrapper

extracts the desired information according to the PAT-

TERN.XML and SCHEMA.XML files from the wrap-

per implementer.

The first step in generating a new wrapper for

AltaVista is to analyze the syntax and semantics of

the query string, and then write the QUERYTEM-

PLATE. XML file in XML format according to

QUERYTEMPLATE.DTD syntax. That is, the new

wrapper must translate the higher-level query string in

the upper left corner of Fig. 7 into a form that matches

that of the string in the upper right corner of the figure.

In our example wrapper, the only two words that may

possibly be changed in the searching case are keyword

and date. These are shown in bold face. We analyze the

format of the AltaVista query strings and commands

and write the QUERYTEMPLATE.XML file, the

content of which is shown in Fig. 8.

For the second step, the information extraction

stage, the wrapper generator verifies the correctness

of PATTERN.XML according to PATTERN.DTD,

after which the generated wrapper extracts the desired

information according to the content defined in PAT-

TERN.XML. Consequently, the implementer has to

define the schema and the pattern matching string in

PATTERN.XML. This is important for guiding the

wrapper to extract the desired information from the

Fig. 7. The role of wrapper for AltaVista.

Y.-S. Chang et al. / Computer Standards & Interfaces 24 (2002) 291–309 301

returned pages correctly. The architecture of PAT-

TERN.XML, as we defined it for this example, is

depicted in Fig. 9.

This architecture has three basic parts: (1) HEAD,

(2) SCHEMA, and (3) RECORDSAMPLE. First,

HEAD denotes the attributes of the file, which is an

important information for document management.

Second, SCHEMA describes all the fields to be pro-

cessed. The VARIABLE item of SCHEMA defines the

variable’s name, data type, description and the like,

and is the data schema for the structure of the specified

information source. Third, RECORDSAMPLES is a

matching string that is applied to the specified infor-

mation source and has only one element, h![CDATA
[]]i. A pattern matching procedure is applied to the

content with h![CDATA[]]i as the matching string. It

checks to see if there are matched fields to be

extracted. In the pattern, all the interested fields have

to be embraced by the matching string defined by

h![CDATA[]]i (in this example, ^&^.^&/^). That

is, all the characters between string ^&^ and ^&/^ are

treated as the fieldname. Then the system compares the

Fig. 8. ‘‘QUERYTEMPLATE.XML’’ for AltaVista wrapper.

Y.-S. Chang et al. / Computer Standards & Interfaces 24 (2002) 291–309302

pattern file with the returned document to find the value

of the field, and assigns the appropriate fieldname to it.

The detail of the codes for PATTERN.XML is shown

in full in Fig. 10.

We now consider an example of a real returned

web page from AltaVista and observe what the real

steps in wrapper implementation are. Sample frag-

ments of the returned page are shown in Fig. 11.

The arranged and simplified HTML codes corre-

sponding to Fig. 11 are shown in Fig. 12. Note that for

ease of describing the steps for preparing PAT-

TERN.XML, certain HTML codes are omitted from

the figure.

The example web page shown in Fig. 12 has three

fields of interest: (1) Title, (2) Description, and (3)

URL. The first task of the wrapper implementer is to

fetch the HTML file shown in Fig. 11. The matching

string defined in the <RECORDSAMPLES> part of

PATTERN.XML (in the example, ^&^.^&/^)

must be inserted in the appropriate position and

the appropriate fieldnames for the fields of interest

chosen to replace the target string. In this case, the

fragments of the finished pattern file are shown in

Fig. 13. In contrast with Fig. 12, the fields of in-

terest (Title, Description, URL) are properly stored

in the mapped variables in the records. In addition,

we use ^&^misc1^/&^ to mark fragments of no con-

cern. To simplify matters for future procedure, we

discard the value of misc1. Note also that the file

shown in Figs. 12 and 13 is the simplified result. The

real pattern string is shown in the down half of Fig. 10.

The workflow shown in Fig. 14 is of further help in

explaining the pattern matching procedure of the new

wrapper. The procedure is simple and direct. The

system has only to discard any unwanted tokens (the

white blocks in the figure) until the matching string is

found. Once the first ^&^ is found, it extracts the

characters between ^&^ and ^&/^, and assigns them to

the appropriate field variable according to the context

defined in PATTERN.XML. With this simple pattern

matching method, the wrapper implementer has no

need to analyze and understand the HTML codes and

structure of documents retrieved from the information

sources. The wrapper implementer needs only to

retrieve the HTML web page from the specified

information source (in this case, AltaVista), to find

out the interested fields of the file, and then to mark

and to define the fieldname of the interested field

by embracing the matching string defined in PAT-

TERN.XML. This is a simple, quick, and direct me-

thod of generating a new wrapper for a new or

modified information source.

The example described above demonstrates the

simplicity and ease with which the wrapper generator

in this framework constructs an XML and CORBA-

enabled wrapper. The wrapper implementer only has

to provide the wrapper generator with the QUERY-

TEMPLATE, SCHEMA, and PATTERN files. These

are then combined into two files (QUERYTEM-

PLATE.XML and PATTERN.XML), which are writ-

ten in XML syntax validated by the respective DTD

file. It is a simple matter for a programmer to analyze

Fig. 9. Architecture of ‘‘PATTERN.XML’’ file in the example.

Y.-S. Chang et al. / Computer Standards & Interfaces 24 (2002) 291–309 303

Fig. 10. The detail source code of ’’PATTERN.XML’’ for AltaVista wrapper.

Y.-S. Chang et al. / Computer Standards & Interfaces 24 (2002) 291–309304

the syntax of a query string for an information source

and then encode it in XML format. Preparing PAT-

TERN. XML is equally trouble-free, simply a question

of download-and-string-replacement work. An addi-

tional advantage is the availability of user-friendly

interface tools to assist in the preparation of these files.

6. Comparisons, discussions and future work

This section begins with comparing the merits of

our design with the previous works, and then dis-

cusses the challenges of generating wrappers for

retrieving information from heterogeneous sources.

Also, we mention topics in mind for future research.

6.1. Comparing automatic generation with hand-

written wrapper

In both quantity and variety, the growth rate of forms

of information on the Internet is enormous. Conse-

quently, the only efficient option must be a retrieval

application that collects information automatically. To

handle such variety, an application must prepare many

wrappers. The traditional application developer spends

much time in writing codes for wrapper generation and

in connecting wrappers to applications. Automatic

wrapper-generating techniques, however, dispense

with most of that work. A comparison of traditional

and automatic wrapper-generating techniques is shown

in Fig. 15.

We compare the performance of an experienced

programmer with that of our generator in generating

specific wrappers for two the widely used search

engines, Yahoo and AltaVista. Tables 1 and 2 show

the comparison for Yahoo and AltaVista respectively.

For our design, we use Microsoft Windows 2000 on

an Intel Pentium II machine run at 233 MHz.

6.2. Comparing our approach with others

As mentioned above, several previous approaches,

each with its own characteristics, have focused on

automatic or semi-automatic wrapper generation. We

summarize those of XWRAP [4], W4F, [11], TSIM-

Fig. 13. The fragments of the completed pattern file.

Fig. 11. The fragments of the returned document in AltaVista.

Fig. 12. Corresponding HTML Code to Fig. 11.

Y.-S. Chang et al. / Computer Standards & Interfaces 24 (2002) 291–309 305

MIS [7] and those of our own approach in Table 3. As

can be seen there, we use XML to define the meta-

data and provide the unified interface support for

heterogeneous information sources. This makes wrap-

per generation for us a simple and fast undertaking,

while the wrappers themselves can connect to a uni-

form interface information retrieval application that is

CORBA-compliant. This constitutes the major merit

of our design.

6.3. Versatile query string formats of search engines

The first challenge to generating a wrapper is the

versatility of the query string format. There are many

ways to design an interactive user interface for search

engines or information sources with which to respond

to the user requests. Each method has its own specific

composition of query arguments. In addition, certain

client-program-solutions (applet, ActiveX) do not use

URL of WWW for server/client communication. Al-

though most encapsulation rules can be discovered by

closely analyzing HTML codes or commands, much

attention must be paid to creating the encapsulation of

search request for information retriever by a formal and

automatic way. In our approach, we simply let the

wrapper implementer discover and insert the rules into

a QUERYTEMPLATE.XML file. This is a simple and

fast method, whether for most information sources

(especially for search engines) or for users searching

for only a few, regular documents. For sources with

complicated query string format, the wrapper imple-

menter needs an assistant tool to help analyze the

encapsulating rules for the query string. For sources

Fig. 15. The comparison between the traditional way and our approach.

Fig. 14. The flow of pattern matching procedure.

Y.-S. Chang et al. / Computer Standards & Interfaces 24 (2002) 291–309306

that constantly change their query string format, the

need is for a tool that automatically adjusts the encap-

sulating rules for the query string. We have both such

tools in view for future research.

6.4. Versatile protocols of information sources

The Internet has many information sources that do

not provide a WWW interface for users, but which

instead follow certain protocols (e.g., Z39.50) for

server/client communication. Consequently, the only

way for an implementer to generate a wrapper for these

protocols is to know all their specifications. However,

with these kinds of information sources, knowing the

protocols is difficult if they do not follow any standard.

However, an advantage of these sources is that if the

protocol is a well-known standard, it is fixed. Fortu-

nately, most well-known protocol standards have their

own API that can be invoked by the wrapper.

6.5. Integrated wrapper development environment

All the file formats in our proposed framework are

written in XML syntax. The implementer has no need

to learn a new language to generate a wrapper. Writing

XML files by hand is tedious. Although there are

many word editors for editing XML files, it is also

important to have an integrated development environ-

ment for wrapper generation. A wrapper implementer

must have the following components: (1) an automatic

query string analyzer for writing appropriate QUER-

YTEMPLATE.XML; (2) an XML file editor; (3) a

web page retriever for sample information source files

and to prepare the PATTERN.XML files needed for

wrapper generation; (4) an automatic generator for

producing the appropriate wrappers. The integrated

development environment is also a possible topic of

future research by the authors.

7. Conclusions

In this paper, we have presented a framework for

the automatic generation of wrappers that supports a

unified interface meta-search system based on an XML

data model and CORBA standard. With this frame-

work, a wrapper implementer’s only task is to design

the wrapper specifications for a specified information

source in an XML-syntax file, which a wrapper gen-

erator then uses to construct a new wrapper.

The usual method for extracting information fields

of interest in the framework is by pattern matching.

Using it, a wrapper implementer quickly and easily

prepares wrapper specifications for a specified infor-

mation source. This differs from previous approaches

in that a wrapper generated in our framework focuses

on extracting fields of interest from returned docu-

ments and not on analyzing their content. An imple-

menter is not required to understand the whole

structure of a specified information source. Conse-

quently, time and cost in generating new wrapper are

greatly reduced.

Table 3

Comparisons among some famous approaches

XWRAP W4F TSIMMIS Our

approach

Developer assistant Yes Yes Yes No

Unified interface

supporting

No No No Yes

Meta-data Private

structure

HEL MSL XML

Internal data

structure

– NSL OEM DOM

Component

Repository

None None Library Yes

Training data Yes No 1 sample No

Providing GUI Yes Yes None None

Table 1

Comparison between manual writing and our approach for Yahoo

Manual writing Our approach

Meta-data file No need 105 lines

Wrapper codes 153 lines 234 lines

Coding/generating time About 2 days 3.8 s

Execute time 4.2 s 5.7 s

Table 2

Comparison between manual writing and our approach for AltaVista

Manual writing Our approach

Meta-data file No need 116 lines

Wrapper codes 184 lines 278 lines

Coding/generating time About 2 days 4.8 s

Execute time 5.1 s 6.4 s

Y.-S. Chang et al. / Computer Standards & Interfaces 24 (2002) 291–309 307

All the data structures, including imported files and

the representation of objects are XML-compliant.

Since XML is a widely popular standard nowadays,

most developers are familiar with it and many soft-

ware applications process data with it perfectly well.

Combining the advantages of both XML and Java, the

Component Repository used in the framework is

flexible and extensible. The codes of the Component

Repository are easy to be extended and managed.

Finally, wrappers generated in this framework are all

CORBA-enabled. That is, for information retrieval

application, they are already language independent,

in which merit adds to their communicative capabil-

ities and spares the wrapper implementer much effort.

Acknowledgements

We are grateful for the many excellent comments

and suggestions made by the anonymous referees.

This work was supported in part by the National

Science Council of the Republic of China under Grant

No. NSC90-2213-E-159-005 and the Ministry of

Education’s Program of Excellence Research under

Grant 89-E-FA04-1-4.

References

[1] Y.S. Chang, S.M. Yuan, W. Lo, A new multi-search engine for

querying data through internet search service on CORBA, Int.

J. Comput. Networks 34 (3) (2000) 467–480.

[2] Y.S. Chang, S.M. Yuan, A Framework for Integrating Informa-

tion Retrieval on CORBA, in Proc. of 12th International Work-

shop on Database and Expert Systems Applications (DEXA

2001), Munich, Germany, Sept. 3–7 (2001) 180–185.

[3] M.E. Vidal, L. Raschid, J.R. Gruser, A meta-wrapper for scal-

ing up to multiple autonomous distributed information sources,

Proceedings of the Third International Conference of Cooper-

ative Information Systems, New York City, USA (1998) 148–

157.

[4] L. Liu, C. Pu, W. Han, XWRAP: an XML-enabled wrapper

construction system for web information sources, 16th Interna-

tional Conference on Data Engineering (ICDE’2000), San

Diego, CA, USA, IEEE (2000) 611–621.

[5] B. Chidlovskii, J. Ragetli, M. de Rijke, Automatic wrapper

generation for Web Search Engines, Lecture Notes in Com-

puter Science (LNCS) of Springer-Verlag, Shanghai, China

(WAIM 2000) 1846 (6) (2000) 399–410.

[6] N. Ashish, C.A. Knoblock, Semi-automatic wrapper genera-

tion for Internet information sources, Proceedings of the Sec-

ond IFCIS International Conference, Kiawah Island, South

Carolina, USA (COOPIS’97) (1997) 160–169.

[7] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Raja-

raman, Y. Sagiv, J. Ullman, V. Vassalos, J. Widom, The TSIM-

MIS approach to mediation: data models and languages, J.

Intell. Inf. Syst. 8 (2) (1997) 117–132.

[8] H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou,

J. Ullman, J. Widom, Integrating and accessing heterogeneous

information sources in TSIMMIS, Proc. of the AAAI Symp. On

Information Gathering, Stanford, California (1995) 61–64.

[9] G. Huck, P. Frankhouser, K. Aberer, E. Neuhold, Jedi: extract-

ing and synthesizing information form the Web, Proceedings.

3rd IFCIS International Conference on Cooperative Informa-

tion Systems, New York City, USA (1998) 32–41.

[10] A. Sahuguet, F. Azavant, Building Intelligent Web Applica-

tions Using Lightweight Wrappers, Data and Knowledge En-

gineering 36 (3) (2001) 283–316.

[11] M. Chau, D. Zeng, H. Chen, Personalized Spiders for Web

Search and Analysis, JCDL’01, USA, Virginia (2001) 79–87.

[12] L. Introna, H. Nissenbaum, Defining the web: the politics of

search engines, IEEE Comput. 33 (1) (2000) 54–62.

[13] D. Mattox, L. Seligman, K. Smith, Rapper: A Wrapper Gen-

erator with Linguistic Knowledge, WIDM 99 ACM, Kansas

City, USA (1999) 6–11.

[14] L. Liu, W. Han, D. Buttler, C. Pu, W. Tang, An XML-Based

Wrapper for Web Information Extraction, SIGMOD’99 ACM,

Philadelphia, PA (1999) 540–543.

[15] Y.S. Chang, M.H. Ho, S.M. Yuan, A unified interface for

integrating information retrieval, Comput. Stand. Interfaces

23 (4) (2001) 325–340.

[16] Apache XML Project, http://xml.apache.org/index.html.

[17] Y. Papakonstantinou, A. Gupta, H. Garcia-Molina, J. Ullman,

A query translation scheme for rapid implementation of wrap-

pers, International Conference on Deductive and Object-Ori-

ented Databases, Singapore (1995) 161–186.

Yue-Shan Chang was born on August 4,

1965 in Tainan, Taiwan, Republic of

China. He received the BS degree in

Electronic Technology from National Tai-

wan Institute of Technology in 1990, the

MS degree in Electrical Engineering from

the National Cheng Kung University in

1992, and the PhD degree in Computer

and Information Science from National

Chiao Tung University in 2001. Dr. Chang

became an Associate Professor at the

Department of Electronics Engineering of Minghsin Institute of

Technology in August 2001. His current research interests include

Distributed Systems, Object Oriented Programming, Information

Retrieval and Integration, and Internet Technologies.

Y.-S. Chang et al. / Computer Standards & Interfaces 24 (2002) 291–309308

Min-Huang Ho was born on February 1,

1969 in Kaohsiung, Taiwan, Republic of

China. He received the BS and MS degrees

in Industrial Education from National Tai-

wan Normal University in 1993 and 1995,

respectively. Currently, he is a candidate of

PhD in Computer and Information Science

at National Chiao Tung University. His

research interests are in Distributed Sys-

tems, Internet Technologies, and Mobile

Agent Technologies.

Wen-Chen Sun was born on August 12,

1976 in Taipei, Taiwan, Republic of

China. He graduated from Yuan-Ze Uni-

versity in 1999 and received MS degree

in Computer and Information Science from

National Chiao Tung University in 2001.

He is now working as vice engineer at

Institute for Information Industry. His

research interests are in Distributed Sys-

tem and Mobile Computing Technologies.

Shyan-Ming Yuan was born on July 11,

1959 in Mauli, Taiwan, Republic of China.

He received the BSEE degree from

National Taiwan University in 1981, the

MS degree in Computer Science from Uni-

versity of Maryland Baltimore County in

1985, and the PhD degree in Computer

Science from University of Maryland Col-

lege Park in 1989. Dr. Yuan joined the

Electronics Research and Service Organ-

ization, Industrial Technology Research

Institute as a Research Member in October 1989. Since September

1990, he had been an Associate Professor at the Department of

Computer and Information Science, National Chiao Tung Univer-

sity, Hsinchu, Taiwan. He became a Professor in June 1995. His

current research interests include Distributed Objects, Internet

Technologies, and Software System Integration. Dr. Yuan is a

member of ACM and IEEE.

Y.-S. Chang et al. / Computer Standards & Interfaces 24 (2002) 291–309 309

	Introduction
	Background and motivation
	Related works
	Our approach

	Overview of wrapper
	Wrapper architecture
	Wrapper's interface

	System architecture of an automatic wrapper generator
	System overview
	Workflow of wrapper generation
	Architecture of wrapper generation

	System implementation
	Implementation basics
	DTD files for the system
	Component Repository

	Example demonstration
	Comparisons, discussions and future work
	Comparing automatic generation with handwritten wrapper
	Comparing our approach with others
	Versatile query string formats of search engines
	Versatile protocols of information sources
	Integrated wrapper development environment

	Conclusions
	Acknowledgements
	References

