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Transversal homoclinic orbits in a transiently chaotic neural network

Shyan-Shiou Chen and Chih-Wen Shih?
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We study the existence of snap-back repellers, hence the existence of transversal homoclinic orbits
in a discrete-time neural network. Chaotic behaviors for the network system in the sense of Li and

Yorke or Marotto can then be concluded. The result is established by analyzing the structures of the
system and allocating suitable parameters in constructing the fixed points and their pre-images for
the system. The investigation provides a theoretical confirmation on the scenario of transient chaos
for the system. All the parameter conditions for the theory can be examined numerically. The

numerical ranges for the parameters which yield chaotic dynamics and convergent dynamics provide

significant information in the annealing process in solving combinatorial optimization problems
using this transiently chaotic neural network. Z002 American Institute of Physics.

[DOI: 10.1063/1.1488895

Artificial neural networks mimic the features of real bio-
logical neurons in certain aspects such as linear additivity
for the inputs and strong nonlinearity for the resulting
output. Many individual biological neurons are known to
fire chaotic signals. Coupling an assembly of these chaotic
neurons results in various kinds of dynamical phenom-
ena. This investigation proposes a new analytical method
to detect chaotic behaviors in a coupled artificial neural
network system. A construction scheme for transversal
homoclinic orbits in neighborhoods of repelling fixed
points for the system is developed. We first analyze the
basic structures of the corresponding one-dimensional
single-neuron maps. With suitable formulations on these
one-dimensional maps, the constructions for pre-images
of the fixed points, hence homoclinic orbits, are imple-
mented by the standard Brouwer’s fixed point theorem.
The approach is natural mathematically, as one attempts
to obtain the information on orbits in multidimensional
phase space from the one in low dimension(one-
dimension herein. We also address some convergence
theorem for the system, which is usually necessary in the
applications of neural networks. The whole system thus
exhibits both chaotic and convergent dynamics as the
self-feedback connection weights vary. This theoretical
study not only confirms these dynamics but also provides
more detailed scenario of the chaotic behaviors for the
network. Moreover, establishing the computable condi-
tions which result in these dynamics contributes toward
the applications of the neural networks.

I. INTRODUCTION

global searching ability which prevents the objective func-
tion from getting trapped at local extrerfaln this investi-
gation, we plan to study the chaotic behaviors in a discrete-
time neural network, called transiently chaotic neural
network (TCNN) which was proposed by Chen and
Aihara®~® The model of TCNN can be described by the
following equations: foi=1,...n,

Xi(t+1)=ax;(t) + w; (1) (yi(t) —ag)

+ 2 iy +a, (1.2

j=1]#i
yi(t)=(1+el Xl (1.2)
|wii(t+1)|= (1= y)|w;i (1)]. 1.3

Here,x; is the internal state of neurdn y; is the output of
neuroni; « is the damping factorg;; is the self-feedback
connection weightay, is self-recurrent bias of neuran w;;

is the connection weight from neurgrto neuroni; a; is the
input bias of neuron; ¢ is the steepness parameter of the
output function;y is the damping factofa fixed number with
0<y<1). Equation(1.3) represents an exponential cooling
schedule in the annealing procedtire.

The TCNN is a discrete-time analogue of classical neu-
ral network models. Classical deterministic neural networks
are continuous-time modet$.Most of these models possess
gradient-like structures. Hopfield and Tdnkave adopted
such a continuous-time model to solve certain optimization
problems. Recently, it has been shown that the discrete-time
model TCNN has better global searching ability. Chaotic in-
gredients of TCNN prevent the iterations from getting
trapped at local extreme points of the objective function for

Artificial neural networks have been applied to solvethe application problems. The TCNN admits chaotic behav-
many information processing and combinatorial optimizationiors for certain parameters as well as asymptotic convergence

problems with considerable succéssin using the networks

to fixed points for some other parameters. One can then tune

as computational methods to solve combinatorial optimizathe parametefor example, the so-called temperature in the
tion problems, chaotic behaviors for the system can provid@nnealing proceggo obtain better solutions’

We shall investigate the existence of snap-back repellers

aAuthor to whom correspondence should be addressed. Electronic maifof the TCNN. The existence of snap-back repellers implies
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the existence of transversal homoclinic orbits. Certain sense

© 2002 American Institute of Physics



Chaos, Vol. 12, No. 3, 2002 Homoclinic orbits 655

of chaos can then be concluded, according to the theorem by x;(t+ 1) = ax;(t) + w;; (y;(t) —ag;)
Marotto? see also Ref. 10. Marotto’s theorem generalized N
the results by Li and Yorké on chaotic behaviors in one-

) . y . . . + Z oyt +a;. (1.9
dimensional difference equations to the ones in multidimen- j=T,#i

sional systems. This theorem, as quoted in Appendix C, iNqp 54 s by settingy;; to constants, we study the behaviors of
dicates that with the presence of snap-back repeller, thgl_4) for different parameters, including; , as the approach
phase space possesses a topological structure which includgsrefs. 7 and 8.(1.1)—(1.3 can be regarded as a skew
infinitely many periodic points and a scrambled set. Verysystem of(1.4) over (1_3)_1516 There is a dynamical corre-
erratic behaviors of the system then occur, including the lackpondence between iterations (@f1)—(1.3) and evolutions
of global stability for solutions, and the existence of an un-of (1.4) away from the parameters at bifurcation values.
countable collection of orbits which do not eventually ap-  The existence of snap-back repellers and the construc-
proach any periodic points. tion of transversal homoclinic orbits for TCNN are the main
There is a considerable computational difficulty in deter-€xposition of this work. For application purpose, we intend
mining the existence of snap-back repellers of multidimeni0 present our results within the complete set of parameters
sional systems. Such difficulty arises from the unstable strudl the original model. The analysis and parameter conditions
tures of the dynamics for the system. For TCKINL)—(1.3), for these discussions in Secs. Il and IV are rather involved.

the convergence of dynamics and the chaotic behavior in thle'herefore, we plan to sketch these ideas in a simplified situ-

sense of Marotto have been studied in Refs. 7 and 8. Th%tIon n _Sec_. Il In Sec. 1il, we formulate a one-dimensional
map which is analogous to the single neuron map. Several

results therein on the existence of snap-back repellers A&mmas to be used in the later sections are derived. The

undgr sever.all asgumptlons on the parameters. One _Of tt?e‘?dstence of snap-back repellers for multidimensional TCNN
cru.C|aI conditions is thaty;; , the seIf—feedbagk connectlon' (1.4) will be discussed in Sec. IV. In Sec. V, we generalize
weight, has to be large enough. In fact, their arguments inghe result on the existence of a Lyapunov function (b
volve taking wj; to infinity. This is due to the uses of a from symmetric connection weigfitso cycle-symmetric
mathematical technique, namely, the Urabe’s propositiongnes!” Precise statements on convergence to fixed points of
With our approach, all the parameter conditions are explicithe system will also be addressed. In addition, the parameter
and can be examined numerically. Substantial parts of theonditions for the existence of Lyapunov function and those
regime of chaos and the regime of convergence can then Wer the existence of snap-back repellers are compared. In
concluded theoretically, as shown in Secs. IV and V. Sec. VI, we shall provide several numerical illustrations on
We shall analyze the existence of snap-back repellers bife parameter ranges and computations of the Lyapunov ex-
making use of certain structures in the corresponding onePonent for the parameters in the chaotic regime. Some proofs
dimensional maps. Based on the formulation for these map®f the lemmas and proposition in Sec. Il are given in Ap-
the parameter ranges for the existence of fixed points can HRENdiX A. The statements of the Gerschgorin’s theorem and

determined and the pre-images of these fixed points can 8¢ Marotto's theorem are quoted in Appendixes B and C,

constructed, in the multidimensional systems. These prer_especuvely.

images form the homoclinic orbits for the respective fixed

point. Our constructions actually indicate the existence of

infinitely many homoclinic orbits for a single snap-back re- Il. ILLUSTRATIONS OF SNAP-BACK REPELLERS

peller. Hence, the investigation also provides more detailegdOR TCNN

scenario of dynamics for the system. Moreover, our results ) o

are not limited to the dimensions of the problems. As for the Ve shall sketch the ideas of finding snap-back repellers
investigations in utilizing suitable low dimensional maps toand constructing pre-images of repellers for TCNN in this

study high dimensional maps, Mardfgresented a scheme secyon. Detalleq ana!yS|s and precise statements with verifi-
cations will be given in Secs. Il and IV.

to study two-dimensional problems by perturbing related According to the definition of snap-back repeller for a

scglar equations. That result has.b.een applied to prove tr}ﬁap F (see Appendix G to assure that a repellét is a
eX|stle3nce of transversal homocllnlc orbit _for the rida _snap-back repeller, we have to find a neighboch(JE; r

map:~ However, not all feasible perturbations were esti- ot X such that all eigenvalues @F(X), XeB(X:r), ex-
mated in these works. ceed unity in norm, and a point,e B(X;r) (called snap-

TCNN system(1.1)—(1.3) may not be chaotic. In fact, 5. poin such thatF™(X,)=X and detDF™(X,))#0 for
for certain parameters, the system settles at steady states &sme positive integem. If this is the case, then one of the
time tends to infinity. Restated, every orbit of the systemprhits throughX, is a transversal homoclinic orbit for the
tends to a fixed poirft‘.1 Our resultin Sec. V is related to such map.
dynamical properties. To study the transiently chaotic behav- We start our illustrations of snap-back repellers from
iors of the system, we shall analyze the dynamics of TCNNsome one-dimensional unimodal maps in Fig. 1. We assume
at fixed self-feedback connection weight. Namely, instead othat the slopes a for the mappings in Fig. 1 all have their
considering(1.1)—(1.3), we shall analyze dynamics of the absolute values greater than one. Thlss a repeller for
following iteration map: every graph of Fig. 1. Notice that certain backward orbiXof
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FIG. 1. With X, as a snap-back point, fixed poiitis a snap-back repeller ib), (c), (d), but not in(a).

enters intoaneighborhoodE‘, in (b), (c), and(d) of Fig. 1.  the constructed snap-back point for the fixed point with

Therefore,X is a snap-back repeller ib), (c), and(d) of ~ F"(X0) =X, OF X, or X;. Notably, F in shaded areas in
Fig. 1, if further condition on the slope of the map in a Fig. 2 reads as two unimodal maps glued together. Though
the left-lower part is upside-down, pre-images for fixed

pointsx; andx,, underF can be found in a manner analo-
gous and symmetric to the ones in Figéc)land Xd), re-

neighborhood ofX is imposed. In(a) of Fig. 1, one simply
cannot find points in the backward orbitsXf which lie in a
unstable neighborhood .

Let us consider the one-dimensional TCNN. For 1,
(1.4) becomes

F(X)=ax+ wgao(x)+a, (2.1 y=%

wheregao(x) :=(1+e ¥¢)"1—a,. Here, to avoid complica-
tion from the parameters, one may simply take the parameter
values aa=0, a=—2.5,w=50,8;,=0.5,=1. The graph

of such F is depicted in Fig. 2. We locate the points

P1,P2,P3,P4 Where F'(p;)=F'(p3)=—1, and F'(py)
=F'(p4)=1. Moreover, it can be computed tHat(x)>1 if

i

=F(x)

xe QM={x:p,<x<p,}, and F'(x)<—1 if xeQ'=={x:x Xe

<ps} or xe Q" :={x:x>p,;}. Notably, F has three fixed

pointsx; e Q' X,,e O™, andX,e Q" (“1,” “m,” “r” are as Ry,

left, middle, righy. The pre-images of each of these fixed ~ A

points will be constructed also in these regions. In doing so, Qy O 92

on the one hand, we always hai# (x)|>1 for any pointx  fig. 2. One-dimensional TCNN wita=0, a=—2.5, =50, a,=0.5,
in these regions. On the other hamE™(Xy) #0, if Xgis  e=1.
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spectively. In the right-upper part, finding pre-images forwq-go(£,) [respectively, w»19o(€1)] as h. Then the one-

fixed pointsx, andx,, underF are exactly the same as in
Figs. 1c) and Xd), respectively. We note th#&t is not sym-
metric to the origin. Therefore, the configurationdobn the

dimensional map f,(x) =F(x,&,) [respectively, f,(x)
=F,(£,,x)] has a fixed point in each of the three regions
Q'™ Q. Herein, these three regions correspond to the pa-

right-hand side and the left-hand side need to be CO”Sider%meterSa, , p, &, k in the one-dimensional mafp With

separately, as far as the parameter conditions are concerngfege properties, it can be shown that there exist nine
In general discussions in Sec. lll, the properties for the(3n n=2) fixed pointsx,,, “*", " e{l,m,i, of the

slopes ofF and these separating poings—p, will be as-
sured by conditiofPC-1-3 or (PC-2-3. The graph in Fig. 2

two-dimensional magF, using the Brouwer’s fixed point
theorem. Each of the nine regiofls, , contains exactly one

can be shifted upward or downward without changing thesgy nese fixed points(See Fig. 3.

slope properties. Thus, one certainly needs conditi¢R€-
1-b) or (PC-2-h in Sec. lll] to guarantee the existence of
fixed points for F at proper locations. To construct pre-
images for each of the fixed poinis,X.,,X;, appropriate
configurations are required for the graphkaf For instance,
F(p;) and F(p,) should be larger thar-(X,) and one
should avoid the situation like Fig(d) in right-upper shaded
part or left-lower shaded part df in Fig. 2. Conditions
(PC-1-9 or (PC-2-9 in Sec. Il are responsible for such re-

quirements, though they are actually formulated for a family

of one-dimensional TCNNSs.

Now let us consider the two-dimensional TCNN. bet
=(X1,X2), F(X1,%X2)=(F1(X1,X2), Fa(X1,Xp)). Equation
(1.4) with n=2 becomes

F1(X1,X2) = aX;+ 0g,(X1) + @190(X2),

Fa(X1,X2) = aXo+ 0g,(X2) + @2190(X1)-

Here, go(x)=(1+e *¥*)"* and for simplicity, we setp
=ag,=3ap2, a;=a,=0. To avoid complication from param-
eters, one can take the parameter valueswas—2.5,w
=50, p=0.5,e=1 again.

For constructions of the pre-images for each of these
fixed points, we again utilize the formulations of the one-
dimensional map$f,,}. Let us illustrate the construction for

the middle fixed pointX,me Qmm. Write Xpm= (X1,%5).
Consider the equatiors;(Xq,X5) =X1,F2(X1,X5) =X5, that

(2.9
(2.6

axXi+ ©g,(X1) + ©1,90(X2) =X,

aXp+ ©g,(X2) + ©2190(X1) =X;.

Let us work on the left-lower region in Fig. 4. For any fixed
Xo= &, e R, the graph of ,(x) =F1(x,§,) intersects the hori-
zontal liney=X; at two pointsx; ™™, x; ' (see Fig. 4
Similarly, for any fixed x;=¢&;€R, the graph off,(x)
=F,(&,,x) intersects the horizontal ling=x, at two points
x; '™, x,; 1. Restated, for any fixed¢(,&,), there corre-
spond  four points X; Moo M), (gt xptM,
(x; P x; M), and &; ™x; ™), which belong to{},,
Qimy Oy, andQ,,,,, respectively. It follows that four map-
pings are produced. Namely:(£;,&,)— (X 2% x5, 1),

X
where §,x)=(l,1),(I,m),(mJ]),(m,m). A fixedzpoint

Analogous to the one-dimensional case, we need tgy;* % 1*) for each one of these mapping$ gives a

know the eigenvalue properties Bf-(x) for x in the phase
plane. Notably,

a+wg,(X)

w2190(X1)

w1290(X2)

DF(Xl,Xz): a—i—wg;(xz) .

(2.2

Since|gg|=< 1/4e, by Gerschgorin’s theorem, the eigenval-

ues of DF(Xq,X,) will have their norms greater than one
if |a+wg;(xl)|>1+ (k/4e), and |a+wg;(x2)|>1
+ (k/4e), where k=max|w;y,|w4|}. On the other hand,
since 0<gy<1, the following inequalities hold for atk,,
Xp:

f(x)=Fi(xy, %) =F(xp), (2.3
f(x2) <Fa(xy, %) =F(xo), (2.4

where, for xeR, f(X)=ax+wg,(x)—k and f(x):=ax
+ 0g,(x) +k. One then performs similar process finf as

solution to(2.5), (2.6), and hence a pre-image ®f,,, under
F. Notably, &; »™,x, ™ coincides with the fixed poifmm
(see Theorems 4.1, 4.20ne thus obtains three pre-images
of Xpum IN Oy, Oy Oy, as the construction is restricted to
the left-hand part off,. Similar construction can be per-
formed for the right-hand part df,.

For further pre-images of,,,, we consider the follow-
ing equations:

— 1,
axy+ wg,(Xy) + @190(X) =X

aXy+ wgp(xz)"‘wzlgo(xl):z;l'*,
where “*" " %" e{l,m} if the left-hand part off,, is con-
sidered and *",** "' e{r,m} if the right-hand part of, is
considered. Figure 3 presents such a scenario on the plane.
Fixed pointx,, in the middle region has a first pre-image in
region Q,,, O, andQ,,,. Each of these pre-images can

in one-dimensional case. To obtain eigenvalue properties dfave their further pre-images back{,y,. In Sec. lil,(PC-

DF(x) mentioned following(2.2), we locate the points

P1, P2, P3, Pa, SO that the slopes of (and f) at these
points are either & (k/de) or —1— (k/4e). Under further
condition[(PC-1-b or (PC-2-h in Sec. Ill], for everyh with

—k<h=<k, fy(X):=ax+wg,(x)+h (hencef<f,<f) has

1-¢) and (PC-2-9 involving assumptions on the upper map
and the lower mag give sufficient conditions for this sce-
nario to take place.
In order to have these pre-images tend back towgpg
a compactness property on the regions is needed. Thus, we

three fixed points in suitable regions. Accordingly, for anyfurther restrict these constructions to subregiddg, of

fixed x,=&,e R (respectively, any fixed;=¢&; e R), take

Q, .. Precise confirmations for constructing these first pre-
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images of fixed point and further pre-images are all imple-Lemma A.1 in Appendix A describes several basic properties
mented through Brouwer’s fixed point theorem agd@iheo-  for the functionsL , ,L _ . The motivation for locating these

rems 4.1 and 4)2 points at which the slopes of are 1+ (k/4e) and —1

— (k/4e) is to get control on the eigenvalues for the deriva-
IIl. BASIC LEMMAS AND THE ONE-DIMENSIONAL tive of the multidimensional mafi.4) in certain regions of
TCNN the phase space, as to be seen in Sec. IV. Herein, to save

notations, in(3.3), (3.4, we take Vo 47+ w=(i|o|)

To study the multidimensional mai.4), we elaborate :
. ' . X (iy]|4n+ w|)=—|o| |49+ < n +
on an analogue of the single neuron map. For fixed param-<g |47+ ol |o[v]47+ 0], as @<0 and 4+o

eterse #0 anda,w,p,ke R, we consider the following one-

: . In this presentation, we consider four groups of param-
dimensional map:

eter conditiongPQ) for the parameterse(a,w,p,k). They

f(x) = ax+ wg,(x) Tk, (3.1 are labeled by(PC-1), (PC-2, (PC-3, and (PC-4. Each
—xlen— (PC-) contains up to three subconditiofRC-j-a, (PC-j-b),

g,(x):=(1+e ") " =p. (3.2 (PC-j-0. There are several versions f@PC-j-0), as to be

Note thatg,(x) is a vertical shift ofgo(x)=(1+e X&)~ 1, described later. For simplicity, we focus our discussions

the output function in(1.2). The role ofp is asag; in (1.1) mainly on the condition$PC-1) and(PC-2. Let us describe

and (1.4). The range ofp in observing interesting chaotic these conditions successively,

phenomena is€ p<1, as the consideration in Refs. 7 and 8.

We thus confine ourselves to<(p<<1. Throughout this (PC-1-3 &>0, 8(1+a+£

presentation, we considék=0 and discuss mainly the 4e

casee>0. To investigate the parameters which give rise to

shap-back repellers fof in (3.1, we locate the points As

P1, P2, P3s, and pg; such that f'(p;)=f'(ps)=-1

— (kl4e) and f'(p,)=f'(ps)=1+ (k/de). It can be com-

puted that, p=eL, (s(1+a+ (K/4e))), Po=eLi(e(~1  (pc.og =0 8(_1+Q_L)>0, <0,

+a—(klde))), pz=eL_(e(1+a+ (k/de))), and p, 4e

=¢eL_(e(—1+a— (k/de))). Herein, for a fixed parameter

w, the functions, ,L_ are defined as As

<0, w>0,

k
— - >0.
1+« 48)4-(1) 0

k
1+a+ —) + w<O0.
4e

27
L+(m):=Log— 27—t Novinto 33 Notably, withe,k=0, (PC-1-a impliesa< — 1 and(PC-2-2

5 implies >1. Under(PC-1-3 or (PC-2-3, p1, P2, P3, and
L_(7):=Log U _ (3.4) p, are well defined. It follows from Lemma A.1 that the
—27—w— \/5\/47;4—(0 order amongp,, P», P3, P4 can be determined. Moreover,
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FIG. 4. Configuration fof ,f,,,f under the conditioiPC-1-a,-b,-6)). (@) Configuration forf, f,, ,f. (b) Blow-up of the shaded area (), X; € O, is the first

coordinate of a fixed poink; *' andx; ™

the slopes off on the intervals partitioned by, ,p»,P3,Pa

are two pre-images of; underf,, lying in ﬁl ,ﬁm, respectively.

wherehe R with —k<h=<k. It follows thatf<f,<f and

can be estimated. The proof of the following lemma is givenfk:]‘c, f_.=f. Corresponding to this setting, further param-

in Appendix A.

Lemma 3.1. (i) If (PC-1-a holds, thenp;>p,>p4
>ps. In addition, f'(x)>1+ (k/de) for p,<x<p, and
f'(x)<—1— (klde) for x>p; or x<ps3. (i) If (PC-2-a
holds, then p,>p;>ps;>p,. In addition, f'(x)<—-1
— (k/4e) for ps<x<p, andf’(x)>1+ (k/4de) for x>p, or
X<Pg.

Set, for conditiongPC-1 and (PC-2, respectively,

0'={xeR|x=<pg}, OM={xeR|ps<x=p,},

Q"={xeR|x=p,}, (3.5

Q'={xeR|x=p,}, QM={xeR|ps=<x=p.},

Q" :={xeR|x=p,}. (3.6
Herein, “l,” “m,” and “r" mean °“left-hand region,”

“middle region,” and “right-hand region,” respectively. Ac-
cording to the above setting} is partitioned into five re-

gions. The snap-back repellers and their homoclinic orbits
for (3.1) to be constructed will be located in the three regions

(3.5 or (3.6). Configuration forf satisfying (PC-1-a and
(3.5 is as illustrated in Fig. 2.

The following formulation on a family of one-
dimensional maps analogous {8.1) is prepared for the

study on the multidimensional magl.4). For fixed
a, w, e#0, 0<p<1, andk>0, we consider
F(x)= ax+ 0g,(X)+K, (3.7
f(x)= ax+ wg,(x) -k, (3.9
fr(X) = ax+ wg,(x)+h, (3.9

eter conditions for £, a,w,p,k) are formulated as follows:

-« k

(PC-1-b  g,(p)>———P1+ -,
-« k
gp(p3)<7p3—5-

1-« k

(PC-2-B  g,(p2)>——P2— .
l-«a k

9,(Pa)< p p4+5.

Each of these conditions imposes a restriction on the family

of maps{f,}. The configuration fog, with the parameters
(e,a,w,p,k) satisfying(PC-1-b is illustrated in Fig. 5. No-
tably, ax+ wg,(X)+h=x if and only if y=g,(x) andy
=[(1— a)x—h]/w. Thus, under condition€PC-j-g, (PC-j-

-axis
85 k
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FIG. 5. (PC-1-h means that the pointpf ,g,(p,)) is higher than the point
(p1, [(1- @)/ 0] p1+ (K/w)); the point (P3,9,(ps)) is lower than the
point (ps, [(1— @)/ w] p3— (k/w)). (Note that[ (1— a)/w]>0, ©>0.)



660 Chaos, Vol. 12, No. 3, 2002 S.-S. Chen and C.-W. Shih

y=x

Vel iy
Fen A
QN

ps Py DD

N T e G e

o
=
>

(a)

[)3 ]74 p2 pl
(b)

FIG. 6. (a) satisfies(PC-1-a,-b,-6)) with f~'(x™)>max{f(ps),f(ps)}. (b)
satisfies(PC-1-a,-b,-6i)) with T~ 2(x™) <min{f(py).f(p,)}.

P e G e e

-
-sg

-
>

b), j=1 or 2, everyf,, in (3.9 has a fixed point in each of the
regionsQ', O™, O". (Notably, these regions correspond to )
the parameters, «,w,p,k.) Moreover, there are two critical
oints forf,, and|fy(x as|x|—o. .y
P Let Gs !n?r(OéL:ew tr|1e| o{fzollowing notations, o 7+ @ satisfies(PC-2-a,-b,-0)) with fﬁlﬁm(f(l)f min{f(ps) (pa)}- (b)
?7“(7]) ffl'm(n) ffl,r( 7) represent the pre-images of satisfies(PC-2-a,-b,-i)) with f~2™(X")>max{f(py),f(p,)}-
under f, which lies inQ', O™ O, respectively. Similar
notations will be used for the pre-images unélek’, ™, &'
represent the fixed points déflying in Q', Q™ Q' respec- Typical graphs forf, satisfying (PC-1-a, -b, -6)),
tively. AnalogouslyX', X™, X' represent the fixed points 6f  (PC-1-a, -b, -6i)), (PC-2-a, -b, -6)), and(PC-2-a, -b, -Gi))
lying in the three respective regions. The following condi-are shown in Figs. @), 6(b), 7(a), and 7b), respectively.

tions guarantees that the fixed pointsfgfare indeed snap- Figure 8, while used to explain trapping regions in Sec. IV,
also provides a configuration for the graphsfgfsatisfying

back repellers foff,:

Y 11um 2 2 (PC-2-a, -b, -Gii)(iv)).
(PC-1-0 (i) T~HEx™>maxf(ps),f(ps)}, The conditions ifPC-j-0), j=1,2, involve pre-images of
certain points undef andf. The following implications pro-

(i) F4sm<min{f(po), F(pa)}. , ! lo :
. 5 . vide more straightforward conditions which can replace

(PC-2-9 (i) f72M&)<min{f(ps).f(pa)}, (PC-1-¢i)), (PC-1-cii)), (PC-2-¢i))—(PC-2-¢iv)), respec-
tively. However, stronger conditions limit the feasible nu-

merical ranges for the parameters, concerning the behaviors

(i) M%) >maxf(py),f(p2)}-
of TCNN we are investigating.

(iit) F=HMEH ™) <py, Lemma 3.2.Assume tha{PC-1-a, -b hold for the fol-
FoLm - xm))) > Ps. lowing items(1)—(2), and(PC-2-a, -b hold for the following
items (3)—(6). Then
i ‘f’fl,m ‘ffl,r om , A A ) )
(V) =P, () F(F(p3))>p, and(F(pa)>p, imply (PC-L-ci),

frimE - Lm L m)) <p . (2) T(f(p1))<ps andf(f(p,))<ps imply (PC-1-ii)),
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FIG. 8. (a) satisfies(PC-2-a,-b,-Gii)). The first coordinates of point&,,

A,, andA; are F~H(x™), F-EmF - (x™) and f1M(FEmE (™)),
f-imE-txm), and

points A;, A,, and A; are f ("),
foLm - LmE=LIgMm)Y), respectively.

3 g,(F(P)>(1- )/ w (f(py) — (K w),

and mir{ f(pa), T(ps)}>py imply (PC-2-di)),
p

@) 9,(f(pa) <(1=a)lw (F(p3)) + (Kl w),
and max f(py), f(p2)}<ps imply (PC-2-¢ii)),

c(iii)),

[@)

f(p1)<ps,

(5) ps>T(f(p1)), f(ps)>p1, andf(p;)<p, imply (PC-2-

12923

FIG. 10. lllustration for the conditiofPC-1) in Remark 3.3pj* corresponds

to the case with parameté&t .

(6) p1<f(f(pa)), T(p1)<ps and f(ps)>p, imply (PC-2-

c(iv)).

Proof. The basic idea of the lemma is to compare the
values off andf at various related points. Figuréah dem-
onstrates the situation of cag@). f(f(ps))>X™ follows
from p,>X™ and f(f(ps))>p,. F(ps)<ps yields F(ps)

e 0'. Accordingly, f ' (F(f(p3)))<f Y(x™), sincef is

decreasing o). Thus,f(ps)<f 1'(X™. Same arguments

apply to the conditiorf(p4)<1v“1"(>v<m). This justifies case

(2).
For case(3), we shall show thatPC-2-ci)) holds. It

follows from g,(f(p1))>[(1—a)/w] (f(py))— (k/w) that
f(p;) may belong to the left shaded region or the right

shaded region. Note thgt,>f >™&') since f(p;)<X'.
With the assumption mifi(ps).f(p)}>p, we have

min{f(ps),f(py)}>F>™K'). This completes the proof for
case(3). We omit the proofs for other cases since they are

respectively. (b) satisfies (PC-2-a,-b,-Gv)). The first coordinates of shaded region of Fig. 9. Witfl(pl)<p3 andp3<5<m imply-
ing f(py)<X™, it is confirmed thaf (p,) belongs to the left

1>f(p3), similar. _
Remark 3.3. It can be observed that ife(«,w,p,k)
satisfies any of the above conditiondC-j-a, (PC-j-b),
(PC-j-di))-(PC-j-div)), j=1, 2, then for G<k*<Kk,
(e,a,w,p,k*) also satisfies these conditions. Figures 10 and
11 demonstrate this observation.
The following proposition concludes the existence of
fixed points and snap-back repellers for the family of one-

dimensional map$f,,}. Its proof is given in Appendix A.
Proposition 3.4.Assume thak>0 and the parameters

(e,a,m,p,k) satisfy(PC-1-a, -b [respectively(PC-2-a, -b].
Let the regionsQ)’, Q™ Q' be as defined 3.5 [respec-
tively, (3.6)] according to the parameters, @, w,p,k). Then

FIG. 9. f(pl) belongs to the left shaded regiofNote that[(1—«a)/w]

>0, 0w<0.)

for everyh with —k=<h=k, the following assertions hold.
There exist three fixed poing, e Q', X'e Q™ and

0]

X e Q', for the mapfy,.
(i)  If the parametersd,a,w,p,k) further satisfy(PC-1-

c(i)) [respectively(PC-2-¢i))], theni{1 and xj' are

snap-back repellers.
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N,

FIG. 11. lllustration for the conditiotPC-1-¢i)) in Remark 3.3.p1* f*

F*, x*'™ correspond to the situation with paramekr.

(iii )

(iv)

In fact, our formulations also provide the following in-
dications. Recall the previous notatigkis X™, &', X", x™, x'.

In addition, =1 (x™ [respectively,f ~*'(X™)] means the
pre-image o™ (respectivelyx™ underf (respectivelyf ),

which lies onQ'" (respectivelyQ').

Proposition 3.5.Let h with —k<h=<k be fixed.
(i)

and &” e Q™ such thatf,,(&') = f,(&") =s.

(i)  Assume that(PC-1-a, -b, -Gi)) [respectively,(PC-
2-a, -b, -¢ii))] hold. Then every s
e[&™F~L(x™] (respectively,f~1™(x"),X']), there

for
exist two points &' € Q" and & eQ™ such that
fn(€)=1n(£") =s.

We use Fig. 1) to illustrate caseii) of this proposi-
tion. Similar results can be derived féPC-2-a, -b, -Gii),
-c(iv)), as demonstrated in Fig. (8. Proposition 3.5 will be

If the parameterse, a,w,p,k) further satisfy(PC-1-
c(ii)) [respectively(PC-2-¢ii))], thenX] andxj, are
snap-back repellers.

If the parameterse,a,w,p,k) further satisfy(PC-2-
c(iii)) or (PC-2-¢iv)), thenxj' is a snap-back repeller.

Assume thatPC-1-a, -b, -G)) [respectively(PC-2-a,
-b, -d(i))] hold. For everys e [T ~1(x™),X™] (respec-
tively, [X',f~2™%")]), there exist two pointg’ e Q'

FIG. 12. lllustrations for Proposition 3.%a) f,(¢')=f,(£")=s, where&’

(respectively£”) belongs to the leftrespectively, rightshaded region. This
figure explains the conditionéPC-1-¢ii)). (b) If seJ; then there is¢’
el;, such thatf,(¢')=s, j=1, 2, 3. This figure explains the conditions
(PC-2-diii )(iv)).

the scenarios in Proposition 3.4 also hold for sufficiently
smallk. On the other hand, ifg, @, w,p,k) satisfies the con-
dition of Proposition 3.4, so does (o, w,p,k*) for eachk*

with 0<k* <k, as seen in Remark 3.3. This observation
indicates that chaotic behaviors take place under the situation

of a fixed nonzero self-feedback connection weightersus
used to construct pre-images of the fixed points for the mulare dominated bk (see Sec. IY. This observation can be

small connection weights between distinct neurons, which
tidimensional maps in the next section. As for an intuitivecompared to the conditions in Refs. 7 and 8, which takes
sense on the parameters in Proposition 3.4, we have the fdie infinity, while holdingk fixed. More than this comparison,
lowing observation. In general, with fixed, «, w, p, the

our methodology actually provides explicit parameter ranges

trated in Sec. VI.

smaller k the more likely that the parameter conditions for chaos on a large scale. The numerical ranges for the
e,a,0,0<p<1 andk=0 satisfy(PC-1-3 or (PC-2-3, then

(PC-) can be satisfied. Furthermore, if the parameterparameters satisfying these conditiofl®C) will be illus-
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11—« k
9p(P2)<——P2~
Qe Qor Q (PC-3-0 (i) F-(&Y<min{f(py),F(pa)},
51,2 (i) F2Mx)>maxf(ps).f(pa)},
X X (i) F2mE-H(xm)<ps,
C*/“I—‘—"? B 0 F-Lm -t -t (xm)))>p
Qém //" / ™m 3 3 19
" () / (iv) T2 L(™)>py,
Py 7= Ll frm -1 (sm) <ps,
k
e 0 (PC-4-3 &<0, 8(l+a+—>>0,
; Qe g 4le|
ey K
2 f,ll,z()vclm) P31 Pa X' PP w<0, 4e —1+a—m +w<0,
11—« k 11—« k

FIG. 13. lllustrations for the regionQ, ,, “*,”** *” e{r,m|}. Succes- (PC-4-b gp(p3)> ps— —, gp(p1)< pi+—,
sive preimages ok, underF are demonstrated in the shaded area, under w w w w

onden(Pe--abw) (PC-4-0 (i) -H(x™>maxt(p.).T(p2)},

(i) F&™ <min{f(ps),f(pa)},
where p;=¢L, (e(1+a+ (ki4e]))), po=eL (e(—1+a
— (k/4le]))), ps=seL _(e(1+a+ (k/4le]))), ps=seL (e
(—1+a— (kidle)))).

For eachh with —k=h=<k, we shall construct the ho-
moclinic orbits off,, in the following subregion€)',Q™ Q'
of O',0™ O, respectively, where, for conditioiPC-1) and
(PC-2, respectively,

~ . IV. SNAP-BACK REPELLERS FOR TCNN
Q'=0'nF~Hxm),xm,
We aim to study the existence of snap-back repellers for

Qm™=0m  Q:=0"'n[xmF(xm], (3.10  the multidimensional TCNN1.2), (1.4) in this section. For
| =)ol S—1mrel convenience of discussion, we s&f= w for eachi. Recall-
Q'=0'N[& TN, ing g, in (3.2, we rewrite (1.4 as the following

~ - n-dimensional mapF:R"—R" with F=(F,...,F,), where
Qm=0m,  Qn=0"n[f M), X, (3.1 e (Fao- )
Figure 13 is an illustration of these regions in the phase
space of dimension two, that is=2, the two-neuron case. X=(Xq,...,Xy), andp;:=ay; is restricted to the intervaD, 1).

For (PC-2-¢iii)(iv)), (3.10, (3.11 should be adjusted to We propose the following upper and lower one-dimensional
maps for each componeht . Let

Fi(X)=axi+ 0g, (X)+2]_1j4j0ijdo(X) +a;, (4.1)

Q'={x|X'<x=<p,},

fi(x)=ax+ +k,
Qm=={X|p3$X$p1}, i(X)=ax wgpi(x) i

Q"={x|p,=<x=&". fi0) = axtwg, () =k,

S no.
The compactness of these regions will be used to assure tl\é\%:)eﬁi)raeﬂ)% ﬁg?agiy I?oraeer\](lzjr?q be; irgatir)fia’p = 15 :Id
ij il). ) y — Pi pi\ i —Pi

convergence of pre-images for fixed points in the next sec* ‘ \ i i
in Proposition 3.4 0<<go(x;)<1 for all x; e R. Following the formulations in

Sec. Ill, we obtainpyj,p,;,Ps;j.P4; for eachi and accord-
ingly, the regionsQ!,Qi’“,Q{, as defined in(3.10 and
(3.11). Consequently, we focus on the mépl) in the fol-
lowing 3" regions:

tion. Notably, the fixed points],, X', X}
(i) lie in Q', Q™ Q' respectively; the assertions in Propo-
sition 3.5 also hold fok in smaller range$)' or Q'

The previous results also hold fer<0. The following
two groups of conditions yield parallel results to the ones in

Lemmas 3.1, 3.2, Propositions 3.4 and 3.5, Qg ={(Xa e X € R”|xler1,...,xneQL”},
(PC-3-3 <0, & —1+a— L)<o, ©>0, wherej;=" 1" or'm" or "T.” ,

4lel Theorem 4.1.1f eachk;>0 and eachd,a,w,p; k), i

K =1,...n, satisfiedPC-1-a, -b or (PC-2-a, -h, then the sys-
del 1+ a+ — |+ 0>0 tem (4.1 has 3 fixed points.
4lel ’ Proof. It follows from the assumption of the theorem
1-a k that every componeri;(x) of the mapF(x) satisfies

(PC-3-b  g,(ps)> Pst

- »’ fiox)=Fi0=fi(x). 4.2
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Consider a fixedel...jn for certainj;=""1" or **‘m’ or
“r. Let( €y,...,60) € Q.. . Then, by Proposition 3.4),
there existél e Q!, £"e O™, ¢eQ!, such that

f=atf oy, (§)+ 2 ogE)ta, @43

where ‘“*" =], “m,” “r.”" Restated, each & is a
fixed point of the one-dimensional mﬁp—>a§i+wgpi(§i)
+E?:1Yl—¢iwijgo(§j,)+ai. Let HQJllnHQMJn be de-
fined by H(&1,....60) = (£1%,....£"). We want to show that
there exists a fixed point fdi. Define G:R"xX R"—R" by

n

Gi(X/aX):Xi_aXi_wgpi(Xi)_]_ 12]_# wijgo(xj,)_air

where i=1,...n. Notably, G(x',H(x"))=0 for every x’
e by (4.3). Now,

J]_"'jn’

G , )
K(X X)=diad x1,---Xnl

x1 0 - 0 0
0 x» . 0 0
= 0 o | (4.4
0 O Xn-1 O
0 0 0 xn
WhereXi=1—a—wg,’Ji(xi), i=1,...n. For x=(Xq,..-Xn)
eQj..j, we have|a+wg”)i(xi)|>1+ (ki/4e) for eachi,

according to Lemma 3.1. It follows th&t is aC* function,

S.-S. Chen and C.-W. Shih

of 3" fixed points of(4.1), due to Theorem 4.1. Each of the
3" regionstl...jn, ji="“1"or"“m” or “r’ contains exactly

one of these fixed points. The proof is divided into three
steps(l), (1), and(lIl).

(I) Recall the notations in Proposition 3.5. Assume that
(PC-1-3, (PC-1-H, and (PC-1-¢i)) hold. Letx;e Q!. By
Proposition 3.5 and Ed4.2), for each&/ € Q" (respectively,
), there existst; e O™ (respectively)}) such that

n

X=akitog, (&)t %# ®ijJo(§]) .

(4.5

Similarly, for a fixedx; e Q"N[p4; X", for each&/ e Q!
(respectively,Q)™), there existst; e Q! (respectively,Q!")
such that

n

X=afitog,(§)+ IEM wijGo(£)) +a; .

(4.6

On the other hand, assume th@C-1-3, (PC-1-h, and
(PC-1-¢ii)) hold. Letx; € Q] be fixed. For eacl{ € Q" (re-
spectively,Q))), there existst; e Q" (respectively)]) such
that

n

Xi:a§i+w9pi(§i)+j 121_# wijgo(§f) +a.

(4.7)

Similarly, for a fixedx; e Q"N[X{",p,;], for each¢/ € Qf
(respectively,Q™), there exists§ e Q] (respectively,Q")
such that

n
X=abiteg, ()t 2 w0(E)+ar. (4.8
(Il) Consider the case(PC-1-a,-b,-G)). Let Xx
=(Xy,... Xp) be a fixed point inQ; ...; , j="1"or “m.”

Notice that if jj="m,” then X;eQ"N[p4; X"].

Let

by the implicit function theorem. Hence, by the Brouwer (¢1,....&,) EQH“'J}Q’ wherejy,...,j, are chosen as if%.5),

fixed point theorem, there exists one fixed potnof H in
le...jn, which is also a fixed point df. In fact, there exists
only one fixed point in eaclﬂjl...jn,
proof of Theorem 4.2. Consequently, there are fed
points of F in R".

Theorem 4.2. Assume that eachk;>0 and each
(e,a,w,pi k), i=1,...n, satisfies(PC-1-g, (PC-1-b [re-
spectively(PC-2-3, (PC-2-b].

(i) If each (,a,w,p;,k;) further satisfiegPC-1-ci)) or
(PC-1-¢ii)) [respectively(PC-2-¢i)) or (PC-2-cii))], then
system(4.1) has at least 2snap-back repellers.

(i) If each (,a,w,p;,k;) further satisfies(PC-1-i))
and (PC-1-cii)) [respectively(PC-2-¢i)) and (PC-2-¢ii))],
then system4.1) has 3' snap-back repellers.

(iii) If each (,a,w,p; k) satisfies(PC-2-3, (PC-2-,
and (PC-2-diii )) or (PC-2-c¢iv)), then system4.1) has at
least one snap-back repeller in the middle redibp.., .

Proof. The idea of the proof is to construct pre-images.

as to be seen in the

(4.6) so that there exists(,...,&,) € Qii"'i,’g which satisfies

n

X=agitog,(6)+ IEM wijdo( &)+,

i=1,...n.

Define a map G:R"XR"—=R" by G;(Xx',X)=X;—ax,

— g, (%)~ Z{_1j+w9o(X{)—a, i=1..n. Then
(0G/ox) (x',x) has the form (4.4 with y=—«
—wg[’,i(xi), i=1,..n. Notice that |a+ wg;,i(xi)|>1

+ (kj/4e) for (Xl!"HXn)EjS---jr']v according to(PC-1-a
and Lemma 3.1. It follows from similar arguments as the
proof of theorem 4.1 that there exists a pamgji"'ié such
that G(%,X)=0. Denotingx™ 1:=%, it follows that F(x 1)
=X. The casgPC-1-a, -b, -(Gi)) is similar.

(1) Let x ™ * be as obtained ifil). Similar arguments as

: ot 2
of fixed points via the Brouwer fixed point theorem. We shallin (1) confirm that there existx “e€; _; such that

only prove the(PC-1) case. The proofs for the other cases areF (X ) =x"*. Continuously, we can find ™' e

similar. Notably,(PC-1-a and (PC-1-b imply the existence

. with
|=3. Consider
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at g, (X)  010600) @160
ondo(X1)  0pdo(Xp) @t g, (Xn)

For eachi=1,...1n, letri(x)==];|w;;go(x;)|. Thenr;(x)
<31 i|wjj (L4e) |<(ki/4e), since 0<gy(£)= (1/4e) for
all éeR. Thus, ||a+wg;)i(xi)|—ri(x)|>1 for each i
=1,....n. By the compactness ‘ﬁir“Jn' there existsr such

e Q; ..; . By the Gerschgorin’s theorem, the absolute values

i1in
of all eigenvalues oDF(x) are larger tham. It follows that

the absolute values of all eigenvaluesF ~(x) are less
than 1. Hence,F is expanding or\QJ-l...jn andF lis a
contraction orF(le...jn), under certain norm oR". There-
fore, the sequencéx™'} lie on the unstable manifold of
and x_'—X. We thus conclude that the fixed poiktis a
snap-back repeller. The orbﬁk*'} is exactly a transversal
homoclinic orbit. In factx is the only fixed point(a snap-
back repellerin Qir“in’ asF is expanding orﬂjl...jn. Con-
sequently, for cas€), if (PC-1-ci)) or (PC-2-di)) is satis-
fied, there exist at least"Znap-back repellers. Each of these
repellers lies in one of the regio;ﬁsjl...jn, ji=“I"or “m.”
If (PC-1-cii)) or (PC-2-cii)) is satisfied, there also exist at
least 2' snap-back repellers. Each of them lies in one of
le...jn, ji="“m” or “r.” Similarly, in case (ii), there exist
3" snap-back repellers it". For case(iii), only the pre-
images, hence the homoclinic orbits, for the middle fixed
point in Q, .., can be constructed. This completes the proof.
Our constructions in the proof of Theorem 4.2 show that
there can be many different homoclinic orbits for a single
snap-back repeller. The following descriptions sketch part of
this scenario. Let us consider the two-dimensional TCNN.
Assume thatPC-1-a, -b, -6), -c(ii)) hold and le,,, be the
fixed point in the middle regio,,,. By Theorem 4.2, we
can find the pre-images of,,, in the other eight regions in
Fig. 13[illustrating the case fofPC-1-a, -b, -@))]. For each
of these pre-images, we can further find their pre-image in
the regionQ,,. SinceF ! is a contraction orF (Q ),
each point inQ,,,, will be iterated into the regiopX}",X}"]
X[%5, X5 in some finitek steps undeF ~1. As these pre-
images ofxnm fall into the region[ X7, X]"]X[X5',%5"], we
can construct their further pre-images by two alternatives.
One is to make them tend to the fixed pait, underF —1.
In doing so, we construct a transversal homaoclinic orbit for
Xmm- The other one is to construct their further pre-images in
any of the eight region&xcluding the regiof) ,,,, from the
nine regions in Fig. 18 Same process can be continued.
Thus, each of these homoclinic orbits frg,, lies in the
regions indexed by the following sequence:

{*,mm,mm,...mms,mm,mm,...mm..,..}

one of the nine regions. Notice thatis an expansion in each

of the nine regions. Therefore, for each point of a single
transversal homoclinic orbit lying in the regidn,,,,, there
exists exactly one pre-image in each of the other eight re-
gions. We conclude that there exist infinitely many transver-
sal homoclinic orbits foxq,m.

Even if a snap-back repeller exists, the structure of this
chaotic dynamics may not be included in an attractor. Thus,
this chaotic phenomena may not be observable numerically.
We shall attempt to derive trapping regions fdrl) in the

fi (@),

) ) FIG. 14. Trapping regions for the component ofF. (a) Configuration
where “mm” indexes the regio,,, and “*” represents under(PC-1-d. (b) Configuration undetPC-2-d.



666

Chaos, Vol. 12, No. 3, 2002 S.-S. Chen and C.-W. Shih

following theorem. Leip andp be the two critical points of fi(X)= aix+ w;ig, (X)—k; .
f, and off; with p>p, as shown in Figs. ¥4) and 14b). :

Computation shows thag=c¢L ,(sa), p=¢eL_(ea). Nota-
bly, p andp are independent df V. ASYMPTOTIC CONVERGENCE FOR TCNN

(Pc-1-9  f,(f,(p)>Ti(p),f:(F.(p)<Fi(p) Certain sufficient conditions on the existence of a

Lyapunov function, hence asymptotic convergence to fixed
i=1,...n. points, for(1.4) with symmetric[ w;;], have been derived in
Ref. 8. The purpose of this section is to give precise state-
ment of the convergence theorem and to demonstrate the

. 1-a.
(PC-2-d gpi(fi(p))>7fi(p)— e extension of the theorem to TCNN with cycle-symmetric

(e,a,w,p; ki) satisfy(PC-1-a, -b, -d[respectively(PC-2-a,

b,

connections’ In addition, it is interesting to compare the
convergent regime and the chaotic regime (fb2), (1.4).

An nXxn matrix A=[a;;] is said to be cycle-symmetric
if it is sign-symmetric(a;;a;; >0, if a;; #0, a;; =0 if a;=0),
andllca;;=Ilca;; , along every cyclé€ (II means produgt
7 —~ = P Such class of matrices is a generalization of symmetric ma-
-d]. Then T:=[f4(p),f1(P)]X"--X[fa(). Fn(P)] [r€-  gices. Indeed, ifA is cycle-symmetric, then there exists an

« 1—av ki .
gy (fi(P)<——Hfi(p)+—, i=1..n.

Theorem 4.3.Assume that for=1,... n, the parameters

spectively[ T1(p),f1(p) 1% --x[To(p).Fa(p) 1] is a trapping  invertible diagonal matri such thatPBP~! is symmetric,

region for(4.1) in R". o cf. Ref. 17 and the references therein.
Proof. Each componerf;(x) of F(x) satisfieg4.2). Let Let W=[w;;] be thenx n matrix with its (i, j)-entry the
X=(Xg,...Xn) €T, Notably,  (PC-1-d implies  connection weight from neurdrto neuronj. Assume thaw

[fi(p),fi(ﬁ)]c[ffl*'(fi(ﬁ)),ffl'r(fi(p))]. It follows that is cycle-symmetric, an®=diadp;,...p,] is a diagonal ma-
for eachi, if x;e[fi(p),fi(P1, thenF;(x) e[fi(p),fi(P)].  trix which symmetrizesw, that is, PWP t=W=[&;] is

We thus conclude th&(T)CT, see Fig. 14). symmetric. Then a change of variabl&s Px transforms
With a graph similar to Fig. 5, it can be observed that the(1.4) to

first condition of (PC-2-9 Aguarantees‘](p) <X{, whereX; X (t+1) = a%; (1) + w; [(t) —Fg;]

is the right fixed point off;, and the second condition of N

(PC-2-9 yieldsfi(ﬁ)>A>“<', whevre>“<' is the left fixed point of + S a4, 5.1)

f;. Foreacti, [f;(p).fi(p)1=[fi(p),p]ULP,P]U[P.fi(R)]. =17

For eachi, if x;e[p,p], then F;(x) e[f(p),fi(p)]. For

where ¥;=h;(¥;) := pjgo(pj_ 17(]) ,8=P;a; ,ap;=Pjagi - No-

eachi, if x;e[p.fi(p)]. thenF;(x) e[(p).fi(p)]. by the  taply, eachp; can be chosen positive and thisis strictly

abqve observation, see Fig. (bt Similarly, if x; increasing and has similar property gs.
e[fi(p),p], thenF,(x) e[ f;(p),fi(p)]. This completes the For notational convenience, we drop the “tilde” {6.1).
proof. Consider the following function:

As the snap-back repellers and the trapping regions for n

n
(4.1 are considered together, the situation becomes different \/(x)= — 1 > wijhi(x)h; (X)) — > (g
1 =1

for (PC-) and (PC-2. One can find parameters 2ij=

(e,a,m,p;i ki) that satisfy(PC-1-a, -b, -@), -c(ii)) as well as n b o)

(PC-1-9. However, there do not exist parameters which sat- _aOiwii)hi(Xi)_(a_l)Z J na hi—l(g)dg_
isfy (PC-2-d and (PC-2-di)) or (PC-2-dii)). As depicted in i=1 Jo

Fig. 7, when(PC-2-¢i)) holds, the left-lower block is higher (5.2

than the value of the functioﬁ atp, and whenPC-2-dii)) _ _
holds, the right-upper block is lower than the value of the  Let us elaborate on the following computations:

function f, at p. Accordingly, there are points in
[f:(p),fi(p)] escaping from this interval after some itera-

V(x(t+1))—V(x(1))

tions. On the other hand, (PC-2-d holds, then we have a 1 1
situation like Fig. 8. Under the circumstances, we can only :—5_2 wijAyiij—E_z wij[yi(1)Ay;
construct the pre-images for the middle fixed point. There- hi=1 hi=1

fore, (PC-2-g is compatible with(PC-2-giii)) or (PC-2- n
c(iv)), but not(PC-2-di), (ii)). —|—yj(t)Ayi]—2 Ay;
All of the above results can be generalized to the map i=1
F=(Fq,....,Fp) with Fi(x):aixi+w“gpi(xi) n
+E}‘:1,j¢iwijgo(xj)+ai . Restated¢ and w can be different X| X (t+ 1)—axi(t)—j2l wijy,-(t)}

for each component df. The upper and lower magfs, f;

are then adjusted to

. 1 é D1 53
fi(x) = aix+ w;ig,, (¥) Tk, t(l-a)2 wo (£)d¢ (5.3
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FIG. 15. (a) and(b) describe the parameter ranges fatw) with fixed e=1, p=0.55, k=0. There exist three snap-back repellers in regibpsand A , .
Marotto’s chaos is observable numerically in regibp. (a) (PC-1) case: Locate the parametdrgw) which satisfy conditiongPC-1-a,-b,-6)(ii),-d). (b)
(PC-2 case: Locate the parametdrgw) which satisfy conditiongPC-2-a,-b,-(ii )(iv),-d). (c) and (d) describe the parameter ranges far,K) with fixed
a=-1.8,e=1, p=0.55, and fixedv=1.8, e =1, p=0.55, respectively(c) Locate the parametefs,k) which satisfy conditionsPC-1-a,-b,-6)(ii),-d). (d)
Locate the parametefs,k) which satisfy conditiongPC-2-a,-b,-ii )(iv),-d).

1 n Proposition 5.1. Assume thalWV is cycle-symmetricg
:_Eijzl (l)llAylAyJ_I:El Ayl[X,(H-l) >0 and (|) 0<a<1 (,()“+4(1 C()8>EJ 1J¢I|w|J|
' i=1,...n, or (i) a>1, w,,+88>EJ 1j=il@ijl, I=1,...n.
Nyt ThenV defined by(5.2) is nonincreasing along every orbit of
—aXi(t)]+(1—a)2 hi_l(g)dg (5.4 (1.4). Moreover, S:={x|V(F(x))=V(x)} consists of fixed
v points for (1.4).

. Proof. ThatV is nonincreasing along every orbit (§.1)
has been shown it6.3)—(5.6) for case(i). Case(ii) is simi-

Z‘ wijAyiAy;—(1-a) lar. Under conditions ir(i), we have (5.6% 0 if and only if
Ay;=vy;(t+1)—y;(t)=0 for everyi. In addition, the equali-

//\
I\)I =

" Yi 1 ties in(5.6) and(5.5) hold if and only if Ay;=0 for everyi.
; Ayixi(t+1)— fyi(t) hi (§)d§} (5.9 ThusS={all fixed points(1.4)}. The proof is completed.
The following theorem can be concluded by the La-
n Salle’s invariance principle. This result was not clearly stated

//\
l\)l -

n
wAy Ay, —2s(1-a)>, (Ay)? (5.6 INRef.8.
Z ENZ] ( )i:El () 59 Theorem 5.2.Under the conditions of Proposition 5.1,

every bounded orbit of1.4) converges to the set of fixed
where Ay;=y;(t+1)—y;(t). We have used symmetry of points of(1.4).
[wij] in obtaining(5.4). Sinceh; is increasing(5.5) is de- Let us compare the parameter conditions in Secs. Il and
rived from aAy[xi(t+1)=x;(t) ]=a[h;(xi(t+ 1)) IV, with the two conditions in Proposition 5.1. Sinee=0 in
—hi(x; (1) ][ %(t+21)—x;(t)]=0 for «=0. Using Taylor's  Proposition 5.1, we only make this comparison in the context
expansion and estimating the maximum hgf yield (5.6.  of (PC-2-3. Recall thatk;j=={_, ;. (|w;;|+|aj|). Assume
These computations resemble the ones in Ref. 8. We merethatW is symmetric, and eacte(«, wj; ,p; ,k;) satisfieqPC-
generalize them to cycle-symmetW, as well as indicate 2-a), the second part ofPC-2-a yields w;+8s<—4eca
that these calculations also work for output functidns -k<—-k= _E?:l,j;&ilwi”- A comparison tdii) of Propo-
instead of jusg,. We thus derive the following Proposition, sition 5.1 distinguishes between the chaotic regime and the
cf. Theorem 4.1 and Remark 4.1 in Ref. 8. convergent regime fofl.4).
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(a) (b)

-200 -150 -100

()

FIG. 16. (a) and (b) are the bifurcation diagrams for the iterationsxgfandx,. (c) The maximum Lyapunov exponent for a rangewof

VI. NUMERICAL ILLUSTRATIONS eters withw e (—200,~70) also satisfy(PC-2-3, (PC-2-D,

. : : . PC-2-diii)), and (PC-2-¢iv)). Hence, there exists a snap-
In this section, we shall illustrate the numerical rangeséack rgpl::e)ll)er inQ( accég/r);ing to Theorem 4X|2 P
mm» L.

for the parameters satisfying Theorems 4.2 and 43 The Example 6.2.Consider the two-dimensional TCNN with
Lyapunov exponents for TCNN with the parameters in these 13 o — (<0 05 —05
ranges will also be computed. @=13, 0= w;p=w(<0), 0;=-05 wy=05, =

It is not difficult to write a computer prograrffor ex- |1/ 250r,]a01=8 48, 30239-52 ilia%rio'gpese paradmeter
ample, using Mathematica softwaire locate the parameters values have been used in Ret. 7. The |.urcat|on lagrams
satisfying the parameter condition®C-j-a, -b, -c, -0, | which are similar to Fig. 16 and computations of the maxi-

=1, 2. Figure 15 gives such an illustration. In order to makeg™Um Lyapunov exponents can be found in Ref. 7.

the computations comprehensible, we present the numerical

ranges of these parameters on two-dimensional parameter

spaces. Restated, we first fix three of the five parameters

(e,a,0,p,k) and locate the ranges of the other two param-

eters satisfying(PC-j-a,-b,-c,-9, j=1,2. In Fig. 15c) [re- VIl. CONCLUSIONS

spectively, Fig. 16)], the parametersdf,k) [respectively, ) _
(a,w)] in the shaded region satisPC-1-a,-b,-6),(ii),-d) This paper has theoretically proved that TCNN has cha-

with fixed a= — 1.8, = 1, p=0.55 (respectively, with fixed ~©UC structure by applying Marotto’ theorem and has given
k=0, =1, p=0.59. In Fig. 15d) [respectively, 18)], the sufﬂment cond|t|(?n§ for -the existence pf both f|>'<ed points
parametersd,k) [respectively, &, )] in the shaded region and the'lr homocllnlg orbits. The angly3|s has- |ndlcatgd that,
satisfy (PC-2-a,-b,-Gii), (iv),-d) with fixed @a=1.8, =1, @S multiple fixed points coexist, their homoclinic orbits po-
p=0.55 (respectively, witk=0, e=1, p=0.55). sition themselves in a tangle. In addition, the number of fixed
Example 6.1.Consider a two-dimensional case(df4),  Points can grow exponentially in the number of neurtthe
that is, the two-dimensional TCNN. Let=1.8, w;;=w,, Size Of the systemThis scenario has revealed the complica-
=w(<0), wp=—0.5, w,;;=05, £=1, ay;=0.55, ap, tion of the dynamics for the system. It is believed that more
=0.55, a;=a,=0. These parameters correspond to thedynamical features other than snap-back repellers can be ex-
ranges in Fig. 16). Figures 16a) and 18b) are the bifur- plored along this line of investigation. This study has also
cation diagrams for the iterations ®f andx,, with respect provided basic numerical ranges for the parameters which
to w. Figure 1@c) shows the maximum Lyapunov exponent correspond to chaotic dynamics of TCNN. Computations of
(MLE) for w ranging from—200 to — 8. The parameters in these numerical ranges were also illustrated. It is expected
this example satisfyPC-2-d. Therefore, there exists a trap- that the methodology used in this multi-dimensional map can
ping region due to Theorem 4.3. In addition, these parambe applied to other dynamical systems.
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APPENDIX A

Recall the definitions oE_ andL. in (3.3), (3.4),

27
LJr =L , Al
o o Vovant (AD
2
L (A2)

L_ :=Lo .
B N R P R

Lemma A.l. (i) If >0, then for —w/4<7<0, (a)
Exp(L+(7))>1, 0<Exp(L_(7%))<1; (b) L. (») is a posi-
tive increasing function{c) L _(#) is a negative decreasing
function. (ii) If <0, then for Ky<-—-w/4, (a)
Exp(L.(7))>1, 0<Exp(L_(7%))<1; (b) L.(») is a posi-
tive decreasing functionc) L_(#) is a negative increasing
function.

Proof: For (i-a),

A+t w>0=—4np—w< \/Z\/477+w
4:»—21]—w—\/5\/41]+w<27]
27— w— \/Z\/477+w
= >1.
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27 FIG. 17. In the two figurega) and(b), the left-lower shaded region satisfies
(PC-1-a,-b,-@)), and the right-upper shaded region satisfie€-1-a,-b,

Moreover,

-c(ii)). (a) Two snap-back pointxgz'm for repellerxy'. (b) The first coordi-

nate of pointA; (respectively,A,) is a snapback point for the snapback

4772>O(:>4772+477w+ w2>477w+w2=w(477+w)
29+ 0)*> (Vo) (Vin+ w)?
2ntw> \/;\/47]—+w
e2ntw— \/E\/MTCO>0
—2n—w+ \/Z\/47]—+w
= >0,

27

\/;> Van+ w(:n/;\/47]+ o>(4n+tw)’=4y+w
S—2n—w+ \/Z\/47]+ w>27n
—2n—w+tJoJdnto 1
= .

27

For a negative numbeg, Jb meansi\/—b. (ii-a) fol-
lows from the following computations:

At w<O0=4nptow<J—wVy—4n—w

(i-b),

repellerx], (respectivelyxt).

47°>0047°+Ano+ 0’>4po+ o2

27+ 0)2>(V-0)A(V-47—)?

e-2pte)>V-oV-47-

e —2n—w+Join+o>0
—2n—w+JoVdpto

o >0,

27
V—o>V=dn—weV-ol-dn—0>(V-4n-0)
=—4n-w
o —2np—o+Jodntw<2y
L 2ot Joan+o L

27y
(i-c), (ii-b), and (ii-c) follow from L’ (%)

4:)—27]—(1)—\/;\/47]-1— w>27
—2n—w— \/Z\/417+w
S >1,

27

=[Vol(pJo+4n)] andL’, (7)=—[Jol(nJo+47)].

Proof of Lemma 3.1: For case(i), sincee>0, e(1+«
+ (k/4e))<0, 0>0, 4e(—1+a—(K/4e))+w>0, p1,p2,P3,
and p, are well defined, wheref'(p,)=f'(ps)=1
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X[f~H(x™M,x™, we can find x,eQ' such that
fup M) =X and x,2MeQM™ such that f3(x;,2™
=fh(x; M')=X" [see Fig. 17)]. Sincef/(x) is larger than
1+ (kl4e) for xe Q™ f, ! is a contraction onf,(Q™).
Thus, there exists a sequenée, ™ x, 2™, ... x ™™ ..}
such thai, "™ X} asn— . This sequence is a transversal
homoclinic orbit forx}'. Hence,(PC-1-a, -b, -6)) imply that
me is a snap-back repeller. Analogous arguments justify that
X, IS a snap-back repeller. Its homoclinic orbit is as illus-
trated in Fig. 17a). For the conditiongPC-2-3, (PC-2-b,
and (PC-2-¢i)), the left-lower blocks of Figs. 18 and
18(b) demonstrate the constructions of pre-images for the
fixed pointsx!, andX["".

(ii ) For conditions(PC-1-3, (PC-1-h, and(PC-1-dii)),
the right-upper square in Figs. & and 17b) explain why
Xp' andxj, are snap-back repellers. FGPC-2-3, (PC-2-b,
and (PC-2-¢ii)), the scenario fok] andXj, being snap-back
repellers can be explained by the orbits in the right-upper
square in Figs. 18) and 18b).

(iv) The pre-images for the fixed poiwf' of f,, can be
constructed similarly, see the configuration in Fi¢o)8

APPENDIX B: GERSCHGORIN'S THEOREM

Consider a matrix
a1 Qi
A=
an1 " Qpn

Let \peC, p=1,..n, be eigenvalues oA, and let 6;
=a;i, ri=2]4la;l, i=1,..n. Then\,e U 1B(6;;r)),
p=1,...n.

APPENDIX C: MAROTTO’S THEOREM

Let us define a system a§.,=F(X,) whereX,eR",

FIG. 18. In the two figurega) and (b), the left-lower shaded region satis- andF e Cl(Rn'Rn)' Afixed pointX is said to be @nap-back

fies (PC-2-a-b.-G)) and the right-upper shaded region satisfies repeller of F if there exists a real number(>0) andX,

(PC-2-a,-b,-6i). (@ x;, * (f?SPeC_fjve'erT ) is a snap-back point for the < B(X;r) with X,# X such that all eigenvalues @ F(X)

Z:z'taglferzﬁzii{’agfiﬁﬁ?sv?%ﬁ(_“) - (0) The first coordinates of point, e>_<ceed unity in norm for alXe Bf(.x;r.) and F™(Xp) =X
with detDF™(X,))#0 for some positive integen. If F has a
snap-back repeller, then the systemFofis chaotic in the
following senseil) There exists a positive integet, such

+ (k/4e) and f'(py)=f'(pg)=—1— (k/de). By Lemma that for each integep=m,, F has p-periodic points.(2)

A.1.(i), we obtainp;>p,>p,>ps. Furthermore, computa- There exists a scrambled set, that is, an uncountablé set

tion shows thatf”(x)<0 for x>0, f"(x)>0 for x<0 and  containing no periodic points such that the following per-

f7(0)=0. Therefore, if p,<x<p,, then f'(x)>1 tains:(a) F(L)CL; (b) for every YeL and any periodic

+ (klde). If x>p; or x<ps, then f’'(x)<—1— (k/4e). point X of F,

The verification for caséii) is similar. . ]

Proof of Proposition 3.4 (i) It follows from Lemma I'Tffd|Fm(Y)_Fm(x)||>o’
3.1(i) that py, p,, ps3, andp, exist andp,>p,>pa>pPs. _
By (PC-1-b, each off and¥ has three fixed points, see Fig. () for everyX,YeL with X+Y,

5. Sincef<f,<f, f, also has three fixed poinig,e ), lim sug|F™(Y)—F™(X)||>0.
Xp'e Qm and?{]eﬁr. m—e

(i) Let x;, ™™ represent the pre-image ®f "" ™ under (3) There exists an uncountable subkgtof L such that

f, and lying inQ™ (n>1). Assume thatPC-1-3, (PC-1-h,  for everyX,Yel,,
and (PC-1-¢i)) hold. First, let us conside[ the left-lower lim inf[|F™(Y) — F™(X)[ = 0.
block in Figs. Ta) and 17a). In this block[f~*'(x™),x™] m—
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