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Transversal homoclinic orbits in a transiently chaotic neural network
Shyan-Shiou Chen and Chih-Wen Shiha)

Department of Applied Mathematics, National Chiao Tung University, Hsinchu, Taiwan, Republic of China

~Received 29 October 2001; accepted 7 May 2002; published 15 August 2002!

We study the existence of snap-back repellers, hence the existence of transversal homoclinic orbits
in a discrete-time neural network. Chaotic behaviors for the network system in the sense of Li and
Yorke or Marotto can then be concluded. The result is established by analyzing the structures of the
system and allocating suitable parameters in constructing the fixed points and their pre-images for
the system. The investigation provides a theoretical confirmation on the scenario of transient chaos
for the system. All the parameter conditions for the theory can be examined numerically. The
numerical ranges for the parameters which yield chaotic dynamics and convergent dynamics provide
significant information in the annealing process in solving combinatorial optimization problems
using this transiently chaotic neural network. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1488895#
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Artificial neural networks mimic the features of real bio-
logical neurons in certain aspects such as linear additivity
for the inputs and strong nonlinearity for the resulting
output. Many individual biological neurons are known to
fire chaotic signals. Coupling an assembly of these chaoti
neurons results in various kinds of dynamical phenom-
ena. This investigation proposes a new analytical method
to detect chaotic behaviors in a coupled artificial neural
network system. A construction scheme for transversal
homoclinic orbits in neighborhoods of repelling fixed
points for the system is developed. We first analyze the
basic structures of the corresponding one-dimensiona
single-neuron maps. With suitable formulations on these
one-dimensional maps, the constructions for pre-images
of the fixed points, hence homoclinic orbits, are imple-
mented by the standard Brouwer’s fixed point theorem.
The approach is natural mathematically, as one attempts
to obtain the information on orbits in multidimensional
phase space from the one in low dimension„one-
dimension herein…. We also address some convergenc
theorem for the system, which is usually necessary in the
applications of neural networks. The whole system thus
exhibits both chaotic and convergent dynamics as the
self-feedback connection weights vary. This theoretica
study not only confirms these dynamics but also provides
more detailed scenario of the chaotic behaviors for the
network. Moreover, establishing the computable condi-
tions which result in these dynamics contributes toward
the applications of the neural networks.

I. INTRODUCTION

Artificial neural networks have been applied to sol
many information processing and combinatorial optimizat
problems with considerable success.1–5 In using the networks
as computational methods to solve combinatorial optimi
tion problems, chaotic behaviors for the system can prov

a!Author to whom correspondence should be addressed. Electronic
cwshih@math.nctu.edu.tw
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global searching ability which prevents the objective fun
tion from getting trapped at local extrema.6,7 In this investi-
gation, we plan to study the chaotic behaviors in a discre
time neural network, called transiently chaotic neu
network ~TCNN! which was proposed by Chen an
Aihara.6–8 The model of TCNN can be described by th
following equations: fori 51,...,n,

xi~ t11!5axi~ t !1v i i ~ t !~yi~ t !2a0i !

1 (
j 51,j Þ i

n

v i j y j~ t !1ai , ~1.1!

yi~ t !5~11e@2xi (t)/«#!21, ~1.2!

uv i i ~ t11!u5~12g!uv i i ~ t !u. ~1.3!

Here,xi is the internal state of neuroni ; yi is the output of
neuroni ; a is the damping factor;v i i is the self-feedback
connection weight;a0i is self-recurrent bias of neuroni ; v i j

is the connection weight from neuronj to neuroni ; ai is the
input bias of neuroni ; « is the steepness parameter of t
output function;g is the damping factor~a fixed number with
0,g,1!. Equation~1.3! represents an exponential coolin
schedule in the annealing procedure.6

The TCNN is a discrete-time analogue of classical n
ral network models. Classical deterministic neural netwo
are continuous-time models.1,2 Most of these models posses
gradient-like structures. Hopfield and Tank3 have adopted
such a continuous-time model to solve certain optimizat
problems. Recently, it has been shown that the discrete-
model TCNN has better global searching ability. Chaotic
gredients of TCNN prevent the iterations from gettin
trapped at local extreme points of the objective function
the application problems. The TCNN admits chaotic beh
iors for certain parameters as well as asymptotic converge
to fixed points for some other parameters. One can then
the parameter~for example, the so-called temperature in t
annealing process! to obtain better solutions.5,6

We shall investigate the existence of snap-back repel
for the TCNN. The existence of snap-back repellers impl
the existence of transversal homoclinic orbits. Certain se
il:
© 2002 American Institute of Physics
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of chaos can then be concluded, according to the theorem
Marotto,9 see also Ref. 10. Marotto’s theorem generaliz
the results by Li and Yorke11 on chaotic behaviors in one
dimensional difference equations to the ones in multidim
sional systems. This theorem, as quoted in Appendix C,
dicates that with the presence of snap-back repeller,
phase space possesses a topological structure which inc
infinitely many periodic points and a scrambled set. Ve
erratic behaviors of the system then occur, including the l
of global stability for solutions, and the existence of an u
countable collection of orbits which do not eventually a
proach any periodic points.

There is a considerable computational difficulty in det
mining the existence of snap-back repellers of multidim
sional systems. Such difficulty arises from the unstable st
tures of the dynamics for the system. For TCNN~1.1!–~1.3!,
the convergence of dynamics and the chaotic behavior in
sense of Marotto have been studied in Refs. 7 and 8.
results therein on the existence of snap-back repellers
under several assumptions on the parameters. One o
crucial conditions is thatv i i , the self-feedback connectio
weight, has to be large enough. In fact, their arguments
volve taking v i i to infinity. This is due to the uses of
mathematical technique, namely, the Urabe’s proposit
With our approach, all the parameter conditions are exp
and can be examined numerically. Substantial parts of
regime of chaos and the regime of convergence can the
concluded theoretically, as shown in Secs. IV and V.

We shall analyze the existence of snap-back repeller
making use of certain structures in the corresponding o
dimensional maps. Based on the formulation for these m
the parameter ranges for the existence of fixed points ca
determined and the pre-images of these fixed points ca
constructed, in the multidimensional systems. These
images form the homoclinic orbits for the respective fix
point. Our constructions actually indicate the existence
infinitely many homoclinic orbits for a single snap-back r
peller. Hence, the investigation also provides more deta
scenario of dynamics for the system. Moreover, our res
are not limited to the dimensions of the problems. As for
investigations in utilizing suitable low dimensional maps
study high dimensional maps, Marotto12 presented a schem
to study two-dimensional problems by perturbing rela
scalar equations. That result has been applied to prove
existence of transversal homoclinic orbit for the He´non
map.13 However, not all feasible perturbations were es
mated in these works.

TCNN system~1.1!–~1.3! may not be chaotic. In fact
for certain parameters, the system settles at steady stat
time tends to infinity. Restated, every orbit of the syst
tends to a fixed point.14 Our result in Sec. V is related to suc
dynamical properties. To study the transiently chaotic beh
iors of the system, we shall analyze the dynamics of TC
at fixed self-feedback connection weight. Namely, instead
considering~1.1!–~1.3!, we shall analyze dynamics of th
following iteration map:
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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xi~ t11!5axi~ t !1v i i ~yi~ t !2a0i !

1 (
j 51,j Þ i

n

v i j y j~ t !1ai . ~1.4!

That is, by settingv i i to constants, we study the behaviors
~1.4! for different parameters, includingv i i , as the approach
in Refs. 7 and 8.~1.1!–~1.3! can be regarded as a ske
system of~1.4! over ~1.3!.15,16 There is a dynamical corre
spondence between iterations of~1.1!–~1.3! and evolutions
of ~1.4! away from the parameters at bifurcation values.

The existence of snap-back repellers and the const
tion of transversal homoclinic orbits for TCNN are the ma
exposition of this work. For application purpose, we inte
to present our results within the complete set of parame
in the original model. The analysis and parameter conditi
for these discussions in Secs. III and IV are rather involv
Therefore, we plan to sketch these ideas in a simplified s
ation in Sec. II. In Sec. III, we formulate a one-dimension
map which is analogous to the single neuron map. Sev
lemmas to be used in the later sections are derived.
existence of snap-back repellers for multidimensional TCN
~1.4! will be discussed in Sec. IV. In Sec. V, we generali
the result on the existence of a Lyapunov function for~1.4!
from symmetric connection weights8 to cycle-symmetric
ones.17 Precise statements on convergence to fixed point
the system will also be addressed. In addition, the param
conditions for the existence of Lyapunov function and tho
for the existence of snap-back repellers are compared
Sec. VI, we shall provide several numerical illustrations
the parameter ranges and computations of the Lyapunov
ponent for the parameters in the chaotic regime. Some pr
of the lemmas and proposition in Sec. III are given in A
pendix A. The statements of the Gerschgorin’s theorem
the Marotto’s theorem are quoted in Appendixes B and
respectively.

II. ILLUSTRATIONS OF SNAP-BACK REPELLERS
FOR TCNN

We shall sketch the ideas of finding snap-back repel
and constructing pre-images of repellers for TCNN in th
section. Detailed analysis and precise statements with ve
cations will be given in Secs. III and IV.

According to the definition of snap-back repeller for
map F ~see Appendix C!, to assure that a repellerX̄ is a
snap-back repeller, we have to find a neighborhoodB(X̄;r )
of X̄ such that all eigenvalues ofDF(X), XPB(X̄;r ), ex-
ceed unity in norm, and a pointX0PB(X̄;r ) ~called snap-
back point! such thatFm(X0)5X̄ and det(DFm(X0))Þ0 for
some positive integerm. If this is the case, then one of th
orbits throughX0 is a transversal homoclinic orbit for th
map.

We start our illustrations of snap-back repellers fro
some one-dimensional unimodal maps in Fig. 1. We assu
that the slopes atX̄ for the mappings in Fig. 1 all have the
absolute values greater than one. ThusX̄ is a repeller for
every graph of Fig. 1. Notice that certain backward orbit ofX̄
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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FIG. 1. With X0 as a snap-back point, fixed pointX̄ is a snap-back repeller in~b!, ~c!, ~d!, but not in~a!.
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enters into a neighborhood ofX̄, in ~b!, ~c!, and~d! of Fig. 1.
Therefore,X̄ is a snap-back repeller in~b!, ~c!, and ~d! of
Fig. 1, if further condition on the slope of the map in
neighborhood ofX̄ is imposed. In~a! of Fig. 1, one simply
cannot find points in the backward orbits ofX̄, which lie in a
unstable neighborhood ofX̄.

Let us consider the one-dimensional TCNN. Forn51,
~1.4! becomes

F~x!5ax1vga0
~x!1a, ~2.1!

wherega0
(x)ª(11e2x/«)212a0 . Here, to avoid complica-

tion from the parameters, one may simply take the param
values asa50, a522.5,v550,a050.5, «51. The graph
of such F is depicted in Fig. 2. We locate the poin
p1 ,p2 ,p3 ,p4 where F8(p1)5F8(p3)521, and F8(p2)
5F8(p4)51. Moreover, it can be computed thatF8(x).1 if
xPṼm

ª$x:p4,x,p2%, and F8(x),21 if xPṼ l
ª$x:x

,p3% or xPṼ r
ª$x:x.p1%. Notably, F has three fixed

points x̄lPṼ l ,x̄mPṼm, and x̄rPṼ r ~‘‘ l , ’’ ‘‘m,’’ ‘‘r’’ are as
left, middle, right!. The pre-images of each of these fixe
points will be constructed also in these regions. In doing
on the one hand, we always haveuF8(x)u.1 for any pointx
in these regions. On the other hand,DFm(X0)Þ0, if X0 is
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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the constructed snap-back point for the fixed point w
Fm(X0)5 x̄l , or x̄m, or x̄r . Notably, F in shaded areas in
Fig. 2 reads as two unimodal maps glued together. Tho
the left-lower part is upside-down, pre-images for fix
points x̄l and x̄m underF can be found in a manner analo
gous and symmetric to the ones in Figs. 1~c! and 1~d!, re-

FIG. 2. One-dimensional TCNN witha50, a522.5, v550, a050.5,
«51.
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spectively. In the right-upper part, finding pre-images
fixed pointsx̄r and x̄m underF are exactly the same as i
Figs. 1~c! and 1~d!, respectively. We note thatF is not sym-
metric to the origin. Therefore, the configurations ofF on the
right-hand side and the left-hand side need to be consid
separately, as far as the parameter conditions are conce

In general discussions in Sec. III, the properties for
slopes ofF and these separating pointsp1–p4 will be as-
sured by condition~PC-1-a! or ~PC-2-a!. The graph in Fig. 2
can be shifted upward or downward without changing th
slope properties. Thus, one certainly needs conditions@~PC-
1-b! or ~PC-2-b! in Sec. III# to guarantee the existence
fixed points for F at proper locations. To construct pre
images for each of the fixed pointsx̄l ,x̄m,x̄r , appropriate
configurations are required for the graph ofF. For instance,
F(p1) and F(p2) should be larger thanF(X0) and one
should avoid the situation like Fig. 1~a! in right-upper shaded
part or left-lower shaded part ofF in Fig. 2. Conditions
~PC-1-c! or ~PC-2-c! in Sec. III are responsible for such re
quirements, though they are actually formulated for a fam
of one-dimensional TCNNs.

Now let us consider the two-dimensional TCNN. Letx
5(x1 ,x2), F(x1 ,x2)5(F1(x1 ,x2), F2(x1 ,x2)). Equation
~1.4! with n52 becomes

F1~x1 ,x2!5ax11vgr~x1!1v12g0~x2!,

F2~x1 ,x2!5ax21vgr~x2!1v21g0~x1!.

Here, g0(x)5(11e2x/«)21 and for simplicity, we setr
5a015a02, a15a250. To avoid complication from param
eters, one can take the parameter values asa522.5,v
550, r50.5, «51 again.

Analogous to the one-dimensional case, we need
know the eigenvalue properties ofDF(x) for x in the phase
plane. Notably,

DF~x1 ,x2!5S a1vgr8~x1! v12g08~x2!

v21g08~x1! a1vgr8~x2!
D . ~2.2!

Since ug08u< 1/4«, by Gerschgorin’s theorem, the eigenva
ues of DF(x1 ,x2) will have their norms greater than on
if ua1vgr8(x1)u.11 (k/4«), and ua1vgr8(x2)u.1
1 (k/4«), where k5max$uv12u,uv21u%. On the other hand
since 0,g0,1, the following inequalities hold for allx1 ,
x2 :

f̌ ~x1!<F1~x1 ,x2!< f̂ ~x1!, ~2.3!

f̌ ~x2!<F2~x1 ,x2!< f̂ ~x2!, ~2.4!

where, for xPR, f̌ (x)ªax1vgr(x)2k and f̂ (x)ªax

1vgr(x)1k. One then performs similar process onf̌ , f̂ as
in one-dimensional case. To obtain eigenvalue propertie
DF(x) mentioned following ~2.2!, we locate the points
p1 , p2 , p3 , p4 , so that the slopes off̌ ~and f̂ ! at these
points are either 11 (k/4«) or 212 (k/4«). Under further
condition@~PC-1-b! or ~PC-2-b! in Sec. III#, for everyh with
2k<h<k, f h(x)ªax1vgr(x)1h ~hence f̌ < f h< f̂ ! has
three fixed points in suitable regions. Accordingly, for a
fixed x25j2PR ~respectively, any fixedx15j1PR!, take
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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v12g0(j2) @respectively,v21g0(j1)# as h. Then the one-
dimensional map f h(x)5F1(x,j2) @respectively, f h(x)
5F2(j1 ,x)# has a fixed point in each of the three regio
Ṽ l ,Ṽm,Ṽ r. Herein, these three regions correspond to the
rametersa, v, r, «, k in the one-dimensional mapf̂ . With
these properties, it can be shown that there exist n
~3n, n52! fixed points x̄* ! , ‘ ‘ * ’ ’ , ‘ ‘ ! ’ ’ P$ l ,m,r%, of the
two-dimensional mapF, using the Brouwer’s fixed poin
theorem. Each of the nine regionsV* ! contains exactly one
of these fixed points.~See Fig. 3.!

For constructions of the pre-images for each of the
fixed points, we again utilize the formulations of the on
dimensional maps$ f h%. Let us illustrate the construction fo
the middle fixed pointx̄mmPṼmm. Write x̄mm5( x̄1 ,x̄2).
Consider the equationsF1(x1 ,x2)5 x̄1 ,F2(x1 ,x2)5 x̄2 , that
is,

ax11vgr~x1!1v12g0~x2!5 x̄1 , ~2.5!

ax21vgr~x2!1v21g0~x1!5 x̄2 . ~2.6!

Let us work on the left-lower region in Fig. 4. For any fixe
x25j2PR, the graph off h(x)5F1(x,j2) intersects the hori-
zontal line y5 x̄1 at two pointsx1

21,m, x1
21,l ~see Fig. 4!.

Similarly, for any fixed x15j1PR, the graph of f h(x)
5F2(j1 ,x) intersects the horizontal liney5 x̄2 at two points
x2

21,m, x2
21,l . Restated, for any fixed (j1 ,j2), there corre-

spond four points (x1
21,l ,x2

21,l), (x1
21,l ,x2

21,m),
(x1

21,m,x2
21,l), and (x1

21,m,x2
21,m), which belong toṼ l l ,

Ṽ lm, Ṽml , andṼmm, respectively. It follows that four map
pings are produced. Namely,H:(j1 ,j2)→(x1

21,* ,x2
21,!),

where (* ,!)5( l ,l ),(l ,m),(m,l ),(m,m). A fixed point
( x̄1

21,* ,x̄2
21,!) for each one of these mappingsH gives a

solution to~2.5!, ~2.6!, and hence a pre-image ofx̄mm under
F. Notably, (x̄1

21,m,x̄2
21,m) coincides with the fixed pointx̄mm

~see Theorems 4.1, 4.2!. One thus obtains three pre-imag
of x̄mm in Ṽ l l , Ṽ lm, Ṽml , as the construction is restricted t
the left-hand part off h . Similar construction can be per
formed for the right-hand part off h .

For further pre-images ofx̄mm, we consider the follow-
ing equations:

ax11vgr~x1!1v12g0~x2!5 x̄1
21,* ,

ax21vgr~x2!1v21g0~x1!5 x̄2
21,! ,

where ‘‘* ’ ’ , ‘ ‘ ! ’ ’ P$ l ,m% if the left-hand part off h is con-
sidered and ‘‘* ’ ’ , ‘ ‘ ! ’ ’ P$r,m% if the right-hand part off h is
considered. Figure 3 presents such a scenario on the p
Fixed pointx̄mm in the middle region has a first pre-image
region Ṽml , Ṽ l l , and Ṽ lm. Each of these pre-images ca
have their further pre-images back inṼmm. In Sec. III,~PC-
1-c! and~PC-2-c! involving assumptions on the upper mapf̂

and the lower mapf̌ give sufficient conditions for this sce
nario to take place.

In order to have these pre-images tend back towardx̄mm,
a compactness property on the regions is needed. Thus
further restrict these constructions to subregionsV* ! of
Ṽ* ! . Precise confirmations for constructing these first p
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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FIG. 3. The middle big dot denotes the snap-back
peller x̄mm of F in Vmm. The other small dots are suc
cessive pre-images ofx̄mm underF. The graph shows
that there exist three homoclinic orbits forx̄mm in the
case~PC-1-a,-b,-c~i!!.
le

am
-

c
8

t

r

ties

a-

save

m-

ns

e
r,
images of fixed point and further pre-images are all imp
mented through Brouwer’s fixed point theorem again~Theo-
rems 4.1 and 4.2!.

III. BASIC LEMMAS AND THE ONE-DIMENSIONAL
TCNN

To study the multidimensional map~1.4!, we elaborate
on an analogue of the single neuron map. For fixed par
eters«Þ0 anda,v,r,kPR, we consider the following one
dimensional map:

f ~x!5ax1vgr~x!1k, ~3.1!

gr~x!ª~11e2x/«!212r. ~3.2!

Note thatgr(x) is a vertical shift ofg0(x)5(11e2x/«)21,
the output function in~1.2!. The role ofr is asa0i in ~1.1!
and ~1.4!. The range ofr in observing interesting chaoti
phenomena is 0,r,1, as the consideration in Refs. 7 and
We thus confine ourselves to 0,r,1. Throughout this
presentation, we considerk>0 and discuss mainly the
case«.0. To investigate the parameters which give rise
snap-back repellers forf in ~3.1!, we locate the points
p1 , p2 , p3 , and p4 such that f 8(p1)5 f 8(p3)521
2 (k/4«) and f 8(p2)5 f 8(p4)511 (k/4«). It can be com-
puted that, p15«L1(«(11a1 (k/4«))), p25«L1(«(21
1a2(k/4«))), p35«L2(«(11a1 (k/4«))), and p4

5«L2(«(211a2 (k/4«))). Herein, for a fixed paramete
v, the functionsL1 ,L2 are defined as

L1~h!ªLog
2h

22h2v1AvA4h1v
, ~3.3!

L2~h!ªLog
2h

22h2v2AvA4h1v
. ~3.4!
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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Lemma A.1 in Appendix A describes several basic proper
for the functionsL1 ,L2 . The motivation for locating these
points at which the slopes off are 11 (k/4«) and 21
2 (k/4«) is to get control on the eigenvalues for the deriv
tive of the multidimensional map~1.4! in certain regions of
the phase space, as to be seen in Sec. IV. Herein, to
notations, in ~3.3!, ~3.4!, we take AvA4h1v5( iAuvu)
3( iAu4h1vu)52AuvuAu4h1vu, as v,0 and 4h1v
,0.

In this presentation, we consider four groups of para
eter conditions~PC! for the parameters («,a,v,r,k). They
are labeled by~PC-1!, ~PC-2!, ~PC-3!, and ~PC-4!. Each
~PC-j! contains up to three subconditions~PC-j-a!, ~PC-j-b!,
~PC-j-c!. There are several versions for~PC-j-c!, as to be
described later. For simplicity, we focus our discussio
mainly on the conditions~PC-1! and~PC-2!. Let us describe
these conditions successively,

~PC-1-a! «.0, «S 11a1
k

4« D,0, v.0,

4«S 211a2
k

4« D1v.0.

~PC-2-a! «.0, «S 211a2
k

4« D.0, v,0,

4«S 11a1
k

4« D1v,0.

Notably, with«,k>0, ~PC-1-a! impliesa,21 and~PC-2-a!
implies a.1. Under~PC-1-a! or ~PC-2-a!, p1 , p2 , p3 , and
p4 are well defined. It follows from Lemma A.1 that th
order amongp1 , p2 , p3 , p4 can be determined. Moreove
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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FIG. 4. Configuration forf̂ , f h , f̌ under the condition~PC-1-a,-b,-c~i!!. ~a! Configuration forf̂ , f h , f̌ . ~b! Blow-up of the shaded area of~a!, x̄1PṼm is the first

coordinate of a fixed point.x1
21,l andx1

21,m are two pre-images ofx̄1 under f h , lying in Ṽ l ,Ṽm , respectively.
e

bi
n

-

-

ily
the slopes off on the intervals partitioned byp1 ,p2 ,p3 ,p4

can be estimated. The proof of the following lemma is giv
in Appendix A.

Lemma 3.1. ~i! If ~PC-1-a! holds, thenp1.p2.p4

.p3 . In addition, f 8(x).11 (k/4«) for p4,x,p2 and
f 8(x),212 (k/4«) for x.p1 or x,p3 . ~ii ! If ~PC-2-a!
holds, then p2.p1.p3.p4 . In addition, f 8(x),21
2 (k/4«) for p3,x,p1 and f 8(x).11 (k/4«) for x.p2 or
x,p4 .

Set, for conditions~PC-1! and ~PC-2!, respectively,

Ṽ l
ª$xPRux<p3%, Ṽm

ª$xPRup4<x<p2%,

Ṽ r
ª$xPRux>p1%, ~3.5!

Ṽ l
ª$xPRux<p4%, Ṽm

ª$xPRup3<x<p1%,

Ṽ r
ª$xPRux>p2%. ~3.6!

Herein, ‘‘l , ’’ ‘‘m,’’ and ‘‘r’’ mean ‘‘left-hand region,’’
‘‘middle region,’’ and ‘‘right-hand region,’’ respectively. Ac-
cording to the above setting,R is partitioned into five re-
gions. The snap-back repellers and their homoclinic or
for ~3.1! to be constructed will be located in the three regio
~3.5! or ~3.6!. Configuration for f satisfying ~PC-1-a! and
~3.5! is as illustrated in Fig. 2.

The following formulation on a family of one
dimensional maps analogous to~3.1! is prepared for the
study on the multidimensional map~1.4!. For fixed
a, v, «Þ0, 0,r,1, andk.0, we consider

f̂ ~x!5ax1vgr~x!1k, ~3.7!

f̌ ~x!5ax1vgr~x!2k, ~3.8!

f h~x!5ax1vgr~x!1h, ~3.9!
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wherehPR with 2k<h<k. It follows that f̌ < f h< f̂ and
f k5 f̂ , f 2k5 f̌ . Corresponding to this setting, further param
eter conditions for («,a,v,r,k) are formulated as follows:

~PC-1-b! gr~p1!.
12a

v
p11

k

v
,

gr~p3!,
12a

v
p32

k

v
.

~PC-2-b! gr~p2!.
12a

v
p22

k

v
,

gr~p4!,
12a

v
p41

k

v
.

Each of these conditions imposes a restriction on the fam
of maps$ f h%. The configuration forgr with the parameters
(«,a,v,r,k) satisfying~PC-1-b! is illustrated in Fig. 5. No-
tably, a x̄1vgr( x̄)1h5 x̄ if and only if y5gr( x̄) and y
5@(12a) x̄2h#/v. Thus, under conditions~PC-j-a!, ~PC-j-

FIG. 5. ~PC-1-b! means that the point (p1 ,gr(p1)) is higher than the point
(p1 , @(12a)/v# p11 (k/v)); the point (p3 ,gr(p3)) is lower than the
point (p3 , @(12a)/v# p32 (k/v)). ~Note that@(12a)/v#.0, v.0.!
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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b!, j51 or 2, everyf h in ~3.9! has a fixed point in each of th
regionsṼ l , Ṽm, Ṽ r. ~Notably, these regions correspond
the parameters«,a,v,r,k.! Moreover, there are two critica
points for f h and u f h(x)u→` as uxu→`.

Let us introduce the following notations
f̂ 21,l(h), f̂ 21,m(h), f̂ 21,r(h) represent the pre-images ofh
under f̂ , which lies in Ṽ l , Ṽm, Ṽ r, respectively. Similar
notations will be used for the pre-images underf̌ . x̂r, x̂m, x̂l

represent the fixed points off̂ lying in Ṽ r, Ṽm, Ṽ l , respec-
tively. Analogously,x̌r, x̌m, x̌l represent the fixed points off̌
lying in the three respective regions. The following con
tions guarantees that the fixed points off h are indeed snap
back repellers forf h :

~PC-1-c! ~ i! f̌ 21,l~ x̌m!.max$ f̂ ~p3!, f̂ ~p4!%,

~ ii ! f̂ 21,r~ x̂m!,min$ f̌ ~p1!, f̌ ~p2!%.

~PC-2-c! ~ i! f̂ 21,m~ x̂l !,min$ f̌ ~p3!, f̌ ~p4!%,

~ ii ! f̌ 21,m~ x̌r!.max$ f̂ ~p1!, f̂ ~p2!%.

~ iii ! f̂ 21,m~ f̂ 21,l~ x̌m!!,p1 ,

f̌ 21,m~ f̂ 21,m~ f̂ 21,l~ x̌m!!!.p3 .

~ iv! f̌ 21,m~ f̌ 21,r~ x̂m!!.p3 ,

f̂ 21,m~ f̌ 21,m~ f̌ 21,r~ x̂m!!!,p1 .

FIG. 6. ~a! satisfies~PC-1-a,-b,-c~i!! with f̌ 21,l( x̌m).max$ f̂(p3),f̂(p4)%. ~b!

satisfies~PC-1-a,-b,-c~ii !! with f̂ 21,r( x̂m),min$ f̌(p1),f̌(p2)%.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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Typical graphs for f h satisfying ~PC-1-a, -b, -c~i!!,
~PC-1-a, -b, -c~ii !!, ~PC-2-a, -b, -c~i!!, and~PC-2-a, -b, -c~ii !!
are shown in Figs. 6~a!, 6~b!, 7~a!, and 7~b!, respectively.
Figure 8, while used to explain trapping regions in Sec.
also provides a configuration for the graphs off h satisfying
~PC-2-a, -b, -c~iii !~iv!!.

The conditions in~PC-j-c!, j51,2, involve pre-images o
certain points underf̌ and f̂ . The following implications pro-
vide more straightforward conditions which can repla
~PC-1-c~i!!, ~PC-1-c~ii !!, ~PC-2-c~i!!–~PC-2-c~iv!!, respec-
tively. However, stronger conditions limit the feasible n
merical ranges for the parameters, concerning the behav
of TCNN we are investigating.

Lemma 3.2.Assume that~PC-1-a, -b! hold for the fol-
lowing items~1!–~2!, and~PC-2-a, -b! hold for the following
items ~3!–~6!. Then

~1! f̌ ( f̂ (p3)).p2 and f̌ ( f̂ (p4)).p2 imply ~PC-1-c~i!!,
~2! f̂ ( f̌ (p1)),p4 and f̂ ( f̌ (p2)),p4 imply ~PC-1-c~ii !!,

FIG. 7. ~a! satisfies~PC-2-a,-b,-c~i!! with f 21,m( x̂l),min$ f̌(p3),f̌(p4)%. ~b!

satisfies~PC-2-a,-b,-c~ii !! with f̌ 21,m( x̌r).max$ f̂(p1),f̂(p2)%.
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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~3! gr( f̂ (p1)).(12a)/v ( f̂ (p1))2 (k/v) , f̂ (p1),p3 ,
and min$ f̌(p3), f̌(p4)%.p1 imply ~PC-2-c~i!!,

~4! gr( f̌ (p3)),(12a)/v ( f̌ (p3))1 (k/v) , p1. f̌ (p3),
and max$ f̂(p1), f̂(p2)%,p3 imply ~PC-2-c~ii !!,

~5! p3. f̂ ( f̂ (p1)), f̌ (p3).p1 , and f̂ (p1),p4 imply ~PC-2-
c~iii !!,

FIG. 8. ~a! satisfies~PC-2-a,-b,-c~iii !!. The first coordinates of pointsA1 ,

A2 , and A3 are f̂ 21,l( x̌m), f̂ 21,m( f̂ 21,l( x̌m)) and f̌ 21,m( f̂ 21,m( f̂ 21,l( x̌m))),
respectively. ~b! satisfies ~PC-2-a,-b,-c~iv!!. The first coordinates of

points A1 , A2 , and A3 are f̌ 21,r( x̂m), f̌ 21,m( f̌ 21,r( x̂m)), and
f̂ 21,m~ f̌ 21,m~ f̌ 21,r~x̂m))), respectively.

FIG. 9. f̂ (p1) belongs to the left shaded region.~Note that @(12a)/v#
.0, v,0.!
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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~6! p1, f̌ ( f̌ (p3)), f̂ (p1),p3 and f̌ (p3).p2 imply ~PC-2-
c~iv!!.

Proof. The basic idea of the lemma is to compare t
values off̂ and f̌ at various related points. Figure 6~a! dem-
onstrates the situation of case~1!. f̌ ( f̂ (p3)). x̌m follows
from p2. x̌m and f̌ ( f̂ (p3)).p2 . f̂ (p3),p3 yields f̂ (p3)
PṼ l . Accordingly, f̌ 21,l( f̌ ( f̂ (p3))), f̌ 21,l( x̌m), since f̌ is
decreasing onṼ l . Thus, f̂ (p3), f̌ 21,l( x̌m). Same arguments
apply to the conditionf̂ (p4), f̌ 21,l( x̌m). This justifies case
~1!.

For case~3!, we shall show that~PC-2-c~i!! holds. It
follows from gr( f̂ (p1)).@(12a)/v# ( f̂ (p1))2 (k/v) that
f̂ (p1) may belong to the left shaded region or the rig
shaded region of Fig. 9. Withf̂ (p1),p3 andp3, x̌m imply-
ing f̂ (p1), x̌m, it is confirmed thatf̂ (p1) belongs to the left
shaded region. Note thatp1. f̂ 21,m( x̂l) since f̂ (p1), x̂l .
With the assumption min$ f̌(p3),f̌(p4)%.p1, we have
min$ f̌(p3),f̌(p4)%. f̂21,m( x̂l). This completes the proof fo
case~3!. We omit the proofs for other cases since they a
similar.

Remark 3.3. It can be observed that if («,a,v,r,k)
satisfies any of the above conditions,~PC-j-a!, ~PC-j-b!,
~PC-j-c~i!!-~PC-j-c~iv!!, j51, 2, then for 0<k* ,k,
(«,a,v,r,k* ) also satisfies these conditions. Figures 10 a
11 demonstrate this observation.

The following proposition concludes the existence
fixed points and snap-back repellers for the family of on
dimensional maps$ f h%. Its proof is given in Appendix A.

Proposition 3.4.Assume thatk.0 and the parameter
(«,a,v,r,k) satisfy~PC-1-a, -b! @respectively,~PC-2-a, -b!#.
Let the regionsṼ r,Ṽm,Ṽ l be as defined in~3.5! @respec-
tively, ~3.6!# according to the parameters («,a,v,r,k). Then
for everyh with 2k<h<k, the following assertions hold.

~i! There exist three fixed pointsx̄h
r PṼ r, x̄h

mPṼm and
x̄h

l PṼ l , for the mapf h .
~ii ! If the parameters («,a,v,r,k) further satisfy~PC-1-

c~i!! @respectively~PC-2-c~i!!#, then x̄h
l and x̄h

m are
snap-back repellers.

FIG. 10. Illustration for the condition~PC-1! in Remark 3.3.pj* corresponds
to the case with parameterk* .
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~iii ! If the parameters («,a,v,r,k) further satisfy~PC-1-
c~ii !! @respectively~PC-2-c~ii !!#, then x̄h

m and x̄h
r are

snap-back repellers.
~iv! If the parameters («,a,v,r,k) further satisfy~PC-2-

c~iii !! or ~PC-2-c~iv!!, thenx̄h
m is a snap-back repeller

In fact, our formulations also provide the following in
dications. Recall the previous notationsx̂r, x̂m, x̂l , x̌r, x̌m, x̌l .
In addition, f̂ 21,r( x̂m) @respectively, f̌ 21,l( x̌m)# means the
pre-image ofx̂m ~respectively,x̌m! under f̂ ~respectively,f̌ !,
which lies onV r ~respectively,V l!.

Proposition 3.5.Let h with 2k<h<k be fixed.

~i! Assume that~PC-1-a, -b, -c~i!! @respectively,~PC-2-a,
-b, -c~i!!# hold. For every§P@ f̌ 21,l( x̌m),x̌m# ~respec-
tively, @ x̂l , f̂ 21,m( x̂l)#!, there exist two pointsj8PṼ l

andj9PṼm such thatf h(j8)5 f h(j9)5§.
~ii ! Assume that~PC-1-a, -b, -c~ii !! @respectively,~PC-

2-a, -b, -c~ii !!# hold. Then for every §

P@ x̂m, f̂ 21,r( x̂m)# ~respectively,@ f̌ 21,m( x̌r),x̌r#!, there
exist two points j8PṼ r and j9PṼm such that
f h(j8)5 f h(j9)5§.

We use Fig. 12~a! to illustrate case~ii ! of this proposi-
tion. Similar results can be derived for~PC-2-a, -b, -c~iii !,
-c~iv!!, as demonstrated in Fig. 12~b!. Proposition 3.5 will be
used to construct pre-images of the fixed points for the m
tidimensional maps in the next section. As for an intuiti
sense on the parameters in Proposition 3.4, we have the
lowing observation. In general, with fixed«, a, v, r, the
smaller k the more likely that the parameter conditio
~PC-j! can be satisfied. Furthermore, if the paramet
«,a,v,0,r,1 andk50 satisfy~PC-1-a! or ~PC-2-a!, then

FIG. 11. Illustration for the condition~PC-1-c~i!! in Remark 3.3.pj* , f̌ * ,

f̂ * , x̌* ,m correspond to the situation with parameterk* .
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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the scenarios in Proposition 3.4 also hold for sufficien
smallk. On the other hand, if («,a,v,r,k) satisfies the con-
dition of Proposition 3.4, so does («,a,v,r,k* ) for eachk*
with 0<k* ,k, as seen in Remark 3.3. This observati
indicates that chaotic behaviors take place under the situa
of a fixed nonzero self-feedback connection weightv versus
small connection weights between distinct neurons, wh
are dominated byk ~see Sec. IV!. This observation can be
compared to the conditions in Refs. 7 and 8, which takev
to infinity, while holdingk fixed. More than this comparison
our methodology actually provides explicit parameter ran
for chaos on a large scale. The numerical ranges for
parameters satisfying these conditions~PC! will be illus-
trated in Sec. VI.

FIG. 12. Illustrations for Proposition 3.5.~a! f h(j8)5 f h(j9)5§, wherej8
~respectively,j9! belongs to the left~respectively, right! shaded region. This
figure explains the conditions~PC-1-c~ii !!. ~b! If §PJj then there isj8
PI i , such thatf h(j8)5§, j 51, 2, 3. This figure explains the condition
~PC-2-c~iii !~iv!!.
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For eachh with 2k<h<k, we shall construct the ho
moclinic orbits of f h in the following subregionsV l ,Vm,V r

of Ṽ l ,Ṽm,Ṽ r, respectively, where, for condition~PC-1! and
~PC-2!, respectively,

V l
ªṼ lù@ f̌ 21,l~ x̌m!,x̌m#,

Vm
ªṼm, V r

ªṼ rù@ x̂m, f̂ 21,r~ x̂m!#, ~3.10!

V l
ªṼ lù@ x̂l , f̂ 21,m~ x̂l !#,

Vm
ªṼm, V r

ªṼ rù@ f̌ 21,m~ x̌r!,x̌r#. ~3.11!

Figure 13 is an illustration of these regions in the pha
space of dimension two, that is,n52, the two-neuron case
For ~PC-2-c~iii !~iv!!, ~3.10!, ~3.11! should be adjusted to

V l
ª$xux̌l<x<p4%,

Vm
ª$xup3<x<p1%,

V r
ª$xup2<x< x̂r%.

The compactness of these regions will be used to assure
convergence of pre-images for fixed points in the next s
tion. Notably, the fixed pointsx̄h

r , x̄h
m, x̄h

l in Proposition 3.4
~i! lie in V r, Vm, V l , respectively; the assertions in Prop
sition 3.5 also hold for§ in smaller rangesV l or V r.

The previous results also hold for«,0. The following
two groups of conditions yield parallel results to the ones
Lemmas 3.1, 3.2, Propositions 3.4 and 3.5,

~PC-3-a! «,0, «S 211a2
k

4u«u D,0, v.0,

4«S 11a1
k

4u«u D1v.0,

~PC-3-b! gr~p4!.
12a

v
p41

k

v
,

FIG. 13. Illustrations for the regionsV* ,! , ‘‘ * ,’’ ‘ ‘ ! ’ ’ P$r,m,l %. Succes-
sive preimages ofx̄mm underF are demonstrated in the shaded area, un
condition ~PC-1-a,-b,-c~i!!.
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gr~p2!,
12a

v
p22

k

v
,

~PC-3-c! ~ i! f̂ 21,m~ x̂l !,min$ f̌ ~p1!, f̌ ~p2!%,

~ ii ! f̌ 21,m~ x̌r!.max$ f̂ ~p3!, f̂ ~p4!%,

~ iii ! f̂ 21,m~ f̂ 21,l~ x̌m!!,p3 ,

f̌ 21,m~ f̂ 21,m~ f̂ 21,l~ x̌m!!!.p1 ,

~ iv! f̌ 21,m~ f̌ 21,r~ x̂m!!.p1 ,

f̂ 21,m~ f̌ 21,m~ f̌ 21,r~ x̂m!!!,p3 ,

~PC-4-a! «,0, «S 11a1
k

4u«u D.0,

v,0, 4«S 211a2
k

4u«u D1v,0,

~PC-4-b! gr~p3!.
12a

v
p32

k

v
, gr~p1!,

12a

v
p11

k

v
,

~PC-4-c! ~ i! f̌ 21,l~ x̌m!.max$ f̂ ~p1!, f̂ ~p2!%,

~ ii ! f̂ 21,r~ x̂m!,min$ f̌ ~p3!, f̌ ~p4!%,
where p15«L1(«(11a1 (k/4u«u))), p25«L1(«(211a
2 (k/4u«u))), p35«L2(«(11a1 (k/4u«u))), p45«L2(«
(211a2 (k/4u«u))).

IV. SNAP-BACK REPELLERS FOR TCNN

We aim to study the existence of snap-back repellers
the multidimensional TCNN~1.2!, ~1.4! in this section. For
convenience of discussion, we setv i i 5v for eachi . Recall-
ing gr in ~3.2!, we rewrite ~1.4! as the following
n-dimensional map:F:Rn→Rn with F5(F1 ,...,Fn), where

Fi~x!5axi1vgr i
~xi !1S j 51,j Þ i

n v i j g0~xj !1ai , ~4.1!

x5(x1 ,...,xn), andr iªa0i is restricted to the interval~0, 1!.
We propose the following upper and lower one-dimensio
maps for each componentFi . Let

f̂ i~x!5ax1vgr i
~x!1ki ,

f̌ i~x!5ax1vgr i
~x!2ki ,

where xPR and ki is a number greater than( j 51,j Þ i
n

(uv i j u1uai u). Notably, for eachi , 2r i,gr i
(xi),12r i and

0,g0(xi),1 for all xiPR. Following the formulations in
Sec. III, we obtainp1,i ,p2,i ,p3,i ,p4,i for eachi and accord-
ingly, the regionsV i

l ,V i
m,V i

r , as defined in~3.10! and
~3.11!. Consequently, we focus on the map~4.1! in the fol-
lowing 3n regions:

V j 1¯ j n
ª$~x1 ,...,xn!PRnux1PV1

j 1 ,...,xnPVn
j n%,

where j i5 ‘ ‘ l ’ ’ or ‘ ‘m’’ or ‘ ‘r. ’ ’
Theorem 4.1.If eachki.0 and each («,a,v,r i ,ki), i

51,...,n, satisfies~PC-1-a, -b! or ~PC-2-a, -b!, then the sys-
tem ~4.1! has 3n fixed points.

Proof. It follows from the assumption of the theorem
that every componentFi(x) of the mapF(x) satisfies

f̌ i~xi !<Fi~x!< f̂ i~xi !. ~4.2!

r
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Consider a fixedV j 1¯ j n
for certain j i5 ‘ ‘ l ’ ’ or ‘ ‘m’’ or

‘ ‘r. ’ ’ Let ( j18 ,...,jn8)PV j 1¯ j n
. Then, by Proposition 3.4~i!,

there existj i
lPV i

l , j i
mPV i

m, j i
rPV i

r , such that

j i* 5aj i* 1vgr i
~j i* !1 (

j 51,j Þ i

n

v i j g0~j j8!1ai , ~4.3!

where ‘‘* ’ ’ 5 ‘ ‘ l , ’ ’ ‘ ‘m,’’ ‘ ‘r. ’ ’ Restated, each j i* is a
fixed point of the one-dimensional mapj i°aj i1vgr i

(j i)

1( j 51,j Þ i
n v i j g0(j j8)1ai . Let H:V j 1¯ j n

→V j 1¯ j n
be de-

fined by H(j18 ,...,jn8)5(j1
j 1 ,...,jn

j n). We want to show that
there exists a fixed point forH. DefineG:Rn3Rn→Rn by

Gi~x8,x!5xi2axi2vgr i
~xi !2 (

j 51,j Þ i

n

v i j g0~xj8!2ai ,

where i 51,...,n. Notably, G(x8,H(x8))50 for every x8
PV j 1¯ j n

, by ~4.3!. Now,

]G

]x
~x8,x!5diag@x1 ,...,xn#

ªS x1 0 ¯ 0 0

0 x2 � 0 0

] � � � ]

0 0 � xn21 0

0 0 ¯ 0 xn

D , ~4.4!

where x i512a2vgr i
8 (xi), i 51,...,n. For x5(x1 ,...,xn)

PV j 1¯ j n
, we haveua1vgr i

8 (xi)u>11 (ki /4«) for each i ,

according to Lemma 3.1. It follows thatH is a C1 function,
by the implicit function theorem. Hence, by the Brouw
fixed point theorem, there exists one fixed pointx̄ of H in
V j 1¯ j n

, which is also a fixed point ofF. In fact, there exists
only one fixed point in eachV j 1¯ j n

, as to be seen in the
proof of Theorem 4.2. Consequently, there are 3n fixed
points ofF in Rn.

Theorem 4.2. Assume that eachki.0 and each
(«,a,v,r i ,ki), i 51,...,n, satisfies~PC-1-a!, ~PC-1-b! @re-
spectively~PC-2-a!, ~PC-2-b!#.

~i! If each («,a,v,r i ,ki) further satisfies~PC-1-c~i!! or
~PC-1-c~ii !! @respectively~PC-2-c~i!! or ~PC-2-c~ii !!#, then
system~4.1! has at least 2n snap-back repellers.

~ii ! If each («,a,v,r i ,ki) further satisfies~PC-1-c~i!!
and ~PC-1-c~ii !! @respectively~PC-2-c~i!! and ~PC-2-c~ii !!#,
then system~4.1! has 3n snap-back repellers.

~iii ! If each («,a,v,r i ,ki) satisfies~PC-2-a!, ~PC-2-b!,
and ~PC-2-c~iii !! or ~PC-2-c~iv!!, then system~4.1! has at
least one snap-back repeller in the middle regionVm¯m.

Proof. The idea of the proof is to construct pre-imag
of fixed points via the Brouwer fixed point theorem. We sh
only prove the~PC-1! case. The proofs for the other cases a
similar. Notably,~PC-1-a! and ~PC-1-b! imply the existence
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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of 3n fixed points of~4.1!, due to Theorem 4.1. Each of th
3n regionsV j 1¯ j n

, j i5 ‘‘ l ’’ or ‘‘m’’ or ‘‘r’’ contains exactly
one of these fixed points. The proof is divided into thr
steps~I!, ~II !, and~III !.

~I! Recall the notations in Proposition 3.5. Assume th
~PC-1-a!, ~PC-1-b!, and ~PC-1-c~i!! hold. Let xiPV i

l . By
Proposition 3.5 and Eq.~4.2!, for eachj i8PV i

m ~respectively,
V i

l), there existsj iPV i
m ~respectively,V i

l) such that

xi5aj i1vgr i
~j i !1 (

j 51,j Þ i

n

v i j g0~j j8!1ai . ~4.5!

Similarly, for a fixedxiPV i
mù@p4,i ,x̌i

m#, for eachj i8PV i
l

~respectively,V i
m), there existsj iPV i

l ~respectively,V i
m)

such that

xi5aj i1vgr i
~j i !1 (

j 51,j Þ i

n

v i j g0~j j8!1ai . ~4.6!

On the other hand, assume that~PC-1-a!, ~PC-1-b!, and
~PC-1-c~ii !! hold. LetxiPV i

r be fixed. For eachj i8PV i
m ~re-

spectively,V i
r), there existsj iPV i

m ~respectively,V i
r) such

that

xi5aj i1vgr i
~j i !1 (

j 51,j Þ i

n

v i j g0~j j8!1ai . ~4.7!

Similarly, for a fixedxiPV i
mù@ x̂i

m,p2,i #, for eachj i8PV i
r

~respectively,V i
m!, there existsj iPV i

r ~respectively,V i
m!

such that

xi5aj i1vgr i
~j i !1 (

j 51,j Þ i

n

v i j g0~j j8!1ai . ~4.8!

~II ! Consider the case ~PC-1-a,-b,-c~i!!. Let x̄
5( x̄1 ,...,x̄n) be a fixed point inV j 1¯ j n

, j i5 ‘‘ l ’’ or ‘‘m.’’

Notice that if j i5 ‘‘m,’’ then x̄iPV i
mù@p4,i ,x̌i

m#. Let
(j18 ,...,jn8)PV j

18¯ j
n8
, where j 18 ,...,j n8 are chosen as in~4.5!,

~4.6! so that there exists (j1 ,...,jn)PV j
18¯ j

n8
, which satisfies

x̄i5aj i1vgr i
~j i !1 (

j 51,j Þ i

n

v i j g0~j j8!1ai ,

i 51,...,n.

Define a map G:Rn3Rn→Rn by Gi(x8,x)5 x̄i2axi

2vgr i
(xi)2( j 51,j Þ i

n v i j g0(xj8)2ai , i 51,...,n. Then
(]G/]x) (x8,x) has the form ~4.4! with x i52a
2vgr i

8 (xi), i 51,...,n. Notice that ua1vgr i
8 (xi)u>1

1 (ki /4«) for (x1 ,...,xn)PV j
18¯ j

n8
, according to~PC-1-a!

and Lemma 3.1. It follows from similar arguments as t
proof of theorem 4.1 that there exists a pointx̃PV j

18¯ j
n8

such

that G( x̃,x̃)50. Denotingx21
ª x̃, it follows that F(x21)

5 x̄. The case~PC-1-a, -b, -c~ii !! is similar.
~III ! Let x21 be as obtained in~II !. Similar arguments as

in ~II ! confirm that there existsx22PV j 1 ,...,j n
such that

F(x22)5x21. Continuously, we can findx2 lPV j 1 ,...,j n
with

l>3. Consider
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

1 May 2014 06:09:58



665Chaos, Vol. 12, No. 3, 2002 Homoclinic orbits

 This a
DF~x!5S a1vgr1
8 ~x1! v12g08~x2! ¯ v1ng08~xn!

v21g08~x1! a1vgr2
8 ~x2! v2ng08~xn!

] ] � ]

vn1g08~x1! vn2g08~x2! ¯ a1vgrn
8 ~xn!

D . ~4.9!
e
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For eachi 51,...,n, let r i(x)5( j Þ i
n uv i j g08(xj )u. Then r i(x)

<( j Þ i
n uv i j (1/4«) u,(ki /4«), since 0,g08(j)< (1/4«) for

all jPR. Thus, uua1vgr i
8 (xi)u2r i(x)u.1 for each i

51,...,n. By the compactness ofV j 1¯ j n
, there existss such

that mini51,...,n$uua1vgr i
8 (xi)u2r i(x)u%.s.1, for all x

PV j 1¯ j n
. By the Gerschgorin’s theorem, the absolute valu

of all eigenvalues ofDF(x) are larger thans. It follows that
the absolute values of all eigenvalues ofDF21(x) are less
than 1/s. Hence,F is expanding onV j 1¯ j n

and F21 is a
contraction onF(V j 1¯ j n

), under certain norm onRn. There-
fore, the sequence$x2 l% lie on the unstable manifold ofx̄
and x2 l→ x̄. We thus conclude that the fixed pointx̄ is a
snap-back repeller. The orbit$x2 l% is exactly a transversa
homoclinic orbit. In fact,x̄ is the only fixed point~a snap-
back repeller! in V j 1¯ j n

, asF is expanding onV j 1¯ j n
. Con-

sequently, for case~i!, if ~PC-1-c~i!! or ~PC-2-c~i!! is satis-
fied, there exist at least 2n snap-back repellers. Each of the
repellers lies in one of the regionsV j 1¯ j n

, j i5 ‘‘ l’’ or ‘‘m.’’
If ~PC-1-c~ii !! or ~PC-2-c~ii !! is satisfied, there also exist a
least 2n snap-back repellers. Each of them lies in one
V j 1¯ j n

, j i5 ‘‘m’’ or ‘‘r. ’’ Similarly, in case ~ii !, there exist
3n snap-back repellers inRn. For case~iii !, only the pre-
images, hence the homoclinic orbits, for the middle fix
point in Vm¯m can be constructed. This completes the pro

Our constructions in the proof of Theorem 4.2 show th
there can be many different homoclinic orbits for a sing
snap-back repeller. The following descriptions sketch par
this scenario. Let us consider the two-dimensional TCN
Assume that~PC-1-a, -b, -c~i!, -c~ii !! hold and letx̄mm be the
fixed point in the middle regionVmm. By Theorem 4.2, we
can find the pre-images ofx̄mm in the other eight regions in
Fig. 13 @illustrating the case for~PC-1-a, -b, -c~i!!#. For each
of these pre-images, we can further find their pre-image
the regionVmm. Since F21 is a contraction onF(Vmm),
each point inVmm will be iterated into the region@ x̂1

m,x̌1
m#

3@ x̂2
m,x̌2

m# in some finitek steps underF21. As these pre-
images ofx̄mm fall into the region@ x̂1

m,x̌1
m#3@ x̂2

m,x̌2
m#, we

can construct their further pre-images by two alternativ
One is to make them tend to the fixed pointx̄mm underF21.
In doing so, we construct a transversal homoclinic orbit
x̄mm. The other one is to construct their further pre-images
any of the eight regions~excluding the regionVmm from the
nine regions in Fig. 13!. Same process can be continue
Thus, each of these homoclinic orbits forx̄mm lies in the
regions indexed by the following sequence:

$* ,mm,mm,...,mm,* ,mm,mm,...,mm,...,...%

where ‘‘mm’’ indexes the regionVmm and ‘‘* ’’ represents

rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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one of the nine regions. Notice thatF is an expansion in each
of the nine regions. Therefore, for each point of a sin
transversal homoclinic orbit lying in the regionVmm, there
exists exactly one pre-image in each of the other eight
gions. We conclude that there exist infinitely many transv
sal homoclinic orbits forx̄mm.

Even if a snap-back repeller exists, the structure of t
chaotic dynamics may not be included in an attractor. Th
this chaotic phenomena may not be observable numeric
We shall attempt to derive trapping regions for~4.1! in the

FIG. 14. Trapping regions for thei component ofF. ~a! Configuration
under~PC-1-d!. ~b! Configuration under~PC-2-d!.
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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following theorem. Letp̄ andpI be the two critical points of
f ǐ and of f̂ i with p̄.pI , as shown in Figs. 14~a! and 14~b!.
Computation shows thatp̄5«L1(«a), pI 5«L2(«a). Nota-
bly, p̄ andpI are independent ofi ,

~PC-1-d! f̌ i~ f̂ i~ p̄!!. f̂ i~pI !, f̂ i~ f̌ i~pI !!, f̌ i~ p̄!,

i 51,...,n.

~PC-2-d! gr i
~ f̂ i~pI !!.

12a

v
f̂ i~pI !2

ki

v
,

gr i
~ f̌ i~ p̄!!,

12a

v
f̌ i~ p̄!1

ki

v
, i 51,...,n.

Theorem 4.3.Assume that fori 51,...,n, the parameters
(«,a,v,r i ,ki) satisfy~PC-1-a, -b, -d! @respectively,~PC-2-a,
-b, -d!#. Then T:5@ f 1̌(pI ), f 1̂( p̄)#3¯3@ f ň(pI ), f n̂( p̄)# @re-
spectively,@ f 1̌( p̄), f 1̂(pI )#3¯3@ f ň( p̄), f n̂(pI )#] is a trapping
region for ~4.1! in Rn.

Proof. Each componentFi(x) of F(x) satisfies~4.2!. Let
x5(x1 ,...,xn)PT. Notably, ~PC-1-d! implies

@ f̌ i(pI ), f̂ i( p̄)#,@ f̂ i
21,l( f̌ i( p̄)), f̌ i

21,r( f̂ i(pI ))#. It follows that
for eachi , if xiP@ f̌ i(pI ), f̂ i( p̄)#, thenFi(x)P@ f̌ i(pI ), f̂ i( p̄)#.
We thus conclude thatF(T),T, see Fig. 14~a!.

With a graph similar to Fig. 5, it can be observed that
first condition of ~PC-2-d! guaranteesf̂ i(pI ), x̂i

r , where x̂i
r

is the right fixed point off̂ i , and the second condition o
~PC-2-d! yields f̌ i( p̄). x̌l , wherex̌l is the left fixed point of
f̌ i . For eachi , @ f̌ i( p̄), f̂ i(pI )#5@ f̌ i( p̄),pI #ø@pI ,p̄#ø@ p̄, f̂ i(pI )#.
For each i , if xiP@pI ,p̄#, then Fi(x)P@ f̌ i( p̄), f̂ i(pI )#. For
eachi , if xiP@ p̄, f̂ i(pI )#, thenFi(x)P@ f̌ i( p̄), f̂ i(pI )#, by the
above observation, see Fig. 14~b!. Similarly, if xi

P@ f̌ i( p̄),pI #, thenFi(x)P@ f̌ i( p̄), f̂ i(pI )#. This completes the
proof.

As the snap-back repellers and the trapping regions
~4.1! are considered together, the situation becomes diffe
for ~PC-1! and ~PC-2!. One can find parameter
(«,a,v,r i ,ki) that satisfy~PC-1-a, -b, -c~i!, -c~ii !! as well as
~PC-1-d!. However, there do not exist parameters which s
isfy ~PC-2-d! and ~PC-2-c~i!! or ~PC-2-c~ii !!. As depicted in
Fig. 7, when~PC-2-c~i!! holds, the left-lower block is highe
than the value of the functionf̌ i at p̄, and when~PC-2-c~ii !!
holds, the right-upper block is lower than the value of t
function f̂ i at pI . Accordingly, there are points in

@ f̌ i( p̄), f̂ i(pI )# escaping from this interval after some iter
tions. On the other hand, if~PC-2-d! holds, then we have a
situation like Fig. 8. Under the circumstances, we can o
construct the pre-images for the middle fixed point. The
fore, ~PC-2-d! is compatible with~PC-2-c~iii !! or ~PC-2-
c~iv!!, but not~PC-2-c~i!, ~ii !!.

All of the above results can be generalized to the m
F5(F1 ,...,Fn) with Fi(x)5a ixi1v i i gr i

(xi)

1( j 51,j Þ i
n v i j g0(xj )1ai . Restated,a andv can be different

for each component ofF. The upper and lower mapsf̂ i , f̌ i

are then adjusted to

f̂ i~x!5a ix1v i i gr i
~x!1ki ,
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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f̌ i~x!5a ix1v i i gr i
~x!2ki .

V. ASYMPTOTIC CONVERGENCE FOR TCNN

Certain sufficient conditions on the existence of
Lyapunov function, hence asymptotic convergence to fix
points, for~1.4! with symmetric@v i j #, have been derived in
Ref. 8. The purpose of this section is to give precise sta
ment of the convergence theorem and to demonstrate
extension of the theorem to TCNN with cycle-symmet
connections.17 In addition, it is interesting to compare th
convergent regime and the chaotic regime for~1.2!, ~1.4!.

An n3n matrix A5@ai j # is said to be cycle-symmetric
if it is sign-symmetric~ai j aji .0, if ai j Þ0, aji 50 if ai j 50!,
andPCai j 5PCaji , along every cycleC ~P means product!.
Such class of matrices is a generalization of symmetric m
trices. Indeed, ifA is cycle-symmetric, then there exists a
invertible diagonal matrixP such thatPBP21 is symmetric,
cf. Ref. 17 and the references therein.

Let W5@v i j # be then3n matrix with its (i , j )-entry the
connection weight from neuroni to neuronj . Assume thatW
is cycle-symmetric, andP5diag@p1,...,pn# is a diagonal ma-
trix which symmetrizesW, that is, PWP215W̃5@ṽ i j # is
symmetric. Then a change of variablesx̃5Px transforms
~1.4! to

x̃i~ t11!5a x̃i~ t !1v i i @ ỹi~ t !2ã0i #

1 (
j 51,j Þ i

n

ṽ i j ỹ j~ t !1ãi , ~5.1!

where ỹ j5hj ( x̃ j )ªpjg0(pj
21x̃ j ),ãi5piai ,ã0i5pia0i . No-

tably, eachpj can be chosen positive and thushj is strictly
increasing and has similar property asg0 .

For notational convenience, we drop the ‘‘tilde’’ in~5.1!.
Consider the following function:

V~x!52
1

2 (
i , j 51

n

v i j hi~xi !hj~xj !2(
i 51

n

~ai

2a0iv i i !hi~xi !2~a21!(
i 51

n E
0

hi (xi )

hi
21~j!dj.

~5.2!

Let us elaborate on the following computations:

V~x~ t11!!2V~x~ t !!

52
1

2 (
i , j 51

n

v i j DyiDyj2
1

2 (
i , j 51

n

v i j @yi~ t !Dyj

1yj~ t !Dyi #2(
i 51

n

Dyi

3Fxi~ t11!2axi~ t !2(
j 51

n

v i j y j~ t !G
1~12a!(

1

n E
yi (t)

yi (t11)

hi
21~j!dj ~5.3!
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FIG. 15. ~a! and ~b! describe the parameter ranges for~a,v! with fixed «51, r50.55, k50. There exist three snap-back repellers in regionsL1 andL2 .
Marotto’s chaos is observable numerically in regionL2 . ~a! ~PC-1! case: Locate the parameters~a,v! which satisfy conditions~PC-1-a,-b,-c~i!~ii !,-d!. ~b!
~PC-2! case: Locate the parameters~a,v! which satisfy conditions~PC-2-a,-b,-c~iii !~iv!,-d!. ~c! and ~d! describe the parameter ranges for (v,k) with fixed
a521.8, «51, r50.55, and fixeda51.8, «51, r50.55, respectively.~c! Locate the parameters~v,k! which satisfy conditions~PC-1-a,-b,-c~i!~ii !,-d!. ~d!
Locate the parameters~v,k! which satisfy conditions~PC-2-a,-b,-c~iii !~iv!,-d!.
f

re
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f
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ted

,
d
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ext

the
52
1

2 (
i , j 51

n

v i j DyiDyj2(
i 51

n

Dyi@xi~ t11!

2axi~ t !#1~12a!(
1

n E
yi (t)

yi (t11)

hi
21~j!dj ~5.4!

<2
1

2 (
i , j 51

n

v i j DyiDyj2~12a!

3(
i 51

n FDyixi~ t11!2E
yi (t)

yi (t11)

hi
21~j!djG ~5.5!

<2
1

2 (
i , j 51

n

v i j DyiDyj22«~12a!(
i 51

n

~Dyi !
2, ~5.6!

where Dyi5yi(t11)2yi(t). We have used symmetry o
@v i j # in obtaining ~5.4!. Sincehi is increasing,~5.5! is de-
rived from aDyi@xi(t11)2xi(t)#5a@hi(xi(t11))
2hi(xi(t))#@xi(t11)2xi(t)#>0 for a>0. Using Taylor’s
expansion and estimating the maximum ofhi8 yield ~5.6!.
These computations resemble the ones in Ref. 8. We me
generalize them to cycle-symmetricW, as well as indicate
that these calculations also work for output functionshi ,
instead of justg0 . We thus derive the following Proposition
cf. Theorem 4.1 and Remark 4.1 in Ref. 8.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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Proposition 5.1.Assume thatW is cycle-symmetric,«
.0, and ~i! 0<a<1, v i i 14(12a)«.( j 51,j Þ i

n uv i j u,
i 51,...,n, or ~ii ! a.1, v i i 18«.( j 51,j Þ i

n uv i j u, i 51,...,n.
ThenV defined by~5.2! is nonincreasing along every orbit o
~1.4!. Moreover, Sª$xuV(F(x))5V(x)% consists of fixed
points for ~1.4!.

Proof. ThatV is nonincreasing along every orbit of~5.1!
has been shown in~5.3!–~5.6! for case~i!. Case~ii ! is simi-
lar. Under conditions in~i!, we have (5.6)50 if and only if
Dyi5yi(t11)2yi(t)50 for everyi . In addition, the equali-
ties in ~5.6! and~5.5! hold if and only ifDyi50 for everyi .
ThusS5$all fixed points~1.4!%. The proof is completed.

The following theorem can be concluded by the L
Salle’s invariance principle. This result was not clearly sta
in Ref. 8.

Theorem 5.2.Under the conditions of Proposition 5.1
every bounded orbit of~1.4! converges to the set of fixe
points of ~1.4!.

Let us compare the parameter conditions in Secs. III a
IV, with the two conditions in Proposition 5.1. Sincea>0 in
Proposition 5.1, we only make this comparison in the cont
of ~PC-2-a!. Recall thatki5( j 51,j Þ i

n (uv i j u1uai u). Assume
thatW is symmetric, and each («,a,v i i ,r i ,ki) satisfies~PC-
2-a!, the second part of~PC-2-a! yields v i i 18«,24«a
2ki,2ki<2( j 51,j Þ i

n uv i j u. A comparison to~ii ! of Propo-
sition 5.1 distinguishes between the chaotic regime and
convergent regime for~1.4!.
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FIG. 16. ~a! and ~b! are the bifurcation diagrams for the iterations ofx1 andx2 . ~c! The maximum Lyapunov exponent for a range ofv.
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VI. NUMERICAL ILLUSTRATIONS

In this section, we shall illustrate the numerical rang
for the parameters satisfying Theorems 4.2 and 4.3.
Lyapunov exponents for TCNN with the parameters in th
ranges will also be computed.

It is not difficult to write a computer program~for ex-
ample, using Mathematica software! to locate the parameter
satisfying the parameter conditions~PC-j-a, -b, -c, -d!, j
51, 2. Figure 15 gives such an illustration. In order to ma
the computations comprehensible, we present the nume
ranges of these parameters on two-dimensional param
spaces. Restated, we first fix three of the five parame
(«,a,v,r,k) and locate the ranges of the other two para
eters satisfying~PC-j-a,-b,-c,-d!, j 51,2. In Fig. 15~c! @re-
spectively, Fig. 15~a!#, the parameters (v,k) @respectively,
(a,v)# in the shaded region satisfy~PC-1-a,-b,-c~i!,~ii !,-d!
with fixed a521.8, «51, r50.55 ~respectively, with fixed
k50, «51, r50.55!. In Fig. 15~d! @respectively, 15~b!#, the
parameters (v,k) @respectively, (a,v)# in the shaded region
satisfy ~PC-2-a,-b,-c~iii !, ~iv!,-d! with fixed a51.8, «51,
r50.55 ~respectively, withk50, «51, r50.55!.

Example 6.1.Consider a two-dimensional case of~1.4!,
that is, the two-dimensional TCNN. Leta51.8, v115v22

5v(,0), v12520.5, v2150.5, «51, a0150.55, a02

50.55, a15a250. These parameters correspond to
ranges in Fig. 15~d!. Figures 16~a! and 16~b! are the bifur-
cation diagrams for the iterations ofx1 andx2 , with respect
to v. Figure 16~c! shows the maximum Lyapunov expone
~MLE! for v ranging from2200 to28. The parameters in
this example satisfy~PC-2-d!. Therefore, there exists a trap
ping region due to Theorem 4.3. In addition, these para
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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eters withvP(2200,270) also satisfy~PC-2-a!, ~PC-2-b!,
~PC-2-c~iii !!, and ~PC-2-c~iv!!. Hence, there exists a snap
back repeller inVmm, according to Theorem 4.2.

Example 6.2.Consider the two-dimensional TCNN wit
a51.3, v115v225v(,0), v12520.5, v2150.5, «
51/250,a0150.48, a0250.55,a15a250. These paramete
values have been used in Ref. 7. The bifurcation diagra
which are similar to Fig. 16 and computations of the ma
mum Lyapunov exponents can be found in Ref. 7.

VII. CONCLUSIONS

This paper has theoretically proved that TCNN has c
otic structure by applying Marotto’ theorem and has giv
sufficient conditions for the existence of both fixed poin
and their homoclinic orbits. The analysis has indicated th
as multiple fixed points coexist, their homoclinic orbits p
sition themselves in a tangle. In addition, the number of fix
points can grow exponentially in the number of neurons~the
size of the system!. This scenario has revealed the complic
tion of the dynamics for the system. It is believed that mo
dynamical features other than snap-back repellers can be
plored along this line of investigation. This study has a
provided basic numerical ranges for the parameters wh
correspond to chaotic dynamics of TCNN. Computations
these numerical ranges were also illustrated. It is expec
that the methodology used in this multi-dimensional map c
be applied to other dynamical systems.
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APPENDIX A

Recall the definitions ofL2 andL1 in ~3.3!, ~3.4!,

L1~h!ªLog
2h

22h2v1AvA4h1v
, ~A1!

L2~h!ªLog
2h

22h2v2AvA4h1v
. ~A2!

Lemma A.1. ~i! If v.0, then for 2v/4,h,0, ~a!
Exp(L1(h)).1, 0,Exp(L2(h)),1; ~b! L1(h) is a posi-
tive increasing function;~c! L2(h) is a negative decreasin
function. ~ii ! If v,0, then for 0,h,2v/4, ~a!
Exp(L1(h)).1, 0,Exp(L2(h)),1; ~b! L1(h) is a posi-
tive decreasing function;~c! L2(h) is a negative increasing
function.

Proof: For ~i-a!,

4h1v.0⇒24h2v,AvA4h1v

⇔22h2v2AvA4h1v,2h

⇔ 22h2v2AvA4h1v

2h
.1.

Moreover,

4h2.0⇔4h214hv1v2.4hv1v25v~4h1v!

⇔~2h1v!2.~Av!2~A4h1v!2

⇔2h1v.AvA4h1v

⇔2h1v2AvA4h1v.0

⇔ 22h2v1AvA4h1v

2h
.0,

Av.A4h1v⇔AvA4h1v.~A4h1v!254h1v

⇔22h2v1AvA4h1v.2h

⇔ 22h2v1AvA4h1v

2h
,1.

For a negative numberb, Ab meansiA2b. ~ii-a! fol-
lows from the following computations:

4h1v,0⇒4h1v,A2vA24h2v

⇔22h2v2AvA4h1v.2h

⇔ 22h2v2AvA4h1v

2h
.1,
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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4h2.0⇔4h214hv1v2.4hv1v2

⇔~2h1v!2.~A2v!2~A24h2v!2

⇔2~2h1v!.A2vA24h2v

⇔22h2v1AvA4h1v.0

⇔ 22h2v1AvA4h1v

2h
.0,

A2v.A24h2v⇔A2vA24h2v.~A24h2v!2

524h2v

⇔22h2v1AvA4h1v,2h

⇔ 22h2v1AvA4h1v

2h
,1.

~i-b!, ~i-c!, ~ii-b!, and ~ii-c! follow from L28 (h)
5@Av/(hAv14h)# andL18 (h)52@Av/(hAv14h)#.

Proof of Lemma 3.1: For case~i!, since«.0, «~11a
1 ~k/4«!!,0, v.0, 4«~211a2~k/4«!!1v.0, p1 ,p2 ,p3 ,
and p4 are well defined, where f 8(p2)5 f 8(p4)51

FIG. 17. In the two figures~a! and~b!, the left-lower shaded region satisfie
~PC-1-a,-b,-c~i!!, and the right-upper shaded region satisfies~PC-1-a,-b,
-c~ii !!. ~a! Two snap-back pointsxh

22,m for repellerx̄h
m . ~b! The first coordi-

nate of pointA1 ~respectively,A2! is a snapback point for the snapbac
repellerx̄h

r ~respectively,x̄h
l !.
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1 (k/4«) and f 8(p1)5 f 8(p3)5212 (k/4«). By Lemma
A.1.~i!, we obtainp1.p2.p4.p3 . Furthermore, computa
tion shows thatf 9(x),0 for x.0, f 9(x).0 for x,0 and
f 9(0)50. Therefore, if p4,x,p2 , then f 8(x).1
1 (k/4«). If x.p1 or x,p3 , then f 8(x),212 (k/4«).
The verification for case~ii ! is similar.

Proof of Proposition 3.4: ~i! It follows from Lemma
3.1~i! that p1 , p2 , p3 , and p4 exist andp1.p2.p4.p3 .
By ~PC-1-b!, each off̂ and f̌ has three fixed points, see Fi
5. Since f̌ < f h< f̂ , f h also has three fixed pointsx̄h

l PṼ l ,
x̄h

mPṼm, and x̄h
r PṼ r.

~ii ! Let xh
2n,m represent the pre-image ofxh

2n11,m under
f h and lying inṼm (n.1). Assume that~PC-1-a!, ~PC-1-b!,
and ~PC-1-c~i!! hold. First, let us consider the left-lowe
block in Figs. 7~a! and 17~a!. In this block @ f̌ 21,l( x̌m),x̌m#

FIG. 18. In the two figures~a! and ~b!, the left-lower shaded region satis
fies ~PC-2-a,-b,-c~i!! and the right-upper shaded region satisfi
~PC-2-a,-b,-c~ii !!. ~a! xh

22,l ~respectively,xh
22,r! is a snap-back point for the

snapback repellerx̄h
l ~respectively,x̄h

r !. ~b! The first coordinates of pointsA1

andA2 are snap-back points forx̄h
m .
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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3@ f̌ 21,l( x̌m),x̌m#, we can find xh
21,lPṼ l such that

f h(xh
21,l)5 x̄h

m and xh
22,mPṼm such that f h

2(xh
22,m)

5 f h(xh
21,l)5 x̄h

m @see Fig. 17~a!#. Since f h8(x) is larger than
11 (k/4«) for xPṼm, f h

21 is a contraction onf h(Ṽm).
Thus, there exists a sequence$xh

21,l ,xh
22,m,...,xh

2n,m,...%
such thatxh

2n,m→ x̄h
m asn→`. This sequence is a transvers

homoclinic orbit forx̄h
m. Hence,~PC-1-a, -b, -c~i!! imply that

x̄h
m is a snap-back repeller. Analogous arguments justify t

x̄h
l is a snap-back repeller. Its homoclinic orbit is as illu

trated in Fig. 17~a!. For the conditions~PC-2-a!, ~PC-2-b!,
and ~PC-2-c~i!!, the left-lower blocks of Figs. 18~a! and
18~b! demonstrate the constructions of pre-images for
fixed pointsx̄h

l and x̄h
m.

~iii ! For conditions~PC-1-a!, ~PC-1-b!, and~PC-1-c~ii !!,
the right-upper square in Figs. 17~a! and 17~b! explain why
x̄h

m and x̄h
r are snap-back repellers. For~PC-2-a!, ~PC-2-b!,

and~PC-2-c~ii !!, the scenario forx̄h
m and x̄h

r being snap-back
repellers can be explained by the orbits in the right-up
square in Figs. 18~a! and 18~b!.

~iv! The pre-images for the fixed pointx̄h
m of f h can be

constructed similarly, see the configuration in Fig. 8~b!.

APPENDIX B: GERSCHGORIN’S THEOREM

Consider a matrix

A5S a11 ¯ a1n

] � ]

an1 ¯ ann

D .

Let lpPC, p51,...,n, be eigenvalues ofA, and let u i

5aii , r i5( j Þ i
n uai j u, i 51,...,n. Then lpPø i 51

n B(u i ;r i),
p51,...,n.

APPENDIX C: MAROTTO’S THEOREM

Let us define a system asXk115F(Xk) whereXkPRn,
andFPC1(Rn,Rn). A fixed pointX̄ is said to be asnap-back
repeller of F if there exists a real numberr (.0) and X0

PB(X̄;r ) with X0ÞX̄ such that all eigenvalues ofDF(X)
exceed unity in norm for allXPB(X̄;r ) and Fm(X0)5X̄
with det(DFm(X0))Þ0 for some positive integerm. If F has a
snap-back repeller, then the system ofF is chaotic in the
following sense:~1! There exists a positive integerm0 such
that for each integerp>m0 , F has p-periodic points.~2!
There exists a scrambled set, that is, an uncountable sL
containing no periodic points such that the following pe
tains: ~a! F(L),L; ~b! for every YPL and any periodic
point X of F,

lim sup
m→`

iFm~Y!2Fm~X!i.0;

~c! for everyX,YPL with XÞY,

lim sup
m→`

iFm~Y!2Fm~X!i.0.

~3! There exists an uncountable subsetL0 of L such that
for everyX,YPL0 ,

lim inf
m→`

iFm~Y!2Fm~X!i50.
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