
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 5, SEPTEMBER 2002 1137

A Class of Physical Modeling Recurrent Networks
for Analysis/Synthesis of Plucked String Instruments

Alvin W. Y. Su, Member, IEEE,and Sheng-Fu Liang

Abstract—A new approach is proposed that closely synthesizes
tones of plucked string instruments by using a class of physical
modeling recurrent networks. The strategies employed in this
paper consist of a fast training algorithm and a multistage training
procedure that are able to obtain the synthesis parameters for
a specific instrument automatically. The training vector can be
recorded tones of most target plucked instruments with ordinary
microphones. The proposed approach delivers encouraging results
when it is applied to different types of plucked string instruments
such as steel-string guitar, nylon-string guitar, harp, Chin,
Yueh-chin, and Pipa. The synthesized tones sound very close to
the originals produced by their acoustic counterparts. In addition,
this paper presents an embedded technique that can produce
special effects such as vibrato and portamento that are vital to the
playing of plucked-string instruments. The computation required
in the resynthesis processing is also reasonable.

Index Terms—Physical modeling, plucked string instruments,
portamento, recurrent networks.

I. INTRODUCTION

T RANSIENT responses of most acoustic instruments are
very difficult to reproduce. This is also the main reason

that synthetic sounds are not realistic enough with traditional
approaches such as wavetable and FM methods. Model-based
approaches claim to be able to reproduce such dynamics by
modeling the sounding mechanism of a target instrument phys-
ically. There are plenty of works focusing on analysis and mod-
eling of piano soundboards, and top plates and air cavities of
guitars and violins [1]–[3]. Techniques such as finite element
based methods and ray-tracing methods are useful in analyzing
musical instruments but none of them are practical enough to
be used to synthesize musical tones in real-time applications.
The most successful applications of model-based techniques
are compression, synthesis, and recognition of speech signals
by simulating human vocal tracts with a class of digital lattice
filters [4], [5]. Among several physical-modeling music syn-
thesis methods, the digital waveguide filters (DWFs) [6]–[8],
[11] and the wave digital filters (WDFs) [9], [10] are the most
popular and practical ones. An efficient way of applying the
DWF method to plucked-string instruments has been proposed
in [12], [13]. There are some problems with these approaches,
however. First, the synthesizer design is complicated. Second,
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the excitation wavetable takes lots of memory space. Finally,
the solution for special effects such as portamento usually seen
in plucked-string instruments is not addressed.

In [14] and [15], a recurrent network based approach called
scattering recurrent network (SRN) for simulating the vibration
of a plucked string succeeded in synthesizing plucked-string
tones. The structure of the SRN is similar to a lattice filter
because this is the basic form that simulates one-dimensional
(1-D) wave propagation. One of the major contributions of
this approach is that the system parameters can be determined
automatically by using the backpropagation through time
(BPTT) training algorithm [16]. However, there exist some
difficulties when this technology is applied to practical music
synthesis systems. First, structures of musical instruments are
usually too complicated to be modeled by such a simple 1-D
model. Even if a multidimensional architecture is used [17], the
computation for the re-synthesis processing will be enormous.
Second, it is usually difficult to measure the time domain
responses of a played instrument at various positions so that
the measurement can be used as the training vector. Third, the
BPTT method takes lots of iterations to converge. Finally, the
simple waveforms used by SRN as the excitation signals can
no longer produce good synthesis results in any case.

What we want to achieve is to accurately synthesize the tones
for any specific plucked-string instrument with reasonable
cost. Furthermore, it is desired that the synthesizer design
can be done automatically. Therefore, several modifications
to the SRN method are proposed. First, the architectures of
the networks are simplified so that the complexities required
in the training stage and the synthesis stage can be reduced.
Second, the training vectors can be musical tones recorded by
using ordinary microphones. This allows easy measurement for
users without complicate measurement devices. Third, a new
training algorithm modified from simulated annealing resilient
backpropagation (SARPROP) is used to speed up the training
and obtain better system parameters [16], [18]. Fourth, the
excitation wavetable should be kept small in its size and can
be obtained in the training process. It is noted that it is very
difficult for the training to converge to a good solution without
this step. Finally, portamento and vibrato effects should be
embedded.

In Section II, a class of physical modeling recurrent networks
is proposed and the simplified version of the networks is pre-
sented. Its connection with the 1-D string model is described. In
Section III, resynthesis processing with the proposed technique
is presented. In Section IV, a multistage training procedure and
a new training algorithm are presented. Synthesis model pa-
rameters and the excitation signal are obtained in this stage.

1045-9227/02$17.00 © 2002 IEEE
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Techniques to produce vibrato and portamento are described in
Section V. In Section VI, analysis and synthesis works are per-
formed over several plucked-string instruments. Conclusion and
suggestions of future work are given in Section VII.

II. PHYSICAL MODELING RECURRENTNETWORK FOR

PLUCKED-STRING INSTRUMENTS

The basic idea of physical modeling synthesis techniques is
to simulate the dynamic behavior of a musical instrument. The
major problem with this synthesis technique is the determina-
tion of the synthesis model parameters. A recurrent network
synthesis model called SRN [14], [15] was proposed to solve the
parameter determination problem when a simple musical string
is modeled.

The structure of the SRN model is constructed based on the
physical model of an acoustic string and this network is suc-
cessfully used to synthesize some realistic tones for a plucked
musical string that was analyzed by SRN. Morse derived the
1-D wave equation for a vibrating string [1]. The wave equation
of a string with purely resistive loss is

(1)

where is the string tension, is the resistive parameter and
is the string density. Here, the force is assumed to be linearly

proportional to the transverse velocity [2], [15], [19]. The gen-
eral solution to (1) can be obtained as

(2)

where is the traveling wave speed. is used
to represent the displacement of a vibrating string as the func-
tion of position and time. Let the sampling period be, the dis-
crete-time signal representation of (2) is shown as

(3)

Since a real string may not be uniform in its construction, scat-
tering junctions are applied to model a nonuniform string [2],
[19]. If there is a nonuniform junction on a string, let the char-
acteristic impedances of the two sides beand , as shown
in Fig. 1. The right-going traveling wave flowing to this junc-
tion from the left-hand side and the left-going traveling wave
flowing to this junction from the right-hand side are and ,
respectively. The relation among the traveling waves can be de-
scribed as follows (readers can refer to [15], [19] for thorough
physical explanation)

(4)

and

(5)

According to (2)–(5), the SRN model is shown in Fig. 2(a).
Electromagnetic pickups are used to measure the vibration of a
plucked musical string at various sampling positions. The mea-
surement is used as the training vector to obtain the system pa-

Fig. 1. A nonuniform junction where the acoustic impedances on the two sides
are not identical.

rameters with the BPTT method [16]. In the synthesis phase, the
initial excitation is the waveform obtained with an interpolation
method by using the magnitudes of the measurement at
of the pickups. Fig. 3(a) shows such an initial excitation of SRN
for the modeling of a Chin E string. In our experiments, simple
triangular-like waveforms can be used as the initial excitation to
simulate the “plucks.”

Although SRN succeeds in synthesizing the tones of plucked
strings, it fails to be the synthesis model of a musical instrument
because a tone produced by a plucked-string instrument is the
combined responses of strings, bridge, body, and air cavity with
respect to a pluck. Several modifications to the SRN method
are proposed for synthesizing string instrument tones. First, the
computation required for the SRN is too large in practice. A
simplified version of the physical modeling recurrent network is
proposed so that the computation required in the training stage
and the synthesis stage can be reduced. The new network struc-
ture is shown in Fig. 2(b). This model consists of three basic
components: processing blocks (PBs), simple delay lines and
two reflective ends. Between two adjacent PBs, there is a pair
of delay lines that make the connection. The PBs simulate the
energy loss as well as the scattering behavior [19]. The struc-
ture of a PB is shown in Fig. 4(a) and the computation is iden-
tical with that of SRN. There are three types of neurons in a PB,
displacement neurons, arrival neurons and departure neurons.
The output of a displacement neuron, denoted by, repre-
sents the amplitude at theth sampling position in PB-. The
outputs of arrival neurons, denoted by and , represent
the right-going traveling wave and the left-going traveling wave
flowing into displacement neuron , respectively. The outputs
of departure neurons, denoted by and , represent the trav-
eling waves leaving and injecting into the right-hand-side
delay line and the left-hand-side delay line, respectively. A pair
of delay lines that connect PB- and PB- is shown in
Fig. 4(b). Within each pair of delay lines, signals pass through
them directly without any modification. Thus, the computation
in the synthesis processing can be reduced. In our experiments,
seven PBs are used in the proposed model and each PB con-
tains three displacement neurons. If the system requires 100 unit
delays from one fixed end to another, the computation cost is
about times of the original SRN model [15]. When a trav-
eling wave meets a fixed end, it will completely reflect back
with opposite phase. The operation of two reflective ends in the
proposed model is shown in Fig. 4(c).

Second, electromagnetic pickups used in [15] can only mea-
sure the string vibration and the result is not what people usually
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(a)

(b)

Fig. 2. The SRN model and the proposed synthesis model. (a) The SRN model for the modeling of musical strings. (b) The proposed new network structure for
synthesis of plucked-string instrument tones.

(a)

(b)

Fig. 3. The excitation waveforms for string modeling and tone synthesis.
(a) The excitation waveform of SRN for the modeling of a Chin E string.
(b) An excitation signal for the synthesis of Chin tone.

hear. Actually, the sound picked up at some distance is closer
to what we hear. Therefore, microphones instead of pickups
are used to obtain string instrument tones as training vectors.
Third, the tone of a string instrument is much more complex
than that of a vibrating string. Simple triangular-like excitation

waveforms cannot be used when such complex waveforms are
analyzed. Since the wavetable size is kept to a minimum in the
SRN approach, it is desired to keep this property. The excitation
wavetable is also obtained in the training process and its size is
equal to the length from one reflective end to the other. Fig. 3(b)
shows the excitation signal for synthesizing a Chin tone. It is
found that this excitation waveform is much more complicated
than the one used in modeling musical strings.

III. SYNTHESIS PROCESSING

The synthesis processing of the proposed model contains two
stages: theinitialization stageand thepropagation stage. In the
initialization stage, the excitation waveform is loaded into the
synthesis model with suitable system parameters obtained from
the training stage. Then, the excitation waveform as Fig. 3(b)
is distributed into the upper and lower tracks in the synthesis
model shown in Fig. 2(b), respectively. After the initialization,
the propagation operation starts to generate the desired synthe-
sized data without any additional information.

Initialization stage
In this stage, an initial excitation waveform has to be pro-

vided. The size of the initial waveform equals to the total delay
length, , in the upper track and lower track of the synthesis
model shown in Fig. 2(b). If the delay length in both tracks is
unit delays, it is computed as

(6)

where is the sampling rate of the synthesis system andis
the fundamental frequency of the desired tone. In our experi-
ment, the size of is only hundreds of samples. Therefore, the
memory cost is much less than that of a Wavetable method as
well as other traditional model-based synthesis techniques that
require longer recorded tone as the excitation signal (thousands
of samples with 44.1 kHz sampling rate) [12]. According to
Fig. 4(a), is the initial magnitude of the displacement neuron

in the PB-, i.e.

(7)
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(a)

(b) (c)

Fig. 4. The three basic components in the synthesis model shown in Fig. 2(b). (a) The structure of a PB. (b) A pair of delay lines that connect PB-(i � 1) and
PB-i. (c) The operation of two reflective ends.

Then, it is equally distributed into the right-going departure
neuron and the left-going departure neuron as follows:

(8)

According to Fig. 4(b), represents the initial magnitude of
the th delay unit of the th pair of the delay lines. Similar to
(8), the initial values of delay buffers are also one half of.

(9)

After the initialization stage is finished, the propagation stage
starts.

Propagation stage
Let the number of PBs be in the physical modeling recur-

rent network and the number of displacement neurons in each
PB be . According to Figs. 2(b) and 4, let and repre-
sent the th delay buffers of theth delay segments in the upper
and lower tracks connecting PB- and PB-, the traveling
waves in the upper and lower tracks can be represented as

(10)

and

(11)

where the upper-track boundary delay buffer receives the
right-going output signal of PB- ,
and the lower-track boundary delay buffer receives the
left-goingoutput signal of PB- .

There are two basic operations in a neuron. The first one sums
the signals flowing into this neuron as the net-input. The second
one is the so-called activation function that is a mapping be-
tween the net-input and the corresponding output. The arrival
neurons receive the weighted outputs from the departure neu-
rons or those from the delay buffers as

(12)

and

(13)

where denotes the net-input of arrival neuron and
is the activation function. These notations are also used in

the following derivations. The displacement neurons receiving
the outputs from the adjacent arrival neurons is obtained by

(14)
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Finally, the traveling waves departing from the displacement
neurons to the nearby segments can be computed by

(15)

and

(16)

Equations (10) through (16) represent a propagation cycle to
produce a synthesized sample for one time step. The synthe-
sized signal is the output of a chosen displacement neuron. Al-
though nonlinear activation functions with trainable parameters
could possibly be used for better performance, it increases com-
putation complexity. Therefore, the activation function for each
neuron is an identity function in all of the experiments and ac-
tivation functions are discarded in the later sections to simplify
our notation.

IV. TRAINING

There are some improvements with the model compared to
the one in [15]. First, a multistage training procedure is used
to obtain multiple sets of synthesis parameters for the varying
characteristics of an instrument. Second, a supervised training
method is used to obtain the synthesis parameters and the ini-
tial excitation waveform automatically. Third, a hybrid-training
algorithm is used to speed up the training and obtain better syn-
thesis parameters.

A. Multistage Training Strategy

The multistage training strategy for the synthesis model
is shown in Fig. 5. The mean square difference between the
recorded and the synthesized tones is used to adjust the initial
excitation waveform and synthesis parameters. In Stage #1, the
initial excitation waveform, denoted by and in (7) and
(9), as well as the first set of the synthesis parameters have to
be determined. This training stage employs the recorded tone
within the interval as the training vector and the
resultant parameters are used for synthesizing a tone from
to . Because the synthesis processing no longer requires
external signals after the initialization stage, it is not necessary
to have the initial input waveform updated after this stage.
Stage #2 begins at by using the recorded tone from to

as the training vector and the second set of parameters is
obtained when this training stage finishes. This procedure stops
when all the training vectors are finished.

B. Training Algorithm

For a recurrent neural network (RNN), BPTT [16], [20] is
a widely used training algorithm that is an extension of the
standard backpropagation algorithm. This algorithm requires at
least 10 000 epochs to converge when it is applied to the pro-
posed synthesis model. In [18], the SARPROP method is pro-
posed for feedforward type networks. This algorithm combines

Fig. 5. The multistage training strategy for determination of model
parameters.

a quick gradient descent algorithm, called resilient backpropa-
gation (RPROP) [22], with a simulated annealing (SA)-based
global searching technique [23]. The RPROP takes into account
the sign of the gradient as seen by a particular parameter instead
of the magnitude of the gradient. The SA involves the addition of
random noise to the parameter updates as well as decreases the
magnitudes of the updates in the training process gradually. The
SARPROP method can indeed converge much faster compared
to the BPTT method. In our experiments, it is found that the
SARPROP method is very sensitive to the learning parameters
and the initial condition of the system parameters. The training
diverges or converges to a totally unacceptable solution for a re-
current network soemtimes.

In this paper, a hybrid-training algorithm consisting of BPTT
and SARPROP as shown in Fig. 6 is used in the training pro-
cedure of the proposed physical modeling recurrent network.
Since this synthesis network is a recurrent neural network,
BPTT is used to calculate the magnitude of the gradient
for each parameter and the corresponding parameter update
value is obtained by SARPROP. In Stage #1, both synthesis
parameters and initial excitation waveform must be updated.
Only synthesis parameters are updated in the other stages.
Particularly, the synthesis network is constructed based on a
simplified physical model of a musical instrument. Therefore,
each of the synthesis parameters has its physical meaning.
The -type parameters simulate the nonuniform characteristics
at various physical positions and the-type ones simulate
the energy decay factors. The initial values of the synthesis
parameters can be reasonable values derived from the physical
characteristics of the target instrument instead of random
values such that the training can be better. This is different
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Fig. 6. The hybrid-training algorithm consisting of BPTT and SARPROP for
the training procedure of the proposed model.

from most other applications using neural networks as their
parameter-finding mechanisms.

The temporal operation of the proposed model can be
unfolded into a multilayer feedforward architecture with
synchronous update. Those who are interested in this can
refer to references such as [15], [21]. A neural network layer
representing one time instant is called atime layer. Since
the synthesized signal is the output of a chosen displacement
neuron, only this displacement neuron can have a teacher
signal that is the recorded tone of the target instrument. The
displacement neuron that generates the synthesized output to

match the desired output is called thevisible neuronand the
remaining neurons are called hidden neurons. In each training
stage, let denote the recorded tone at timeand let the
output of the corresponding displacement neuron, which is
the th displacement neuron in PB-, be chosen as the synthetic
result of the synthesis model. The error signal at any timeis
defined as

(17)

and the error function is defined as

(18)

The total cost function to be minimized in the interval is
defined by

(19)

The gradient values for the-type parameters corresponding to
time layer can be derived as

(20)

where represents the local error of the neuron at
time layer . The gradient values of the-type parameters at
time layer can also be derived as shown in (21) and (22) at the
bottom of the page.

The local error of a displacement neuron can be obtained by
(23). If a displacement neuron is a hidden neuron, its gradient
value can be computed based on the collection of the local errors
of the departure neurons connected with it. If this displacement
neuron is a visible neuron (denoted as), it means that it will
directly contribute the error signal, as shown in (17), to the total

(21)

and

(22)
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cost function. Therefore, this error signal must be involved in
the computation of the local error corresponding to this neuron

otherwise.
(23)

The local error of a departure neuron is obtained based on the
local error of the arrival neuron or the delay buffer connected
with this departure neuron by

(24)

and

(25)

The local error of an arrival neuron is obtained based on the
collection of the local errors of both the displacement neuron
and the departure neuron connected with this arrival neuron and
it can be computed by

(26)

and

(27)

The local errors of the delay buffers in the upper track and the
lower track can be computed as shown in (28) and (29) at the
bottom of the page.

Since the total gradient for each parameter is the sum of the
gradient value corresponding to every time layer, the total gra-
dient for the synthesis parameters in one epoch can be computed
by

(30)

and

(31)

In addition, if the training is in Stage #1, the excitation signal
used in (7) and (9) should be obtained in a similar way. When the
backpropagation computation is performed back to , the
gradient value for the excitation signal corresponding to delay
buffers is computed by

(32)

and the gradient value for initial waveform corresponding to the
displacement neurons is computed by

otherwise
(33)

According to Fig. 6, the amount of gradient values of the
synthesis parameters or the excitation waveform is obtained
by BPTT for each epoch. Then, they are transferred to the
SARPROP [18] to determine the amount of adjustment. The
neural network used in [18] was a multilayer perceptron (MLP)
structure and the initial update parameterwas 0.1. If the ini-
tial values of the network parameters are assigned randomly, it
is found that this approach is not good for our application. Phys-

(28)

and

(29)
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(a) (b)

(c)

Fig. 7. Simulation of left-hand finger-gliding playing behavior. (a) The left-hand finger glides along the string from position A to position B. (b) The left-hand
finger glides along the string from position B to position A. (c) Modified structure of the proposed model for simulating the finger-gliding effect.

ically, the -type parameters are the reflection coefficients and
their range should fall between 1,1 . For the -type parame-
ters, they represent the energy loss factors and the range should
be around unity. The following learning parameters are deter-
mined empirically and found to be useful in many experiments.
The initial update parameter is 0.0001. The temperature
parameter is 0.01. The rest of the constants are set as follows.

.
In [15], the training processing of SRN required at least

10 000 iterations by using BPTT. In this paper, it is reduced to
less than 1000 epochs for each training stage and the results
are superior when SNR tests are concerned. BPTT is used to
update the synthesis parameters and the excitation waveform in
Stage #1 to avoid unstable situation caused by SARPROP.

V. EMBEDDED VIBRATO AND PORTAMENTO PROCESSING

Some plucked-string instruments have no fret. A player’s fin-
gers can glide along strings to produce effects such as wide
range vibrato and portamento. In this section, an embedded ef-
ficient method for such effects is introduced. An example is
shown in the next section.

When a left-hand finger is gliding along a string from position
A to position B, as shown in Fig. 7(a), the length of a vibrating
string becomes shorter gradually and the pitch of the tone also
changes from low to high. On the contrary, when the left-hand
finger glides along the string from position B to position A, as
shown in Fig. 7(b), the length of the vibrating string becomes
longer gradually and the pitch changes from high to low.

Since the proposed model is constructed based on the
physical model of vibrating strings, the length of this model
must change as the gliding behavior stated above to simulate
the vibrato and portamento. In order to realistically produce

Fig. 8. Operations of�-type parameters used for portamento and vibrato. The
solid curve represents the situation that the reflection coefficient of the position
is changed to�1, which makes the junction be totally reflective. The dash
curve represents the situation that the original reflection coefficient is gradually
restored.

the finger-gliding effect, the structure of the delay lines shown
in Fig. 4(b) within the corresponding gliding region has to be
changed to the PB structure shown in Fig. 4(a). For example,
if the -type parameter is 1 and the-type parameter is 0,
the traveling waves in the upper track and the lower track will
pass through the displacement neuron directly without any
modification. Therefore, the proposed model shown in Fig. 2(b)
is changed to the one shown in Fig. 7(c). If we want to simulate
the behavior of shortening the string such as the situation of
shortening the length of the model from position A to position
B, it can be realized simply by changing the-type parameters.

If the original value of is , the value of is decreased
gradually from to along the solid curve shown in Fig. 8.
When equals to , the position becomes a fixed end where
the left-going traveling wave in the lower track reflects back to
theupper trackwithoppositephase.Thismeans that the left-hand
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. Original and synthetic tones of various plucked-string instruments. (a) Steel-string guitar. (b) Nylon-string guitar. (c) Harp. (d) Pipa. (e) Yueh-chin. (f) Chin.

finger pressed firmly on the physical position corresponding to
position B. In this case, outputs of all the displacement neurons
in the region to the left-hand side of position B are forced to zero.
On the contrary, if the value of is restored gradually from
to its original value along the dash curve shown in Fig. 8, the
model is gradually restored to the original situation. The pitch
of synthetic tone will change from high to low.

Vibrato and Portamento effects are actually produced by
combining such shortening and lengthening operations. If the
gliding on the string can be described by a function of time,
the above effects can be easily achieved by changing the-type
parameters of the proposed model according to this function.

The synthesized tones produced with these operations can no
longer sound so similar to the tones produced by the target
acoustic instruments. However, if the initial part of the synthetic
tone is similar to the original, subjects tend to consider that
these two are produced from the same instrument and the
special effects are simply ornaments.

VI. A NALYSIS/SYNTHESIS OFPLUCKED-STRING INSTRUMENTS

The followings are the analysis/synthesis experiments
with respect to various types of plucked-string instruments,
steel-string guitar, nylon-string guitar, harp, Pipa, Yueh-chin,
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TABLE I
THE SIGNAL-TO-NOISE RATIOS OF SYNTHETIC RESULTSCORRESPONDING TOVARIOUS MUSICAL INSTRUMENTS

(a) (b)

(c) (d)

Fig. 10. Short-time-Fourier analysis of the signals shown in Fig. 9(d) and (f). (a) STFA of original Pipa tone. (b) STFA of synthesized Pipa tone. (c) STFA of
original Chin tone. (d) STFA of synthesized Chin tone.

and Chin to demonstrate the performance of the proposed
method. Pipa, Yueh-Chin, and Chin are three Chinese tra-
ditional plucked-string instruments [24]. In each case, there
are 7 PBs in the proposed model and each PB contains three
displacement neurons.

1) Synthesis Results:The analysis/synthesis results are
shown in Fig. 9. Upper part of each subfigure shows the original
tone and lower part shows the corresponding synthesized tone.
The waveforms of the original tone and the synthesized tone are
very close to each other. The SNR for each of the pairs is shown
in Table I. By examining Fig. 10(a) and (b), there are still small
differences coming from the high-frequency components. In
general, if the sounding mechanism of an instrument is less
perfect, the synthesis is more difficult. For example, Pipa,
a lute-like instrument, has a very thin top plate, a nonrigid
bridge and less well-constructed strings [25]. Therefore, its
response is less smooth compared to instruments such as harp
and Chin. This can also be seen on the STFT plots shown in

Fig. 10(c) and (d) that the Chin tone has a smoother decay
pattern compared to the Pipa tone. Although the SNR results
do not look impressed, such performance is not possible in the
past. In fact, most physical modeling synthesis methods can
only reproduce the magnitude part of the frequency response.
In general, the first few fractions of a second of a tone are how
people judge the instrument. Listening tests show that subjects
can find differences between the original and the synthesized
tones but consider that they do sound very similar and regard
that the tones are generated from the same instruments.

2) Portamento Effects:Portamemto and vibrato are fre-
quently used in the playing of many stringed instruments. Chin
is an ancient Chinese plucked-string instrument that consists
of a shallow rectangular-like wooden chamber and seven
strings and is the known instrument that uses portamento and
vibrato most. Since there is no fret on the top plate, the player’s
left-hand fingers can glide along strings to produce vibrato and
portamento effects.
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Fig. 11. The STFT plot of the synthetic tone with portamento effect.

The technique described in the previous section is used
to simulate portamento. Fig. 11 shows the STFT plot of the
simulation. The fundamental frequency is shifted from 190
Hz to 215 Hz. Though the fundamental frequency is shifted
to the desired pitch, the timbre has changed and is different
from the Chin used in this experiment. Because the beginning
transient sounds similar enough to the original, this timbre
difference is usually ignored. Nevertheless, to simulate these
effects without changing the timbre is still an interesting and
challenging topic.

VII. CONCLUSION AND FUTURE WORK

A class of physical modeling recurrent networks is pro-
posed to synthesize musical tones of plucked-string instru-
ments. All the required parameters of the synthesis model
can be efficiently and automatically obtained by a hybrid
BPTT/SARPROP learning algorithm. It is possible to closely
synthesize for a specific instrument if electronic musicians
consider the sound of this particular instrument is indis-
pensable. The approach is also tested over a wide range of
plucked-string instruments and proven to be a very general
method. Based on this synthesis model, portamento effect can
be easily synthesized. Because the training vector is easy to
obtain, it is possible for users to design their own synthesizers.
Although the computation complexity in the resynthesis pro-
cessing is still large, it is close to the computation complexity
of speech synthesis. Based on the rapid progress of current
DSP processor design, computation cost in this range should
not cause much trouble.

Our future works are stated as follows. First, the SNR of
the synthetic tone to the original tone is still not good enough.
Actually, the high-frequency part contributes most of the error.
This will be our major focus. Second, playing techniques play
very important roles in how an instrument sounds. For ex-
ample, Chin has thousands of techniques and each technique
produces a different timbre. How to handle this problem is
a challenging issue. Finally, it is desired to extend the pro-
posed methodology to other types of instruments such as wind

or struck-string instruments. Because different types of instru-
ments have different structures, it is necessary to design suit-
able physical models for them.
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