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Abstract

In practice, modeling an assembly system often requires assigning a set of operations to a set of workstations. The aim is to
optimize some performance indices of an assembly line. This assignation is usually a tedious design procedure so a significant
amount of manpower is required to obtain a good work plan. Poor assembly planning may significantly increase the cost of products
and reduce productivity. However, these optimization problems fall into the class of NP-hard problems. Finding an optimal solution
in an acceptable time is difficult, even using a powerful computer. This study presents a hybrid genetic algorithm approach to the
problems of assembly planning with various objectives, including minimizing cycle time, maximizing workload smoothness,
minimizing the frequency of tool change, minimizing the number of tools and machines used, and minimizing the complexity of
assembly sequences. A self-tuning method was developed to correct infeasible chromosomes. Several examples were employed to
illustrate the proposed approach. Experimental results indicated that the proposed method can efficiently yield many alternative

assembly plans to support the design and operation of a flexible assembly system.
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1. Introduction

Fig. 1 illustrates how the production of a product or a
system involves many parts or operations. This depen-
dence raises an assembly line modeling problem that
requires a set of tasks to be assigned to a set of
workstations and establishing workstations with a set of
tools and machines, such that constraints are satisfied
and some performance indices are optimized. Usually,
the number of workstations, cycle time, workload
balance, and other factors, are used to measure the
performance of an assembly line. Indeed, a feasible
assembly plan can increase production efficiency and
reduce the cost of a product. Furthermore, assembly
planning can facilitate concurrent engineering in pro-
duct development, operations and system analysis, to
enhance the quality of a particular system. Such a
problem is a multi-objective problem.

A flexible assembly system is usually employed to
fabricate the products in small batches and meet many
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specific orders, to serve quickly and responsively service
customers in a competitive environment. Recently,
assembly line planning problems have received con-
siderable attention. These studies can be classified as
addressing one of a number of production optimization
problems, including the well-known assembly line
balancing problem (ALB) (Ponnambalam et al., 2000;
Kim et al., 1996), the tooling problem (Lazzerini and
Marcelloni, 2000), and many routing and scheduling
problems (Leu et al., 1996; Song et al., 2001). Although
many heuristic algorithms have been employed to solve
these problems, a problem that involves m workstations
with n tasks requires time O(m’n) to find the optimal
solution (Lucertini et al., 1998). A typical NP-hard
optimization problem cannot be solved in polynomial
time. Finding an optimal solution in an acceptable time
is thus difficult, even using a powerful computer.
Although the above problems have been extensively
studied, as surveyed by Tai (1997), only a few companies
utilize published techniques to balance their lines,
because, models usually only consider ‘“‘contact-base
precedence relationships” when assigning operations to
the workstations. The “contact-base precedence rela-
tionships” are generated from the connection relation-
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Fig. 1. Precedence diagram of the assembly tree. The upper symbol of
node means the process time and tooling.

ships of two parts—no contact (translatable), attached
and fastened (non-translatable). Only the number of
workstations and the cycle time are considered. Pon-
nambalam et al. (2000), while also considering multi-
objective assembly planning, focused on the objectives
of line balance, line efficiency, and optimization of
smoothness index, according to contact-base precedence
relationships. Importantly, an optimal assembly plan
must simultaneously consider crucial factors, including
physical and geometrical constraints, similarities among
assembly operations, the frequency of tool changes, and
others. These factors are frequently considered to be
marginal in an assembly system and may strongly
influence the performance of the system.

According to Lucertini et al. (1998), effective assem-
bly line modeling can reduce the number of tools or
machines used and can eliminate a bottleneck in a
production line. In a flexible assembly system, bottle-
necks are often caused by the transportation network.
Part transfer minimization must be considered when
addressing traffic problems and considering set-up costs.
Although Lucertini et al. pointed out several important
facts to evaluate the performance of the production line,
they lacked a clear approach to finding the optimal
solutions.

Based on evolutionary computation techniques, ge-
netic algorithm (GA) methods have received much
attention and have been applied successfully in many
research fields over the last decade (Fogel, 1995; Gen
and Chen, 1997; Runarsson and Jonsson, 1999). Hol-
land initially introduced the GA, which is a global
search technique (Holland, 1975). GA explores the
solution space using concepts taken from natural
genetics and evolution theory. During the search,
candidate solutions in the solution space are encoded
as symbolic strings, known as chromosomes. The search
algorithm analyzes and extracts superior evolving
information from the search space, and guides the
search in a pre-specified direction. Indeed, the GA

method is robust and effective in various task domains
(Mak et al., 1998; Onwubolu and Mutingi, 2001).

This study presents a hybrid GA approach combined
with a self-tuning method to solve the problem of
assembly line planning. Initially, several well-known
heuristic methods are used to generate some feasible
solutions. These solutions are then included into the
randomly derived population of evolving pool. The goal
of including heuristics solutions in this population is to
reduce the search space from the size of the global space,
thereby reducing the searching time. The proposed
tuning mechanism can maintain effective schemata of
chromosomes to prevent the generation of incorrect
precedence relationships in the assembly. Based on the
“Schema Theorem™ of Goldberg (1989), effective sche-
mata can enhance the GA process. Exhaustive search or
mathematical programming methods theoretically guar-
antee optimal solutions, but are infeasible for solving
complex problems due to their unacceptable computa-
tion. This study aims to reduce evolution times and
improve the quality of the solutions obtained.

An example including 20 operations and six work-
stations was presented to elucidate the effects of the
proposed approach. The experiments were run in three
phases. Firstly, the experiments were tested by the pure
GA method. Secondly, the problem was solved by
conventional heuristic methods. Finally, the solutions
generated by the heuristic methods were introduced into
the evolving pools used by the pure GA method and
then retested by the proposed method. Experimental
results showed that the proposed method can signifi-
cantly improve the quality of solutions obtained by
conventional heuristic methods. The proposed method
can also efficiently yield many alternatives of assembly
plan to support the design and operation of a flexible
assembly system.

The rest of this paper is organized as follows: Section
2 defines the problem of assembly line modeling. Section
3 describes the GA. Section 4 considers the numerical
experiments involving the proposed method. Conclu-
sions and areas for future research are finally discussed
in Section 5.

2. Problem statement and method of solution

A product’s assembly relationships can commonly be
represented as a weighted acyclic graph G(NV, A) (Fig. 1),
where the node (V) weights represent the time, tools and
others, required to perform the tasks of assembly and
the arcs (A) represent the precedence constraints of
assembly. In the assembly tree of G(N, A), if arc (i,)) € A,
then a workstation w may perform task j only when the
sub-assembly that results from task 7 is available on
workstation w. This study assumes that if no precedence
relationship exists between i and j, then these tasks can
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be executed in parallel and performed on different sub-
assemblies. Consider a set (W) of w flexible work-
stations, W =1,2,...,w. A workstation weW can
execute only one task at a time, and preemption is not
permitted.

In practice, the contact-base feature is usually
employed to represent the precedence relationships of
the product. A planner can successively assign tasks to
workstations according to the precedence diagram.
However, the contact-base precedence diagram cannot
effectively express the complexity of the assigned
assembly relations. A poor assignment may increase
the operational time. For example, the assembly
drawings shown in Fig. 2 can be transformed into the
precedence diagram in Fig. 3. If the assignment of Part b
precedes that of Part e, then the difficulty of putting Part
e into Part f is increased.

This paper employs the idea of penalties to express the
complexity of assembly relations to prevent the poor
assignment. The use of penalties allows many criteria to
be considered simultaneously in assembly planning. The
penalty represents the cost incurred (for example, by
increasing operational time) by following an unsuitable
or infeasible assembly sequence. For example, the
penalty index is set to zero if part i is not violated by
part j; the penalty index is set to another number if the
assignment is poor, such that the operational time
increases, and is set to a large number when the
assembly relation is prohibited. Other crucial factors in
assembly planning, such as the frequency at which tools
are changed, the similarity of assembly operations, the

o)

Fig. 2. An example of assembly diagram.

Fig. 3. An example of contact-base precedence diagram.

quality of the assembly, and others, can be evaluated
using the penalty index. A small penalty index is
generally assigned to a beneficial assignment. Table 1
presents an example of penalty weightings of some
crucial factors.

The penalty matrix of an assembly plan can be
synthesized from the penalty index of respective crucial
factors, using Eq. (1). p; represents the penalty index of
crucial factors between parts i and j; m is the number of
crucial factors evaluated, and wy is the weighting of
those crucial factors. In practice, the planner can decide
to set the weightings to different values

m
P,:/ = Zwk Xp,jk. (1)
k=1

Assembly line modeling problems have been con-
ventionally classified into two types—Type I and Type
IT (Hackman et al., 1989). In Type I problems, the
required production rate (cycle time), assembly tasks,
tasks times, and precedence requirements are given.
Designing a new assembly line is generally such a
problem whose objective is to minimize the number of
workstations. In Type II problems, the number of
workstations or production employees is fixed. The aim
is to minimize the cycle time. Type I problems often
occur when a factory wants to produce the optimum
number of items using a fixed number of workstations
without adding new machines. This study focuses on the
Type 11 problem.

Optimal solutions of the ALB problems have typically
been obtained by following a heuristic approach, such as
those of maximum ranked positional weight (Helgeson
and Birnie, 1961), maximum total number of follower
tasks (Brian and Patterson, 1984), minimum total
number of predecessor tasks (Elsayed and Boucher,
1994), maximum task time (Kilbridge and Wester,
1961), minimum reverse positional weight (Elsayed
and Boucher, 1994), and others. However, these
approaches can only solve the problem of a single
model and deterministic task time. This study seeks
various Pareto optimal solutions to the problem of
multiple objective assembly line modeling. A Pareto
optimal solution is one where no other solutions are
superior to the solution in all objectives. This study
employed a GA approach to search for Pareto optimal
solutions in parallel by maintaining a population of
solutions. The solution procedure is summarized as
follows.

Step 1: Employ heuristic methods to obtain feasible
solutions.

Step 2: Randomly generate an initial population.

Step 3: Insert the solutions derived from heuristic
methods into the initial pools.

Step 4: Validate and adjust the chromosomes of the
population.
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Table 1
An example of penalty index in different assembly relations

Penalty index Description

@OI\'—O
O O W

Simple work, forced precedent sequence, direct or absolute above relation

A little difficulty, need careful operation, tools changing infrequently, close above relation
Very difficult, easily damage the component, tools changing frequently, loose above relation
Prohibit, no any relation

Step 5: Employ GA to evolve the population.

Step 6: Check the stop criteria. If a match exists, then
stop; otherwise, go to Step 4.

The system objectives are expressed as follows:

Minimize f'1 = ¢t where ct is cycle time, 2)

Maximize f2 = cs

where cs is workload smoothness, 3)

Minimize /3 = ft
where f is the frequency of tool changes, 4)

Minimize f4 = tn
where tn is the number of tools, ®)

Minimize 5 = tp
where #p is the total penalty of assembly relations, (6)

Subject to : the workstations and

the precedence relationships are given. N

In practice, minimizing cycle time can increase yields.
Maximizing the workload smoothness can balance the
loads of respective workstations. The objectives shown
in Egs. (4) and (5) can reduce the cycle time and the
required capital investment, respectively. Minimizing
the total penalty can lower the complexity of assembly
relations.

3. Genetic algorithm and application

LibGa (Corcoran and Wainwright, 1993), coded in C
language, was employed to simulate the given problems.
LibGa provides complete source codes for GA and a
friendly interface for users to define both the objective
function and the GA parameters. This study uses Turbo
C+ + to code the objective function and the tuning
function, based on the presented algorithm, and then
links these functions to LibGa to generate the execution
program. The GA parameters are stored in a standard
text file, which can be modified by any text editor. While
the LibGa is running, the GA parameters are auto-
matically loaded into the LibGa.

3.1. Genetic algorithm

The genetic search process used herein is outlined
below:

Step 1: Generate a random initial population of
chromosomes of size P.

Step 2: Decode all chromosomes and evaluate the
objective function of their corresponding candidate
solutions.

Step 3: Determine the fitness values of the chromo-
somes using the predetermined objective function.

Step 4: If the elitism policy is employed, insert the best
chromosomes into the new generation pool.

Step 5: Choose a pair of parent chromosomes from
the current population without replacement. Apply the
crossover and mutation operators to yield a pair of new
chromosomes.

Step 6: Insert the new chromosomes into the new
population. If the new population is smaller than P,
return to Step 5.

Step 7. If the pre-specified stopping criterion has been
met, then stop the search process. Select and decode the
overall best chromosome to be the final solution.
Otherwise, proceed to the next generation and replace
the population with the new one, and return to Step 2.

3.2. Chromosome representation

A string scheme is required to encode the candidate
solutions in the form of symbolic strings, called
chromosomes, to solve the studied problems by the
GA technique. Integers are employed to represent the
operation of assigning task to workstation in successive
number of 1,2, ..., N, respectively. Fig. 4 presents an
example of encoded strings that involves three tasks and
three workstations.

Tasks|
. a b c
Workstation
w1 1 2 3
W2 4 5 6
W3 7 8 9

Fig. 4. An example of the encoded strings for assigning tasks to
workstations.
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Encoding: A candidate solution can be encoded as a
string by a permutation of {1,2,...,N} to form a
chromosome. For example, “2-1-4-3-5-6-8-7-9”" is one
possible chromosome in the example shown in Fig. 4.

Decoding: A feasible solution can be decoded from the
given chromosome. For example, string of ““1-4-5-2-9-6-
8-7-3” can be decoded as, Task a is assigned to
Workstation W1 (String 1), b to W2 (String 5), and ¢
toW3 (String 9), according to the encoded string in
Fig. 4. Strings 4 (Task a), 2 (Task b), 6 (Task c), 8 (Task
b), 7 (Task a), and 3 (Task c) are dummies.

Self-tuning: Occasionally, the sequence of genes in a
given chromosome may violate the precedence relation-
ships. A self-tuning mechanism is used here to alter an
infeasible chromosome, as follows:

Step 1: Input a gene in sequence from the chromo-
some processed.

Step 2: Validate the sequence of the given gene.

(1) If the gene satisfies the precedence relationships,
then assign it to the corresponding workstation and
store it in the correct gene record; if the gene is a dummy
string (the corresponding task has been assigned) then
store it in the correct gene record; otherwise,

(2) Put the gene into the backlog of bad genes.

Step 3: Inspect the backlog of bad genes.

(1) If the backlog of bad genes is empty, then go
Step 4,

(2) Inspect the precedence relationships of every gene
in the backlog record:

(a) If the gene is a dummy, then remove it from the
backlog record and put it into the correct gene
record,

(b) If the gene satisfies the precedence relationships,
assign it to the corresponding workstation and
remove it from the backlog record; then, put it into
the correct gene record; otherwise,

(c) Reserve the gene in the backlog record.

Step 4: Check the primary chromosome. If it is empty,
then go to Step 6.

Step 5: Go to Step 1.

Step 6: Return the correct gene to the population.

3.3. Selection operation

The selection policy employed herein is a combination
of the rotating roulette wheel strategy and the elite
strategy. The elite strategy can force the best surviving
chromosomes, based on the fitness values of the current
generation, into the next generation. The chromosomes
with higher fitness are more likely to become parents of
new chromosomes. The reproduction gap defined in the
GA configuration file determines the proportion of elite
chromosomes. The best chromosomes in the last
generation are copied directly into the next generation.

Rotating the roulette wheel to determine which one will
be chosen from the old pool as the parent, facilitates the
selection of the remaining chromosomes that form these
new generations. Notably, two chromosomes are
selected in each cycle. Then, crossovers and mutations
are employed to process the pair of parent chromo-
somes, and thereby breed a pair of offspring.

3.4. Crossover operation

Although LibGA provides 10 crossover methods,
only “ORDERI1”, “ORDER2”, “PMX” and
“CYCLE,” which are suited to permutation processing,
are employed here. The procedures of each method are
briefly described below.

ORDERI: Initially, select two random crossover
points. Then, the offspring inherits the elements between
the two crossover points from the selected parent, in the
order and position in which the parent appeared. The
remaining elements are inherited from the other parent
in the order in which they appeared in that parent,
beginning with the first position, followed by the second
crossover point, and skipping over all elements that are
already present in the offspring.

ORDER?2: Select four random crossover points as key
positions to determine the order in which these genes
appear in one parent and are subsequently imposed on
the other parent to produce two offspring.

PMX: Randomly select two crossover points. Then,
the offspring inherits the elements between the two
starting positions in one of the parents. Each element
between the two crossover points of the other parent is
mapped to the position of this element in the first
parent. Then, the remaining elements are inherited from
the other parent.

CYCLE: Randomly select a crossover point as a cycle
starting point. The offspring inherits the element at the
starting point of the selected parent. The element that is
located in the corresponding position in the other parent
cannot then be placed in this position, and thus it takes a
position in the selected parent from which the offspring
then inherits it. This procedure is repeated until the
initial item in the unselected parent is encountered,
completing the cycle. The offspring inherits from the
unselected parent any elements that are not yet present.

The crossover operation is processed whether or not it
is determined by a value generated randomly. If the
value exceeds the crossover rate that was established in
the configuration file of GA parameters, then the clone
operation, rather than the crossover operation, is
performed.

3.5. Mutation operation

The swap method is used herein as the mutation
operation. The swap procedure randomly selects two
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points to determine the two changing points of the
selected parent. The mutation operation is processed
whether or not it is determined by a value generated
randomly. If the value exceeds the mutation rate
established in the configuration file of GA parameters,
no mutation is performed and the selected parent is
passed directly into the new generation.

3.6. Fitness function

A weighting function (Eq. (8)) is derived from the five
objective functions specified in Section 2 to evaluate the
fitness values (FV') of a given chromosome and thereby
simultaneously consider the many criteria of the given
problem. In Eq. (8), w; represents the weighting values
of objectives. A smaller 'V means that the chromosome
is more likely to survive to the next generation. In this
study, several combination values of w; were used to test
for finding the optimal solutions

5
FV =Y wif. ®)
i=1

4. Numerical example
4.1. Experimental example

An example, shown in Fig. 1, is used to demonstrate
the proposed approach. It involves six workstations and
20 tasks. Table 2 lists the process times and tools used
for each task. One tool change was assumed to take 3s.

Table 2
Process time and tool of the given example

Task Process time Tooling
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Fig. 5. The encoded strings of assigning relationships.

Encoding: Fig. 5 shows the assigned relationships
among tasks and workstations, in string form. Although
there are 120 relationships, there are only 20 effective
ones. For example, assigning the task, f, to a different
workstation can be encoded as 6, 26, 46, 66, 86, and 106.
If string 26 is in front of the other five strings in a given
chromosome, then the other five strings become
dummies.

System objective evaluation: The system objectives
were measured by the performance indices of cycle time,
workload smoothness, number of tool changes, number
of tools and machines used, and complexity of assembly
relationships. The respective objects were evaluated as
described as follows:

Cycle time: The cycle time equals the longest process
time on any workstation.

Workload smoothness: The workload smoothness can
be calculated as below

21 (CT — PT)
n b

Workload deviation = )
where CT is the cycle time, PT; is the process time of
respective workstation, and » is the number of work-
stations.

Minimizing the workload deviation can maximize the
workload smoothness.

Number of tool changes: It is determined from the
frequency of tool changes in successive operations.

Number of tools and machines: It is the total number
of tools and machines used in respective workstations.
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Fig. 6. The penalty index matrix of the given problem.

Complexity: It is determined from the penalty index,
shown below

TP = X;P;, (10)

where Xj; = 1, if the assembly sequence i to j is selected,
and is zero otherwise. Pj is the penalty index of the
assembly sequence i to j. Fig. 6 shows the penalty indices
of assembly relations in the example problem.

4.2. Experiments and results

The experiments were performed in three phases.
Phase 1 used the pure GA method to generate feasible
solutions. Phase 2 employed four conventional heuristic
methods to compare the results generated by the
proposed method. Phase 3 insert the solutions derived
from heuristic methods into the initial pools of Phase 1
and retested them using the proposed method. All
experiments were run on a PC with a Pentium III
processor at 600 MHz.

Phase 1: The experiments were run 4800 times with
various combinations of GA parameters, as shown in
Table 3. Table 4 summarizes the experimental results,
which show that a larger pool can improve the quality of
the solution. However, increasing the pool size signifi-
cantly increases computation times. The results also
show that the GA approach can yield multiple feasible
solutions (for example, matching the criteria of 20-1.2-4-
14-32, 21-1.2-6-11-2, 21-2.2-4-10-0, etc.). Hereafter, the
symbol, “x-x-x-x-x"’ represents the criteria concerning
cycle time, workload deviation, number of tool changes,
number of tools and machines used, and the complexity
of the assigned assembly sequences, in order.

Phase 2: The four popular heuristic rules used for
comparison are as follows:

Table 3
GA parameters of the experiments

Parameter Value

Reproduction gap 0.1,0.2,0.3,04, 0.5

Crossover rate 0.6, 0.5,04,0.3

Mutation rate 0.05, 0.1, 0.15, 0.2

Pool size 30, 60, 100

wl-w2-w3-wd-w5 1-0-0-0-0, 1-1-1-1-1, 3-1-1-1-1, 3-1-1-1-3,
(weighting value) 3-1-3-1-3

wl: weight of cycle time, w2: weight of workload smoothness, w3:
weight of number of tooling change, w4: weight of number tooling and
machine, w5: weight of assembly complexity.

HI1: Maximum ranked positional weight (Helgeson
and Birnie, 1961). Assign the tasks based on the
positional weights of Wi = Max (4; + ., ), where
t is the process time of the assigned task, S; is the set of
tasks which must succeed Task i.

H2: Maximum total number of follower tasks (Brian
and Patterson, 1984). Assign the tasks based on the
positional weights of Wy, = Max (Ns;), where S; is the
set of tasks which must succeed Task i.

H3: Minimum total number of predecessor tasks
(Elsayed and Boucher, 1994). Assign the tasks based on
the positional weights of Wy; = Min (Np,), where P; is
the set of tasks which must precede Task j.

H4: Maximum task time (Kilbridge and Wester,
1961). Assign the tasks based on the positional weights
of Wyu4 = Max (¢;), where ¢ is the process time of the
assigned task.

Tables 5 and 6 list the positional weights of tasks of
the four heuristic methods and the generated solutions,
respectively. A comparison with the results summarized
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Table 4

The solutions of pure GA approach

Weights (w;) Criteria Pool size

30 60 100

1-0-0-0-0 Avg. value 27-5.8-9-14-23% 26-4.9-9-14-24 25-3-10-15-18
Min. value 23-2.2-8-14-27 21-0.7-7-13-25 20-1.2-4-14-32
Times (s) 78.7 247.7 646.9

1-1-1-1-1 Avg. value 27-5.6-10-15-11 26-5.2-9-14-9 25-3.6-9-14-7
Min. value 22-0.7-9-15-12 22-2.2-6-12-2 21-1.2-6-11-2
Times (s) 143.8 406.3 1093.6

3-1-1-1-1 Avg. value 27-5.4-9-14-15 25-4.4-9-14-11 24-3.2-9-14-9
Min. value 22-1.7-7-13-8 22-2.2-6-12-4 21-2.2-4-10-0
Times (Is) 139 463.4 1067.3

3-1-1-1-3 Avg. value 28-5.8-11-16-9 27-5.4-10-15-7 25-3.7-9-15-7
Min. value 22-1.2-8-13-7 22-2.2-6-12-4 21-1.2-6-11-2
Times (s) 133.5 463.6 972.8

3-1-3-1-3 Avg. value 28-6-10-15-10 27-5.7-9-14-8 25-3.9-8-14-6
Min. value 22-1.2-8-13-7 22-2.7-5-10-9 21-1.2-6-11-2
Times (s) 144 432.2 1116.9

427-5.8-9-14-23 represents the objectives of cycle time, workload deviation, number of tool change, number of tooling, and complexity of assembly

relations, respectively.

Table 5
Positional weights of tasks for the four heuristic methods

Method Positional weight of tasks (Wy;)

a b c d e f g h i ] k 1 m n o p q r s t
H1 38 35 32 41 33 30 26 19 33 30 22 28 25 19 16 30 21 14 11 7
H2 7 6 5 7 6 5 4 3 6 5 4 5 4 3 2 3 2 2 1 0
H3 0 1 2 0 1 2 6 7 0 1 2 0 1 5 14 0 1 0 18 19
H4 3 3 6 8 3 4 7 3 3 8 3 3 6 3 5 9 10 3 4 7
Table 6
The solutions of the four heuristic methods
Method Assigning sequences Criteria Running times (s)
H1 d,a,b.e| i,c.f] j,pl l,g,m| k,q,h,n| o,r,s,t 25-2.7-11-14-30 0.9775
H2 a,d,b.e| i,c,f,1| j,g| k,m,h,n,r| p,q| 0., 23-3.2-6-10-18 1.0925
H3 a,d,il| p,r.b| e;m,j| q,c| f,k,n,g| h,o,s,t 23-2.7-7-12-24 1.145
H4 p.d| g,a,b| c.e,fii| j,g,h| k,Lm,n| o,r,s,t 25-3.7-9-14-23 1.21

in Table 6 reveals that the GA method yielded solutions
(Table 4) superior to the best non-GA heuristic
techniques. However, the execution time for the GA
method is much greater than non-GA methods because
GA searches for global optimal solutions and thus
requires more iterations.

Phase 3: The experiments were also run 4800 times
with various combinations of GA parameters, as shown
in Table 3. Table 7 lists the experimental results, which
show that the proposed method can significantly

enhance the quality of the solution and can reduce
computation times. The experimental results also show
that a small pool can generate a good solution, like a
larger one (for example, with a size of 30). Although the
small pool size cannot yield a minimal solution (one of
which is “20-1.7-3-9-14"), it significantly reduces the
computational overhead.

The feasible solutions were extracted and decoded
from the final evolving pool, according to the minimal
total fitness. Occasionally, these solutions must be
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Table 7
The solutions of the hybrid GA approach
Weighting (w;) Criteria Pool size
30H 60H 100H
1-0-0-0-0 Avg. value 21-2.2-4-10-36 21-2.2-4-10-36 20-1.2-4-10-36
Min. value 21-2.2-4-10-36 21-2.2-4-10-36 20-1.7-3-9-24
Times (s) 72.1 166.9 3314
1-1-1-1-1 Avg. value 22-1.7-8-14-15 22-2.2-7-13-13 22-2.3-7-13-10
Min. value 22-3.2-4-10-9 22-1.2-8-14-9 21-2.2-4-10-16
Times (s) 103.7 290.8 587.2
3-1-1-1-1 Avg. value 22-1.3-8-14-17 22-1.3-8-14-16 22-1.3-8-14-14
Min. value 21-2.2-4-10-16 21-2.2-4-10-25 20-1.7-3-9-14
Times (s) 80.4 207.8 570.9
3-1-1-1-3 Avg. value 22-1.7-8-14-14 22-2.5-8-14-12 22-2.7-8-13-8
Min. value 22-2.7-5-11-9 21-2.7-7-13-9 21-1.7-5-11-11
Times (s) 105.7 317.5 540.5
3-1-3-1-3 Avg. value 23-1.9-8-14-14 23-2.7-7-13-11 23-3.1-7-13-9
Min. value 22-1.2-8-14-9 21-0.7-7-13-9 21-1.7-5-10-10
Times (s) 107.9 349.5 613.5

filtered by an experienced planner for determining which
solutions absolutely dominate the others.

4.3. Cross analysis by respective GA parameters and
weighting value

The results in Tables 4 and 7 reveal that the weights,
“3-1-1-1-1", generated the highest quality solution.
Generally, the cycle time is a key factor in enhancing
the performance of a production system. A large w; can
reinforce the minimizing effect of cycle time. The cycle
time and workload deviation can be minimized simulta-
neously. In so doing, the w, can be set to a small value.
In this paper, tool changes are assumed to take extra
time, slightly increasing the cycle time; the weighting
value can be set low. The number of tools and machines
is a key factor that determines capital investment, and
must be considered along with other factors. Finally, the
complexity of the assembly relationships may affect the
working speed and the quality of the components: a
higher complexity may lower the working speed and
increase the rework rate. In practice, a planner can
choose one suitable set of weighting values, according to
demand at the plant. The more important objective
must be the more heavily weighted. The experimental
results revealed that the weights, ““3-1-1-1-1"" seem to be
a good combination.

The experimental results were forwardly analyzed by
cross analysis with different gaps, crossover rates, and
mutation rates, to verify the effects of using various GA
parameters with weights, ““3-1-1-1-1" in Phase 3. The

generated results were not sensitive to various GA
parameters. The comparison is omitted to save space.

4.4. Advanced experiments

Several experiments, involving 20 tasks-6 worksta-
tions, 20 tasks-4 workstations, 30 tasks-6 workstations,
and 50 tasks-6 workstations, were advance-tested to
verify the robustness of the proposed method. The
weights, ““3-1-1-1-1"" were used in applying the latter two
methods. The fitness values and running times were used
to compare the improved effects. Table 8 summarizes
the experimental results. The proposed approach
significantly outperforms the traditional GA method,
even using a small population. Fig. 7 shows that the
comparison of converged iterations of two GAs, based
on the experiment of 20 Tasks-6 workstations. The
results also indicated that the proposed method could
yield feasible solutions within an acceptable computa-
tion time.

4.5. Discussion

An assembly line modeling problem generalizes a
wide set of decision problems at different levels of
aggregation, and with diverse business cultures. Em-
ploying different decision variables may yield many
diverse solutions. Clearly, minimizing the cycle time
corresponds to maximizing the production rate of the
plant, whose objective is often the system objective.
However, in practice, the conditions applied to yield a
solution are seldom verified, such as the complexity of
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Table 8

The results of advanced experiments

Experiments Heuristic method Pure GA Hybrid GA

20 Tasks Avg. fitness 119.6 107.2 103.3

6 Workstations Min. fitness 106.2 79.2 76.6
Times (s) 1.1063 368.0 201

20 Tasks Avg. fitness 156.6 131 128.1

4 Workstations Min. fitness 140 112 109
Times (s) 0.9376 208.9 134

30 Tasks Avg. fitness 213.2 175.4 167.3

6 Workstations Min. fitness 196 153.1 148
Times (s) 2.095 408.7 274.5

50 Tasks Avg. fitness 327.6 292.4 276.8

6 Workstations Min. fitness 304.9 258.3 249.7
Times (s) 3.435 592.8 366.6

The two GA approaches are tested by ORDERI crossover method, based on the weights of ‘3-1-1-1-1" and pool size 100.

The comparison of converged iteration

140
130 [
g —— Hybrid|
£ mo - » GA
= l‘;‘; e — Pure-
GA
80 \“0 ]

1 10 20 30 40 50 60 70
Iteration

Fig. 7. The comparison of converged iterations of two GAs. (cross-
over method: ORDERI; pool size: 100; weightings: 3-1-1-1-1).

assembly relations, the number of tools used, and
others. In reality, many solutions can yield approxi-
mately the same cycle time. Consequently, other goals
should be simultaneously considered.

The proposed GA approach can quickly find many
feasible solutions for a given set of criteria. For example,
running one round of the proposed approach yields four
feasible solutions (Table 9). These solutions all meet the
given criteria. However, no one solution absolutely
dominates. For example, Solutions 1 and 2 minimize the
cycle time to 20 but increase the complexity of the
assembly relations; Solution 3 minimizes the complexity
to zero; however, the cycle time is not minimal. The
feasible solutions can be extracted from the final
evolving pool, according to minimal total fitness.
Sometimes, these extracted solutions must be filtered
by an experienced planner who can justify which
solutions absolutely dominate. The planner can choose
one suitable solution in designing the assembly line,
based on the plant conditions. The designer can better
design the product by reducing the complexity of the
assembly relations by reevaluating the penalty indices
thereof, potentially facilitating the design for assembly.

Table 9
Four Pareto optimal solutions of the given example

Solution Criteria Assigning sequences

1 20-1.7-3-9-4 L,j,r,n[p,qlo,s tl],k b mla,
d,e, flc,g h

2 20-2.2-2-8-7 a,d,e,b/f,LLi,j| g h,r,nlc, m,
kl p,qlo,s,t

3 21-2.2-4-10-0 L,j,r,n[p,ql k o, t| b,m,s|a,d,e,
f,1¢c g h

4 21-3.2-2-8-2 i,j,r,n[ p,qlo,s, t b,m, k|a,d,
e,f,llc,g h

The initial population, including the results generated
by the heuristic rules, may be “‘a bad initial solution”.
However, it can reduce the time to converge to solutions
from the global searching space. In such cases, the
mutation mechanism of the GA can prevent the search
direction from falling into pre-matured sub-optimal
points. Experimental results also indicate that slightly
increasing the mutation rate can guarantee convergence
to a result that jumps out from the local optimization.

5. Conclusion

This study presented a hybrid GA approach to solve
the assembly line planning problem. A self-tuning
method was developed to enhance the effective schemata
of chromosome during GA processing. The proposed
method significantly increases the solution quality and
reduces the computation times by combining solutions
of heuristic methods. The proposed approach can more
quickly solve the multi-objective problem while meeting
the criteria of cycle time, number of tool changes,
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number of tool and machine used, and complexity of
assembly relations than conventional heuristic methods
can. Moreover, the proposed approach can find many
feasible solutions in one round of GA testing, helping
the planner to choose a suitable alternative of assembly
plan for modeling a flexible assembly system.
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