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Abstract: Project cost becomes increasingly variable if
many cost items for a construction project are correlated,
and this can increase the uncertainty of completing a
project within a target budget. This work presents a factor-
based computer simulation model (COSTCOR) for evalu-
ating project costs given correlations among cost items.
Uncertainty in the total cost distribution of an item (grand-
parent) is transferred to several factor cost distributions
(parents) according to qualitative estimates of the sensitiv-
ity of each cost item to each factor. Each cost distribution is
then decomposed further into a family of distributions (chil-
dren; costs given factor conditions), with each child corre-
sponding to a factor condition. Correlations are retrieved
by sampling from the child distributions with the same con-
dition for a given iteration of the simulation. COSTCOR
integrates the uncertainty effects caused by each factor at
the project cost level, thus making it easier for manage-
ment to determine what parts of the project need to be
controlled.

1 INTRODUCTION

Accurately estimating costs is an essential task in effec-
tively managing construction projects. Each cost compo-
nent, and thus project cost, is variable or probabilistic
because future events are always uncertain. Many cost esti-
mation models have been developed that account for the
effects of uncertainties. These recent cost models involve
neural networks (Adeli and Wu, 1998; Adeli and Karim,
2001), simulation (Touran and Wiser, 1992; Chau, 1995;
Ranasinghe, 2000), experiential learning theory (Lowe and
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Skitmore, 1994), and other systematic approaches (Diek-
mann, 1983; Diekmann and Featherman, 1998; Oberlen-
der and Trost, 2001; Wang, 2002). Only very few cur-
rent cost models address correlations among cost variables
in construction projects. Project cost becomes increasingly
variable if several cost items are correlated, increasing the
uncertainty of finishing a project to a target budget.

As widely known, however, correlations are often
included in evaluations of the durations of construction
projects. Related research on correlations of duration vari-
ables stresses that correlations result from uncertainties
(such as weather, labor skills, site conditions, and man-
agement quality) that are shared between activity dura-
tions (Woolery and Crandall, 1983; Ahuja and Nandaku-
mar, 1985; Levitt and Kunz, 1985; Padilla and Carr, 1991;
Wang and Demsetz, 2000). Other construction activities
are likely to be simultaneously influenced by, for exam-
ple, the presence of poor weather while concrete is being
laid. Poor weather increases the duration of every weather-
sensitive activity, and vice versa. The variability of the
project duration may be significantly increased by the cor-
relations between numerous activities along critical or near
critical paths.

Current research on correlated costs deals with theo-
retical issues concerning the accuracy of correlations. For
example, Touran and Wiser (1992) used a multivariate nor-
mal distribution to generate correlated cost variables for a
precise simulation analysis, assuming that the correlation
coefficients between variables are known. The simulation
model of Chau (1995) employed a percentile-based sam-
pling procedure to influence the probability of sampling
the same quantiles from two correlated probability density
functions, according to whether the given correlation coef-
ficient is positive or negative. Finally, Ranasinghe (2000)
highlighted some theoretical requirements, such as the con-
ditions required to achieve a positive definite correlation
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matrix and the possibility of using an induced correlation
to define the correlation between derived variables.

This study proposes a simulation-based cost model,
COSTCOR, that considers correlations between cost items.
In contrast to existing cost-related models in incorporating
correlations, COSTCOR is designed to meet the following
three requirements that are considered practical in a cost
management tool: (/) not requiring excessive input from
management, (2) introducing correlations indirectly (since
this correlation information is not readily available) (Touran
and Wiser, 1992), and (3) recognizing factor-based corre-
lations when they occur in the field. The following section
presents the development of COSTCOR and is followed by
an illustration of the simulation-facilitated computer imple-
mentation strategy. Finally, the correlation effect is assessed
and COSTCOR is applied to an example for a building
project.

2 THE COSTCOR MODEL

2.1 Hierarchical levels of project cost

The cost of a construction project is typically organized
according to three levels of estimates (generally in a work
breakdown structure based on the Construction Specifica-
tion Institute masterformat) (Oberlender, 1993). The first
is the project summary (or bid summary) level. This level
summarizes various categories of costs (referred to herein
as division items). Typical cost categories for a building
project include direct costs, such as site work, concrete,
equipment, and mechanical, and other indirect costs, such
as tax, insurance, and overhead (or profits). The second is
the cost item level (also called bill item or line item, and
referred to herein simply as item). Each category of costs is
subdivided into smaller cost items for particular construc-
tion processes. For example, the cost items for the first-
level site-work cost category may be subdivided into clear-
ing, excavation, compaction, and so on. The cost of an item
equals a unit cost rate multiplied by its quantity. The third
is the unit cost level. Unit costs are expressed as the cost
required to complete a unit of work for a cost item, such
as the cost for excavating a cubic yard of earth.

The term cost item, which is used in developing the
COSTCOR model, can refer to either the cost category
(division item) of the first level or the cost item of the sec-
ond level, depending on the application purpose. The use
of cost categories is more appropriate for applications sub-
ject to time constraints (for example, the tendering period
of a bidding process is normally short). Meanwhile, the use
of cost items is preferred for cost planning and cost control
purposes, because although this approach is comparatively
time consuming it yields more precise evaluation results
(since the uncertainty can be estimated more precisely).

mean = base cost
mean = base cost base cost variation = 0
variations owing to all factors
. ,COSt, mean = 0
= distribution 1 variations owing
(parent 1) to factor 1

Total cost distribution

+

cost
distribution 2~
(parent 2)

mean =0
variations owing
to factor 2

Fig. 1. Breakdown of uncertainty.

2.2 Breakdown of uncertainty

COSTCOR treats the cost of a bill item as a random vari-
able. The cost variable is represented by a total cost dis-
tribution (that is, “grandparent” distribution) that combines
a base cost with variations resulting from various factors.
Variations owing to a particular factor are represented by a
cost distribution, a “parent” distribution. The base cost is
assumed to be deterministic, while the cost distribution for
each factor is assumed to be a zero-mean random variable.
Figure 1 schematically depicts this approach to break down
the uncertainty. The base cost is taken to be the user’s best
estimate of an item’s cost under expected factor conditions,
and it is the expected value of the total cost distribution for
the item. Deviations from the expected value caused by var-
ious factors are introduced through the cost distributions.

The COSTCOR model captures correlations by draw-
ing cost samples from related portions of the cost distribu-
tions for cost items that are sensitive to a given factor. For
example, the upper part of Figure 2 classifies weather con-
ditions into “better than expected,” “normally expected,”
and “worse than expected.” Based on these three differ-
ent weather conditions, the weather related cost distribu-
tion is disaggregated into three corresponding child distri-
butions (illustrated in the lower half of Figure 2), namely,
cost given better than expected weather (that is, better
than expected weather child), cost given normally expected
weather (that is, normally expected weather child), and cost
given worse than expected weather (that is, worse than
expected weather child).

In this example, the probability of observing any cost
“C” of this cost distribution is the sum of the following
three conditional probabilities: (/) Probability of “C” given
better than expected weather times the probability of bet-
ter than expected weather, (2) probability of “C” given
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Fig. 2. Decomposition of cost distribution into costs, given
particular factor conditions.

normally expected weather times the probability of nor-
mally expected weather, and (3) probability of “C” given
worse than expected weather times the probability of worse
than expected weather. Such conditional distributions and
probabilities are such that the area under the cost distribu-
tion equals one. Notably, however, a computer simulation
algorithm run with better than expected weather indepen-
dently draws sample costs for weather-sensitive cost items
from the better than expected weather child; likewise for
normally and worse than expected weather conditions, and
likewise for other factors.

Child distributions may also overlap, as presented in
Figure 2. Restated, the cost of an item may be the same
under both better than expected and normally expected
weather conditions; or the cost with normally expected
weather conditions may be less than the cost with better
than expected weather. An extreme case is when child dis-
tributions overlap perfectly, in which case the cost sam-
ples will always be drawn from the same child distribution
under any conditions and no correlation will exist. Mean-
while, when a cost item is highly sensitive to weather, the
child distributions will be distinct.

2.2.1 Cost modeling. A cost model, in which the effect of
uncertainty is broken down by factor, may be derived from

Wang

the unit cost perspective. Unit cost is expressed as
Unit Cost (U) = Cost/Quantity (1)

In a deterministic environment, the estimated unit cost
for an item i, U;(,simarea)» €an be represented thus:
J
Ustesiimareay = Uio) + 2 Xij) (2)
j=1
where U, is an estimated unit cost for item i under expec-
ted outcomes of factors and X;;) is an estimated constant
representing the variation in unit cost of item i with respect
to factor j. The value of Xl-( j) can be negative, zero, or
positive.
In a probabilistic environment, however, Equation (2)
should be rewritten as

’

U

i(estimated)

J
= Uiy +2_ X0 (3a)

j=1
= Uy + Xi() + Xigy +- -+ Xijy +-- -+ Xi;)  (3b)

whs:re l]lf(emmmd), )(.lf(l),.le(z), ..., and Xi’(]) are .random
variables. Each realization of le(j) represents the increase
or decrease in the unit cost of item i due to factor j.

Following (3), C;, the cost of item i, may be expressed
as

Ci = Quantity X l]i(estimatc’d) (43.)

= Quantity x (l]i/(O) + X+ X;(z) +-+ X))  (4b)
J
= Cio)+ Gy T i+ iy = Gt 2y (40)
j=1
where ¢, is the estimated (or base) cost and the random
variable gy d =105, is the cost (parent) distribution
of cost item i due to factor j. Restated, Equation (4) dis-
plays the variations in the cost of an item, as a base cost
and a series of cost distributions for various factors.

2.2.2 Factor-based correlation. The COSTCOR model
assumes that the costs of items are correlated only through
the impact of shared factors. Different factors are assumed
to cause independent effects. For example, assume that
cost item 1 is sensitive to weather and labor, and cost
item 2 is sensitive to weather and equipment. Only the
weather-related cost distributions are correlated; the vari-
ations caused by labor and equipment are assumed to be
independent.

COSTCOR applies the following assumptions to the cost
model:

® C;) is a deterministic value. Restated, the value of ¢,
equals the cost that is estimated under the normally
expected conditions of all factors.
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o The expected values of the ¢;;)s are zero, that is, m;, =
My = -+ = m,) = 0. Each sample of ¢, thus repre-
sents a change from the expected cost.

® Ci(1ys Cia)» -+ » and ¢,y are independent of each other.
Namely, for a given cost item, the impact of weather, the
impact of labor skills, and the impact of other factors are
assumed to be unrelated.

Then, regardless of the type of the marginal distribution
of ¢;(;), the mean and variance of the cost of cost item i are

M; = my) +myqy +myg) + -y (52)

2 _ o2 2 2 2
07 = SDj)+ 8Dy +SDj) +---+SDj;,  (6a)

= SD;y)+SDjp +---+ 5Dy, (6b)
in which M, and o, are the mean and standard deviation
for C; (the total cost distribution for item i), and m;,;, and
SD,;, are the mean and standard deviation for ¢;(;), with
SD; =0. COSTCOR finds M; and o; for cost item i, and
then determines SD;(;). In the example project presented
herein, the three-point estimates of PERT are used to cal-
culate M; and o; (Moder et al., 1983). However, the use of
other methods is unrestricted as long as the values of M;
and o; can be determined.

2.2.3 Breakdown of uncertainty by condition. In construct-
ing a family of child distributions to represent changes in
cost due to factor conditions, one goal is to preserve the
mean and standard deviation of the cost distribution. In
other words, the mean and standard deviation of the com-
bination of the child distributions for a family should be
the same as the mean and standard deviation of the cost
distribution. Mathematically, this relationship can be repre-
sented as

H
MiGy = D Piy X Oty = 0 ™)
h=1
H
SD% =" piw % (sdi .o+ 05 m) (8)
i) = . 1P1<h> iLj(m] T Oifj(m)

in which H = number of child distributions; p;,, = proba-
bility of occurrence for child distribution % of factor j; and
Oy and sd; ;) = mean and standard deviation, respec-
tively, for child distribution # of factor j for cost item i.
Equations (7) and (8) are valid for any type of statistical
distribution. Steiner’s theorem can be directly applied to
justify (8) (Kreyszig, 1983). Note that the mean and stan-
dard deviation of the combination of a base cost and cost
distributions have been preserved for the total cost distri-
bution. (See Equations [5] and [6].)

e
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Fig. 3. Child distributions for different mean placements.

2.2.4 Mean of child distributions. The mean of the child
distribution for a given condition is the expected deviation
from the mean of the cost distribution when the cost item
is performed under the given condition. Means of child
distributions are expressed through a variable x, the mean
placement. Figure 3 shows the means of three child dis-
tributions as represented by (—x, 0, x) or (—x, —0.1x, 2x).
The mean of each child distribution should be confined to
a range that maintains the variance of the cost distribution.
Consider a family of three child distributions, as shown in
Figure 4. As the mean placement x approaches the limit,
the standard deviations of child distributions must become
smaller if the standard deviation of the parent is to be pre-
served. When x is equal to the limit, the child distributions
will have zero standard deviations.

2.2.5 Constructing child distributions. To construct a fam-
ily of child distributions is to determine their means and
standard deviations. Consider a cost distribution that is sen-
sitive to factor j and has a variance of $4 K. Assume that
the user chooses the categories of better than expected,
normally expected, and worse than expected conditions to
describe the conditions of the factor. Then a family of three
child distributions should be constructed. Assume that the
probabilities of occurrence for the child distributions are
equal; that is, p, = p, = p; = 1/3. Thus, based on (7) and
(8), the mean and variance, respectively, of the combined
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Fig. 4. Effect of mean placement.

child distributions are

(1/3)o, +(1/3)0, +(1/3)0; =0 ©)
(1/3)(sd} +07) + (1/3)(sd; + 03)
+(1/3)(sd;+03) =4 (10)

Assume —o, = 0; = x and 0, =0 so that (9) is satisfied, and
let the child distributions have equal standard deviations,
then (10) can be rewritten as

sd>+(2/3)x* =4 (11

The limit of the value of x is found by requiring that the
variance of the child distribution be non-negative. Namely,

sd*=4—(2/3)x*>0 (12)
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Thus, the limit in this case is x < /6 = 2.45 (limit = 2.45).
In other words, the values of 2.45 and —2.45 are the two
extreme means for Child Distributions 1 and 3, respectively.
The next step is to select the value of x between 0 and
2.45. Instead of specifying the exact value of x, COSTCOR
suggests that the value of x be selected according to the
level of influence of the factor under consideration on the
cost item under consideration. In this example, assume x
is set to one-half of the limit. Then x is equal to 1.27.
The properties of this family of three child distributions are
thus Child 1 (p, = 1/3,0, = —1.27,sd, = 1.71), Child 2
(p,=1/3,0,=0,sd,=1.71), and Child 3 (p; =1/3, 05, =
1.27,sdy = 1.71).

2.3 Qualitative estimates of uncertainty sensitivity

Cost distributions are derived according to subjective infor-
mation. Project planners are asked to estimate qualitatively
the extent to which each factor influences the cost of each
item. For example, a cost item would be considered to be
highly sensitive to weather if its cost varies greatly depend-
ing on the weather. This approach of qualitative estimates
is practical because the impact of uncertainties is easily
expressed linguistically (Chang, 1987). No inherent restric-
tion is placed on the number of levels of influence used for
each factor. The examples included herein use four levels
of influence: high, medium, low, and no influence.

2.4 Scale system to break down
uncertainty by factor

A scale system is used to transfer the uncertainty associated
with total cost distribution to the cost distributions based on
qualitative estimates of the uncertainty sensitivity of cost
item i to factor j (Wang and Demsetz, 2000). That is,

J

o =) SD;

i(j
=1
= (W [Qin] +wa[ Qi)+ - - +w[Q;)]) x K, (13D)

- (Z 01Q)) %K, (130)

_n2 2 2
) —SDi(1)+SDi(2)+"‘+SDi(J) (13a)

SD;;) = wilQi;] < K, (14)

where Q) is the qualitative estimate of the sensitivity of
cost item i to factor j, and w;[Q;;] is a scale for each
level of influence. For example, the values of the esti-
mates of high, medium, low, and no sensitivity for factor
J can be represented by w;[High], w;[Medium], w;[Low],
and w;[No], respectively. K; is an adjustment constant that

ensures that o is preserved. Since w;[Q;;] is fixed for

1

a given factor, j, K; will be different for each cost item.
The value of w;[No] is always zero. The value of w;[Q; ]
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is higher when Q,;) represents a higher level of influence.
Consequently, a larger portion of the variance is distributed
to a cost distribution that has a higher sensitivity. The value
of w;[Q;;] is determined by the user according to the rela-
tive importance of factors. For example, if the user assumes
that factor 1 causes more uncertainty than other factors,
then values of w;[High], w;[Medium], and w;[Low] for fac-
tor 1 should be higher than those for other factors.

2.5 Sensitivity of project cost to uncertainty

When several cost items for a project are sensitive to par-
ticular factors, these factors are likely to dominate the cost
performance of the project. Knowledge of factor sensitiv-
ities gives management a better idea of what factors to
control. For instance, management should focus on care-
fully scheduling weather-sensitive tasks and ensuring ade-
quate equipment is available if weather and equipment
performance exert the biggest influence on project cost.
Controlling the factors that influence performance improves
performance more than modifying or changing work meth-
ods. This study measures the uncertainty sensitivity of each
cost item to a given factor based on its standard deviation
divided by its mean. A project in which a certain factor has
a high standard deviation is considered highly sensitive to
that factor (since the mean of project cost is equal for each
factor), and consequently project cost is more likely to be
affected by a change in that factor.

3 IMPLEMENTATION OF COSTCOR

In COSTCOR, when cost distributions are sensitive to the
same factor, a sample cost is independently drawn from a
particular child distribution (given a specified probability of
occurrence) for each cost distribution. For example, if better
than expected, normally expected, and worse than expected
weather are equally likely to occur, then one-third of a pre-
defined number of simulation iterations will have cost sam-
ples that are simultaneously and independently drawn from
the better than expected weather child distributions; one-
third will have normally expected weather child distribu-
tions; and one-third will have worse than expected weather
child distributions.

Figure 5 displays the implementation strategy for the cor-
relation modeling procedure. In each iteration, a condition
is retrieved for each factor, a cost sample is drawn from
a corresponding child distribution for each cost item, then
the total cost distribution for each cost item is calculated
by summing its base cost and any variations caused by fac-
tor conditions, and finally the calculated cost for each item
and for the project are recorded. Following a predefined
number of iterations, the recorded sample costs are used
to compute various statistics, such as the mean, correlation
coefficient, and standard deviation for the project cost.

A simulation language, STROBOSCOPE (Martinez,
1996), is used to execute the simulation-relevant procedure
described in COSTCOR. This procedure was implemented
on a 586 PC with 64 MB under a 32-bit Windows environ-
ment (namely, Windows 98). Making 1,000 analyses of 24
cost categories of the example project took approximately
6 min, which is acceptable for research.

4 ANALYSIS OF CORRELATION EFFECT

The cost of a project is the sum of the costs of all the items
involved. Correlations occur between cost items that are
sensitive to the same factor(s) and accumulate throughout
the project. This section first examines the characteristics of
input child distributions of COSTCOR. Scenarios with two
identical cost items and scenarios with multiple identical
cost items are analyzed; an example for a building project
is presented, and finally a COSTCOR is compared with a
theoretical model (considering correlations) and the signif-
icance of COSTCOR is elucidated. This section addresses
how different families of child distributions, values of mean
placement x, and the number of factors involved can influ-
ence cost correlations; how the performance of COSTCOR
differs from current non-correlated models; and how COST-
COR can help to overcome traditional obstacles in correla-
tion modeling. The analyses considered here involve 1,000
simulation iterations.

4.1 Input distributions

The COSTCOR user must provide data to calculate the
mean and variance of the total cost distribution for each
cost item. However, COSTCOR’s simulation is run based
on the derived child distributions. Given the scarcity of his-
toric results concerning the cost distributions subject to a
particular factor (and even a factor condition), the suitabil-
ity of the input child distributions for a cost item may be
evaluated by examining whether their integrated cost dis-
tribution and total cost distribution meet the following four
criteria.

e The mean and variance (or standard deviation) of inte-
grated cost distribution and total cost distribution are
maintained. That is, the overall sensitivity of uncertainty
(represented by the standard deviation divided by the
mean) to a cost item should be equal to the sum of indi-
vidual uncertainty sensitivities caused by each factor. The
COSTCOR user’s input of uncertainty sensitivities are
accordingly preserved.

e The integrated cost distribution should best fit a statis-
tical distribution. The Kolmogorov-Smirnov (K-S) test
is performed to assess whether a significant difference
between the simulated cost (or total cost) distribution
and a theoretical probability distribution exists (Levin
and Rubin, 1991), rather than evaluating higher moments
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Fig. 5. Implementation strategy of COSTCOR.

(skewness and kurtosis) of the child distributions against

cost distribution (or total cost distribution).

Integrated total cost distribution should also best be

described by a statistical distribution. Figure 6 gives an

example of the simulated total cost distribution for a cost
item based on a family of three Beta child distributions.

In this example, the K-S test shows that a Normal distri-

bution is best fit to the simulated total cost distribution,

passing the test at a 20% significance level; the Beta dis-
tribution does not fit.

e The child distributions must be able to generate reason-
able correlation coefficients. As a reference, in Touran
and Wiser’s (1992) database, the minimum and maxi-
mum positive correlation coefficients are 0.1 and 0.75,
respectively.

Table 1 summarizes the evaluation results for 12 families
of input child distributions following the aforementioned
criteria. The means and variances of the integrated cost dis-
tributions and the total cost distribution are all maintained

as each family of child distributions is derived from Equa-
tions (5) to (8). That is, all families meet the first criterion.
If x is set to be below the 0.9 limit, the families (2, 3, 5, 6,
8, and 9) constructed by Normal child distributions satisfy
the second, third, and fourth criteria. This analysis does not
recommend Beta child distributions for the current COST-
COR model. For example, the mean placement x for fam-
ily 12 established by Beta child distributions must be set
at the 0.7 limit to yield a fitted Normal distribution, and
only a very low correlation coefficient (that is, up to about
0.1) can be modeled. Thus, only Normal child distributions
are applied in the following scenarios and example project
(implying that their integrated cost distributions and total
cost distributions follow a Normal distribution).

4.2 Scenarios with two identical cost items

Assume that the mean and standard deviation of the total
cost distributions for two cost items (namely, items 1 and 2)
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Fig. 6. Example of simulated total cost distribution, based on Beta child distributions.

are M, = M, = $10K (K = 1,000) and o, = 0, = $1K,
respectively; and assume that both items are only sensitive
to factor j. The corresponding standard deviations of their
cost distributions are then SD, =0, =$1K and SD, =0, =
$1K, respectively.

4.2.1 Inputs. For a family of three child distributions (that
is, child 1, 2, and 3), assume that the child distributions
have the following properties:

e Probability of occurrence: p, = p, =p;=1/3

e Standard deviation: sd; = sd, = sd, = sd
e Mean placement: —o, = 0; = x, and 0, =0

The properties of child distributions with respect to dif-
ferent values of x can then be calculated, as can the inputs
of five and seven child distributions.

4.2.2 Results. Figure 7 presents the results of the corre-
lation coefficient (CC) for different scenarios, with each
scenario representing a combination of two identical mean
placement values for two cost items. As expected, the value

Table 1
Evaluation of input child distributions

Second criterion:

Fit of cost

Family of input child distributions distribution

Fourth criterion:
Ability to capture
correlation value

Third criterion:
Fit of total cost
distribution

Normal children with equal probabilities

Family 1: x* = 0.9 limit Does not pass®
Family 2: x = 0.8 limit
Family 3: x =0.7 limit

Normal children with symmetric
probabilities
Family 4: x = 0.9 limit
Family 5: x = 0.8 limit
Family 6: x = 0.7 limit

Does not pass

Normal children with non-symmetric
probabilities

Family 7: x =0.9 limit Does not pass

Pass @ Normal®
Pass @ Normal

Pass @ Normal
Pass @ Normal

Pass @ Normal®
Pass @ Normal
Pass @ Normal

Up to about 0.85
Up to about 0.65
Up to about 0.50

Pass @ Normal
Pass @ Normal
Pass @ Normal

Up to about 0.85
Up to about 0.65
Up to about 0.50

Pass @ Normal Up to about 0.85

Family 8: x = 0.8 limit
Family 9: x = 0.7 limit
Beta children with equal probabilities
Family 10: x = 0.9 limit
Family 11: x = 0.8 limit
Family 12: x = 0.7 limit

Pass @ Normal
Pass @ Normal

Does not pass
Does not pass
Pass @ Normal

Pass @ Normal
Pass @ Normal

Pass @ Normal
Pass @ Normal
Pass @ Normal

Up to about 0.65
Up to about 0.50

Up to about 0.50
Up to about 0.25
Up to about 0.10

Note: All families meet the first criterion (that is, maintenance of mean and variance) as they are derived from Equations (5)—(8).

ax: mean placement.

"Does not pass: The integrated cost distribution fails @ 20% to fit both a Normal and a Beta distribution.

‘Pass @ Normal: The integrated distribution passes @ 20% to fit a Normal distribution, but fails @ 20% to fit a Beta distribution.
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of CC increases with the value of x for both cost items,
that is, from 0.1L-0.1L (x = 0.1 limit for cost item 1
and x = 0.1 limit for cost item 2) to 0.9L-0.9L. Within
the range investigated herein, the number of child distri-
butions (that is, 3, 5, and 7 factor conditions) has little
influence on the value of CC. As presented in Figure 8,
the standard deviation of the project cost increases with
the value of x. In quantitative terms, the project stan-
dard deviation when both cost items are highly sensitive
to factor j (take the 0.7L-0.7L scenario for example) is
24%(= [$1.75K — $1.414K]/$1.414K) greater than when
the correlation is neglected.
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Fig. 8. Changes of standard deviation for two cost items.

Wang

3 Child Distributions

16 3 Factors
2 Factors

W/ Correlation
Slope =0.69

1 Factor

— — —

6

4 + — — — — —

T T W/O Correlation
Slope =0.13

0

Standard Deviation (in $K)
oo

1 1 1 1 1 1 1 1 1 J

10 11 12 13 14 15 16 17 18 19 20
Number of Cost Items

Fig. 9. Standard deviation for multiple items by different
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4.3 Scenarios with multiple identical cost items

Scenarios involving between 10 and 20 identical cost items
are analyzed to reveal the impact of correlation with an
increasing number of cost items and factors. Although the
mean and standard deviation of each cost item are main-
tained at $10K and $1K, respectively, the number of factors
varies from one to three. A mean placement x = 0.7 limit
is applied to represent each family of child distributions.

4.3.1 Results. Figure 9 illustrates the results of the stan-
dard deviation of project cost for various numbers of cost
items. The project standard deviation increases as more cost
items are involved, regardless of whether correlations are
considered. Specifically, the slope with correlation analyses
is about 0.69 (the increased standard deviation divided by
the number of cost items involved), while without corre-
lation analysis it is about 0.13. However, considering cor-
relations significantly increases project standard deviation.
For example, correlations produce an increase of 83.5%
(from $3.16K to $5.8K) and 160% (from $4.25K to $11K)
in standard deviation for the 10-item scenario and 20-item
scenario, respectively. The above figure also reveals that the
standard deviations of the projects are roughly the same,
regardless of the number of factors involved, provided the
total cost distribution is held.

4.4 Example project

An example for a building project is used to compare the
results obtained using COSTCOR with two analyses that do
not consider correlations: a standard PERT analysis (PERT)
and a Monte Carlo simulation, carried out using normally
distributed costs with the same mean and standard deviation
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Table 2
Comparisons of W/O Correlation and COSTCOR analyses

COSTCOR
Project cost* PERT  W/O Correlation normal  Scale 1 ~ Scale 2 Scale 3
Mean 150° 149.97 150.06 149.69 150.33
Standard deviation 5.69 5.32 13.46 12.63 13.26
Minimum cost N/A 132 117.96 118.65 117.05
Maximum cost N/A 167.49 184.25 184.09 184.38

2The results are evaluated considering all factors.

All data are expressed in thousands (K).

as COSTCOR’s total cost distribution (W/O Correlation
Normal). Meanwhile, three different scale systems (scales
1, 2, and 3) are applied to investigate the effect of the scale
system. This project comprises 20 direct-cost division items
and 4 indirect-cost division items (that is, insurance, tax,
profit, and contingency). COSTCOR requires two types of
inputs, the three-point cost estimates for each division item
and the qualitative estimates of the sensitivity of each divi-
sion item to various factors. The scale of scale 1 is as fol-
lows:

Scale 1

we[H] =16 wp[A] =12 wg[L] =8 wg[No] =0
wp,[Yes] =12 wp,[No] =0
wes[H] =7 Wrs[A] =5 wps[L] =3 wp[No] =0
wry[H] =4 Wr[A] =3 wpy[L] =2 wpy[No] =0
wrs[H] =3 wps[A] =2 wps[L] =1 wps[No] =0

where “H”, “A”, “L”, and “No” represent high, average,
low, and no sensitivity, respectively. “Yes” and “No” are
used to describe the sensitivity of cost items to F2. F1-F5
represent owner approval, weather, material delivery, labor,
and equipment, respectively.

Meanwhile, scales 2 and 3 (which exaggerate the differ-
ences between high, medium, and low sensitivities) are as
follows:

Scale 2
wp[H =8  wp[A]=5 wpy[L] =1 wp[No] =0
Wy, Yes] =8 wp,[No] =0
wps[H] =8 wps[A] =5 w3[L] =1 wg;5[No] =0
wra[H] =8 wpy[A] =5 wry[L] =1 wpy[No] =0
wps[H] =8 wps[A] =5 wps[L] =1 wps[No] =0
Scale 3
wr [H] =100 wp,[A] =10 wp [L] =1 wp,[No] =0
wp,[Yes] = 100 wp,[No] =0
wp3[H] =100 wps[A] =10 wes[L] =1 wps[No] =0
wpy[H] =100 wpy[A] =10 wpy[L] =1 wpy[No] =0
wps[H] =100 wps[A] = 10 wps[L] =1 wps[No] =0

4.4.1 Results: Project cost. The project costs obtained
from various analyses (PERT, W/O Correlation Normal,
With Correlation scale 1, scale 2, and scale 3) are com-
pared using several metrics, namely the mean, standard
deviation, minimum, and maximum project costs. Table 2
lists the analytical results and yields the following obser-
vations:

e The mean and standard deviations for PERT and W/O
Correlation Normal are approximately the same because
of the effect of the central limit theorem (Moder et al.,
1983).

e The analytical results with and without correlation anal-
yses reveal very little difference in mean project cost.
Restated, the correlation affects the variance rather than
the expected cost.

e Correlation produces a project cost that may be signif-
icantly lower than expectations (for example, $117.96K
for scale 1 versus $132K for W/O Correlation Nor-
mal) or significantly higher than expected (for example,
$184.25K for scale 1 versus $167.49K for W/O Corre-
lation Normal). Restated, increased variability in project
cost increases the uncertainty of completing the project
within a specified budget. The correlation effect thus has
the potential to create an unexpected cost overrun.

e The project standard deviations of the three With Cor-
relation analyses are 153%, 137%, and 149% higher
than for the W/O Correlation Normal analysis for scales
1, 2, and 3, respectively. For this example project, the
choice of scale systems does not markedly affect the
analytical results, which fact applies even in the case of
scale 3 (highlighting the differences between sensitivi-
ties), because the correlation effect determined by scale 3
is enhanced only when most activities have high sen-
sitivities to the same factor or factors. If only a few
activities are highly sensitive to the same factors (such
as the case for this example project), the correlation
effect on the total project cost may not be greatly high-
lighted by employing an exaggerated scale system (such
as scale 3). The correlation effect tends to be dominated
by the lower-sensitivity factor cost distributions, rather
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than the higher-sensitivity ones. Figure 10 illustrates the
correlation coefficients when cost item 1 is fixed at the
x = 0.3 limit (low sensitivity) with varying x (varying
sensitivities) for cost item 2. In the figure, although a
high value of x leads to a relatively high correlation coef-
ficient, the highest correlation coefficient is only around
0.28 (for 0.3L-0.9L scenario). Nevertheless, the exagger-
ated scale 3 system influences the relative priorities of
the factors as more variance is distributed to the parent
distributions due to higher sensitivities.

4.4.2 Results: Uncertainty sensitivity. Table 3 summarizes
the results of uncertainty sensitivity to F1, F2, F3, F4, F5,
and all factors of project cost for different scale systems.
For scales 1 and 2, the project cost is most sensitive to
F4 (labor), followed by F1, F5, F3, and F2. This infor-
mation tells management that controlling the quality and
availability of labor deserves special attention. Meanwhile,

Wang

in scale 3, which increases the difference between high,
medium, and low sensitivities, F1 becomes the most sen-
sitive factor rather than F4. Notably, the PERT and W/O
Correlation Normal models are unable to provide this type
of sensitivity information.

4.5 Comparison of COSTCOR with
a theoretical model

Comparing the accuracy of COSTCOR and existing simu-
lation models may not be feasible due to the lack of suf-
ficient field data (such as cost data and factor sensitivity
information for a set of cost variables). However, COST-
COR’s performance may be further distinguished by com-
paring the results of COSTCOR to those of a well-known
theoretical model.

In the theoretical model, the standard deviation, STD
DEY, of the project cost (sum of a number of cost items)
can be defined as (Benjamin and Cornell, 1970)

2
gy

3> 2(piyxof % (15)

i=1 h=i+1

1
STD DEV* =) o7 +
i=1

)

where o; and o, are the standard deviations of the total
cost distribution for cost items i and h, respectively. p; , is
the correlation coefficient for a pair of cost items, i and h.
The example used in section 4.3 for scenarios involving
10 to 20 identical cost items is also considered here. The
mean and standard deviation for each item are held at $10K
and $1K, respectively. COSTCOR assumes only one factor
is involved, and the x = 0.7 limit is applied to a family of
three Normal child distributions for each item. Following
Touran and Wiser (1992), the values of p, , relating each
pair of cost items are taken to be 0.1, 0.5, and 0.75 for the
theoretical model. (0.5 is a randomly selected value.)

4.5.1 Results. Figure 11 compares the standard deviation
of project cost for various numbers of cost items. For this
example, COSTCOR’s results (using the x = 0.7 limit to
represent high sensitivity) are closer to those obtained by

Table 3
Uncertainty sensitivity of project cost by scale systems

Standard deviation

Factors Scale 1 Scale 2 Scale 3

1. Owner approval 7.9857% [2]° 6.8174 [2] 10.8664 [1]
2. Weather 1.5813 [5] 1.9488 [5] 1.7313 [5]
3. Material delivery 2.7240 [4] 1.9603 [4] 3.8811 [4]
4. Labor skills 8.3092 [1] 8.9019 [1] 5.7696 (2]
5. Equipment breakdown 6.7841 [3] 5.5836 [3] 4.0056 [3]
All factors 13.46 12.63 13.26

2All data are expressed in thousands (K).

°[ ] indicates the rank of the sensitivity with respect to a given factor.
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Fig. 11. Standard deviations from COSTCOR and the
theoretical model.

the theoretical model using a correlation coefficient of 0.5.
The ability to obtain correlation values, as displayed in
Table 1, may suggest that the mean placement, x, used in
COSTCOR should be set as high as the 0.85 limit to rep-
resent a high sensitivity, such that the value of 0.75 (max-
imum correlation coefficient in Touran and Wiser’s [1992]
database) can be captured.

4.6 Benefits of COSTCOR

The theoretical and current simulation models are limited
by their need for correlation coefficient data, which are not
easily available. Although the theoretical model may give
much more precise solutions than do the simulation mod-
els, the latter provide the distribution of cost that is essen-
tial to probabilistic estimation and risk analysis (Touran
and Wiser, 1992). COSTCOR, a simulation-based model,
requires only reasonable and qualitative inputs (such as
high, medium, and low uncertainty sensitivities) to evaluate
indirectly the impact of correlation. A valuable improve-
ment of COSTCOR over existing models is its capac-
ity quantitatively to derive the factor sensitivities with an
emphasis on the importance of controlling and understand-
ing the factors that influence cost.

A simulation-based model, NETCOR (Wang and Dem-
setz, 2000), was recently developed by the author to eval-
uate schedule networks with correlated activity durations.
The COSTCOR model may be considered to be an exten-
sion of NETCOR. The main difference is that COSTCOR
addresses project cost, while NETCOR is concerned with
project time. Project cost is the sum of individual cost
items, whereas project time depends on the degree to which
activities are concurrent.

5 CONCLUSIONS

This work has developed a simulation-facilitated factor-
based model, COSTCOR, that allows correlation between
cost items to be considered in cost analysis. The COST-
COR model is based upon the two-step breakdown of
uncertainty. The first breakdown separates uncertainty
on the basis of factor for each total cost distribution;
that is, total cost distribution = base cost + cost distri-
butions. The second breakdown separates uncertainty on
the basis of condition for each cost distribution; that is,
cost distribution = family of child distributions (that is,
costs given factor conditions). Correlation is introduced
by sampling from the child distribution representing a
given factor condition. The use of qualitative estimates to
describe the effect of factor-based uncertainty should make
the user more comfortable in providing inputs than other
approaches.

The correlation between cost distributions is caused by
their sharing the same factor(s). However, cost distributions
sensitive to the same factor may not be correlated because
the outcomes of any shared factor may not remain the same
over a long period. Restated, correlation can be time depen-
dent. Two outdoor cost items (for example, concrete and
masonry) that are highly sensitive to weather may not be
correlated if the construction tasks associated with these
cost items are scheduled over different days or in differ-
ent seasons. Nevertheless, if the second-level cost items are
applied to COSTCOR and the factors involved are clearly
defined, it is reasonable to attribute any correlation to the
sharing of factors.

The COSTCOR model can be applied to either the
cost category (division item) level or individual cost item
level, depending on the application. Several examples have
confirmed the effect of correlations on project cost. The
example project also demonstrates how COSTCOR can
provide management with information on the sensitivity
of various factors to project cost. Future research direc-
tions could include exploring ways to capture non-Normal
cost distributions and total cost distributions; implement-
ing time-dependent and non-time-correlated cost variables;
collecting field data to justify child and cost distributions,
the values of mean placement x, and the values of the cor-
relation coefficient; and applying COSTCOR more widely.
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