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Abstract

In this paper, we study the stabilization of nonlinear systems in critical cases by using
the center manifold reduction technique. Three degenerate cases are considered, wherein
the linearized model of the system has two zero eigenvalues, one zero eigenvalue and a
pair of nonzero pure imaginary eigenvalues, or two distinct pairs of nonzero pure
imaginary eigenvalues; while the remaining eigenvalues are stable. Using a local non-
linear mapping (normal form reduction) and Liapunov stability criteria, one can obtain
the stability conditions for the degenerate reduced models in terms of the original system
dynamics. The stabilizing control laws, in linear and/or nonlinear feedback forms, are
then designed for both linearly controllable and linearly uncontrollable cases. The
normal form transformations obtained in this paper have been verified by using code
MACSYMA. © 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

Recently, the center manifold theorem has been applied to the stabilization
of nonlinear systems (see, e.g., [8-16]). Aeyels [1] obtained a stabilizing control
law for third-order systems which possess a pair of pure imaginary eigenvalues
and one stable eigenvalue. This result has been extended in [2] to more general
high-dimensional, nonlinear systems, in which the linearized model has either a
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pair of pure imaginary eigenvalues or one zero eigenvalue; while the remaining
eigenvalues are stable or stabilizable.

More degenerate cases have been considered by Behtash and Sastry [3].
They obtained results for the nonlinear systems whose linear part has: two zero
eigenvalues with geometric multiplicity 1; one zero eigenvalue and a pair of
pure imaginary eigenvalues; or two distinct pairs of pure imaginary eigen-
values. Unfortunately, they consider only the case in which the state vector
dimension is one more than the number of critical modes. In addition, most of
their results are given in terms of the system dynamics after normal form re-
duction. In this paper, we extend their results to more general high-dimen-
sional, nonlinear systems, where the noncritical modes are either stable or
stabilizable and the number of these noncritical modes is not restricted.
Moreover, the stabilizing control laws are given in terms of the original system
dynamics before normal form reduction.

First, the normal form reduction technique is briefly recalled and applied to
derive stability conditions for low-dimensional, critical nonlinear systems,
specifically, where the linearized model of the system has exactly two zero ei-
genvalues with geometric multiplicity 1; one zero eigenvalue and a pair of pure
imaginary eigenvalues; or two pairs of pure imaginary eigenvalues. This is
followed by a study of stabilization of general high-dimensional, critical non-
linear systems. In Section 3, the stability condition derived in Section 2.1 for
planar systems with two zero eigenvalues, along with the center manifold re-
duction technique, are employed to design the stabilizing feedback control laws
for high-dimensional, nonlinear systems. A linear and/or nonlinear feedback
stabilizing control law is proposed for linearly uncontrollable systems, while a
purely nonlinear stabilizing control law is designed for linearly controllable
systems. Similar results are obtained for the remaining two degenerate cases, in
which the uncontrolled model has one zero eigenvalue and a pair of pure
imaginary eigenvalues, or two distinct pairs of pure imaginary eigenvalues;
while remaining eigenvalues are stable or stabilizable by linear feedback. These
are given in Sections 4 and 5, respectively. Finally, concluding remarks are
given in Section 6.

2. Stability conditions for critical reduced models

In this paper, we study the stabilization of critical nonlinear system
n=Aun+bu+F(@n?), (1a)
f=A226+b2u—|—G(l1,f), (1b)

where functions F, G are sufficiently smooth with F(0,0) =0, DF(0,0) =0,
G(0,0) =0 and DG(0,0) = 0. Specifically, we consider three degenerate cases
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in which 4, has exactly two zero eigenvalues with geometric multiplicity 1; one
zero eigenvalue and a pair of pure imaginary eigenvalues; or two distinct pairs
of pure imaginary eigenvalues. Here, the control input « in (1a), (1b) is taken to
be a scalar. So, b, b, are both vectors. It is not difficult to extend the results to
the case of multiple inputs. Details are omitted.

First, the stability conditions for the low-dimensional critical system (la)
with u =0, £ =0 are derived in this section by employing the technique of
normal form reduction as recalled below and Liapunov stability criteria. These
stability conditions and the center manifold reduction technique (e.g., [2]) are
applied to study the stabilization of the system (1a), (1b) in Sections 2.1-2.3.

In the rest of this section, we focus on the derivation of stability conditions
for the low-dimensional critical system (1a) with u = 0 and ¢ = 0 as given by

n=Aun+F(n)
= Adun+ FE(n,n) + B, n,n) + ol (2)

where F(n):= F(n,0) and F,, F; denote quadratic and cubic terms of the
Taylor expansion of F, respectively. Here, we have presumed that F is at least
four times continuously differentiable.

It is known (e.g., [7]) that a nonlinear transformation y = { + P({) can be
applied to simplify the expressions of the critical nonlinear systems, where P is
a purely nonlinear vector function

P(0) = Py((, ) + P4, 5, 0) + O(lIe]), (3)

with P, and P; being the quadratic and cubic terms in P, respectively.
Applying this scheme to Eq. (2), we obtain

{=(I+DP)"'F(L+P(0)
= F1L+ 7200 + F5(000 + O, )
where | = Ay, and % ,, % ; are as given by
70,0 = RGO +F - P( 0 — DPR(C L) - R,

F3(0,4,0) = F(4,40) = DP(L L) - 71(L, () + DR(L, ) - P D)
+F'1 Px(€7C7C> _DP3(€7C7€) FIC

The main goal of this section is to obtain the homogeneous functions 7; for
which the nonlinear terms %, of the transformed model (4) allow a simple
analysis of the local stability of the origin.

2.1. Stability of the second-order model

First, consider the case in which i = (x,y)" is a two-dimensional vector, and
Eq. (2) is a planar system
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xX=y+ fxxx2 + fxyxy + f}yy . + fxxxx3 + fxxyxzy

+ ey + Sy’ + O 6,01, (5a)
y = gxxx2 + 8 Xy + gyyyz + gxxxx3 + gxxyx2y
+ &y + &y’ + O([| (5, )[I). (5b)

By using the technique recalled in [3,4], it is not difficult to obtain a normal
form expression for (5a), (5b). For instance, a general form has been obtained
by Takens [4]. A result of [4] for the normal form of (5a), (5b) up to sixth-order
can be written as

%1 = x4 O] (x1,3)|), (6a)
)C-z == 51)6% + 52X1X2 + 53X? + 54)(%)62 + (55)641t + 56)6:fo
+ 87x] + Ssxixs + O(]|(x1,%2) ), (6b)

where x1,x, are the transformed states after normal form reduction and J; are
constants.

To study the local stability of (6a), (6b) by Liapunov’s direct method, we
invoke a special locally positive definite function. A class of such functions has
been introduced by Fu and Abed [5] for constructing families of Liapunov
functions for critical nonlinear systems the linear part of which has exactly one
zero eigenvalue or a pair of nonzero pure imaginary eigenvalues with the re-
maining eigenvalues stable. This result is extended below to a more general
case, which will provide a means to obtain the stability conditions for the
model (6a), (6b).

Lemma 1. The scalar function

2 2 3 4 3 2.2
V(x1,%2) = 015 4 02X1X5 + 03X, + U4X] + UsX]X2 + VX (X5
3 4 5 6
+ v7X1X5 + VX5 + Vox] + U1oX] (7)

is locally positive definite near the origin if vy, vq > 0.

Lemma 1 follows directly from ([5], Lemma 1). Details are omitted. Next, we
have the following obvious result.
Corollary 1. The scalar function
V(xi,x2) = x5(01 + py (x1,%2)) +x733(02 + pa(x1,%2))
+85x] +O(||(x1,:2)|) (8)

is locally negative definite near the origin if §; < 0 for i = 1,2,3 and the smooth
scalar functions p,, p, satisfy p,(0,0) =0 fori=1,2.
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Now, we employ Lemma 1 and Corollary 1 to study the local stability of
Egs. (6a), (6b). Choose as a Liapunov function candidate for (6a), (6b) a
function V as in (7) with v, = v = 0. The time derivative of V" along trajec-
tories of Egs. (6a), (6b) is given by

V1 = 2v1(51x%xz + 52x1x§) + v7xg + (20105 + 41.74))6';))62
+ (20104 + 3vs + 3030, + ,D(X],)Q))X%X% + 17551xf
+ (Sv9 + v50, + 20155)x‘1‘x2 + 0553x?
+ (0504 + 20,07 + 6v10)x}x2 + O([| (x1,x2)[|7), 9)

where p is a smooth, scalar function with p(0,0) = 0.

According to Lemma 1, V is locally positive definite if v;,v, > 0. By em-
ploying Corollary 1 to check the local negative definiteness of ¥ (given in (9))
and applying Liapunov stability criteria, we have:

Proposition 1. Let 6, = §, = 0. Then the origin of (6a) and (6b) is asymptoti-
cally stable if the values of v; in (7) can be chosen such that

(i) v1,04 >0, v, =05 =0,
(11) v7, 0553, 20104 + 3vs5 < 0,
(111) 51)9 + 21)155 = 0, 0554 + 21)157 + 61)10 =0 and 2171(33 + 4U4 =0.

Assume d; = 0, = 0 and J3, d, < 0. With these assumptions we can choose v;
such that the stability conditions in Proposition 1 hold. As implied by ([7],
Lemma 2.6), the local stability of the origin is preserved under normal form
reduction. Thus, we have:

Lemma 2. The origin is asymptotically stable for (5a), (5b) if 6; =0, =0,
53, 04 < 0.

By suitable choice of nonlinear functions P, and P; (in (3)), we obtain the
values of the J; as: 6, = g, 0> = gy, + 2f. and

63 = Zux + gxxf;‘y - gxyf;cxa (10)
54 - gxxy + 3fxxx + %{ﬁa’gxx + (gxy - fox)gw + fvygxy}- (1 1)
In the next corollary, the stability conditions of Lemma 2 are stated in terms
of the functions f and g.
Corollary 2. The origin of (5a), (5b) is asymptotically stable if g.. =0, g., +
2fn =0, o + 212 < 0 and
gxxy + 3.fxxx _4fxx(4ﬁcy + Zg}y) < 0 (12)
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Note that the stability conditions for (5a), (5b) given in Corollary 2 agree
with a result of Behtash and Sastry ([3], Lemma 1).

2.2. Stability of the third-order reduced model

Next, consider the case in which # = (x,y,z)" and model (2) is the three-
dimensional system

x:Q1y+f(xay7Z)a (133')
y = —sz—i—g(x,y,z), (13b)
z=r(x,yz), (13¢)

where ©,Q, > 0 and functions f,g,r are sufficiently smooth and take the
general form

(p(x7y’ Z) = (/)xxx2 + (pxyxy + QDXZXZ + (p}yyz + (pyzyz + (/)2222
F QX F P XV + QX2+ QXY + O XIZ + QX
+ 0,0 + 02+ 007 + 0.2 + O(|(x, v, 2. (14)

As explained above, it is not difficult to derive the normal form for system
(13a)—(13c¢). For instance, a normal form for the case of Q; = Q, = —w up to
the third-order approximation has been obtained in cylindrical polar coordi-
nates by Guckenheimer and Holmes [6]. A similar result is also obtained by
Behtash and Sastry [3] for designing a purely nonlinear feedback stabilizing
control law for the case in which ¢ in (1a), (1b) is a scalar. However, in both
results mentioned above, the values of the coefficients in the normal form for
(13a)—(13c) have not been expressed in terms of the original system dynamics
(i.e., the functions f, g,r). In the following discussions, a normal form repre-
sentation for a general system (13a)-(13c) up to third-order will be given ex-
plicitly in terms of the original system dynamics. The result will be easy to
apply to the stability analysis and stabilization of higher-dimensional systems
(1a), (1b). Note that, we do not assume Q; = @, in the following discussions.

By employing the technique given in [3,4] with P = P, a quadratic function
as given in Appendix A, we can remove parts of quadratic terms of the dy-
namics in (13a)—(13c), and Eqgs. (13a)—(13c) become

1
2 +0 (8 + fo)2123
1

T 30,q, e ng”)2223} +/(z1,22,2), (15a)

Z] = Ql{Zz-l-
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1
] (g [
2{ 7+ R (8= + f2:)2223

1

Z.Q Q (QZf)z ngzz>zlz3} +g(21’22723) (15b)

Zz3 = (Qire + Qoryy) - (z% —|—z§) + rzzzg + F(z1,22,23). (15¢)

Q +Q,
Assume that the nonlinear vector function P in the normal form transfor-

mation is chosen as P(y) = Py(n) + P5(n) with P, and P; as given in Appendix
A. The new transformed version of (13a)—(13c) then becomes

X = Q {xz —+ (8 + fr-)x1%3

1
Q +Q
1

ZQ _Q (‘QZf}z ngxz)x2x3 + 51X1 (X% —+ x%)

+ex(x +33) + 3 (01 + 6z)fz)} +0(]|(x,3,2)II), (16a)

1
= Q - | N z Xz 3
2{ x; + 0, 10 (8= + fiz)x2x3

2919 (Dafye — Q18 )x123 + S22 (x] + x3)

- (3 80w - ex) |+ O, (16b)

B3 = oTE (@i + Qory) - (3] +x3) + 72%3
+ 0303 (] +x3) + Py + O (v, 2)][), (16¢)

where

€1 = W'{-?’ngzzzJFQlQZ(fmgm)39%@111}7 (17)
€ = ZQIQ (szm Q18133), (18)
0 = EYorn 29192 130 A2 G i+ &) + 2380 + fin)} (19)
0y = ﬁ(ﬁm + €233, (20)
03 = ﬁ(glim + Qo73). (21)

Here, ¢,; denotes the coefficient of the cubic term zz;z; of a function
pe{f,gr}andi,j k=123
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Using Corollary 1 and Liapunov stability criteria, we obtain the following
stability conditions for (13a)—(13c) based on the transformed model (16a)-
(16¢).

Lemma 3. The origin of (13a)-(13c) is asymptotically stable if r, =0,
Q01,7333 < 0, and either of the following conditions hold:

(1) g+ fir: =0, Qi1 + ory, = 0, and 165,63 <0 or 2,0, and 3 are nonzero
and of opposite sign,

(i) (g + fr.) and Qiry + Qory, are nonzero and are of opposite sign, and
Q105,03 <0,

where the values of 0;, i =1,2,3 are given in (19)—(21).

Proof. As discussed above, Egs. (13a)—(13c) can be transformed into (16a)—
(16c) by normal form reduction. Choose

Q
V=p <xf + —1x§> + pax3 (22)
2
with p;,p, > 0 as a Liapunov function candidate for the transformed model
(16a)—(16c¢).
The time derivative of V" along trajectories of (16a)—(16c) is

V = 291p151(x% —l—xg)z + 2(]719152 —|—p2(53)x§(x% +X§)
2
" . N Q Xz
+Q]+QZ{ lpl(g)/Z+f)
+ o Qi + Qory) 153 (57 4 33) + O([| (31, 32, 33) ). (23)

Since pi,p, > 0, the scalar function V' given in (22) is positive definite.
Suppose .. = 0 and Q,6;,7333 < 0. From Corollary 1, it follows that /4 (given
in (23)) is locally negative definite if either condition (i) or (ii) holds. The ap-
plication of Liapunov stability criteria to (16a)—(16c) indicates that the origin
is asymptotically stable. As implied by ([7], Lemma 2.6) the origin is also
asymptotically stable for the model (13a)—(13c). O

+ 2paFs33X; + 2paras

Note that the stability condition (i) of Lemma 3 above agrees with that
obtained by Behtash and Sastry ([3], Theorem 2).

By expressing the values J; in terms of the original system dynamics, we have
the following result for the case (i) of Lemma 3.

Corollary 3. The origin is asymptotically stable for (13a)—(13c) if r., =0,
Qire 4+ Qory, =0, fr. + 8. =0,51,8, <0and S;,84 <0 or S and S, are nonzero
and of opposite sign, where
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S11=F3
1
= Q1Q2 {Q1Q2rzzz - QZ/{zzr)z + ngzzrxz ) (24)
S2 = 9151
1
= Q xz+Q vz 1*9 ‘c+3QQ
39%_'_2{21(22 +3Q§ {( 1£ 2/32)F 18yzFxy 1228y
o 207
+ (ngxy - ZQZ.f;W)gyy + _lgxxgxy + Q%gxxy + _lfxxgxx
2, 2,
- szxy w T ‘QlQfoyy - Qlfxxﬁry + 39% XXX}v (25)
S3 = 9152
1
= ——1{20Q zz —-2Q 2zl xz Q X 2xx zz
QZ(QI+Q2){ Zfrw lg ¥ + l(gy"' f )g
+ ng2gyzz - ZQZfzzg){v - QZﬁcyf‘zz + Ql QZ,fxzz}a (26)
S4 = (33
1 2, Q,
= - QZ —_ Q Q xx - I Q Xz Q z
(2 +92){ e Ql( 2y S )rse Ql( 18+ )1y
+ (QZgyy + ng,u)rxz + QZgyzrxy + ngZr,uz}~ (27)

Similarly, the case (ii) of Lemma 3 is addressed in terms of the original
dynamics as follows.

Corollary 4. The origin of (13a)—(13c) is asymptotically stable if:

(1) Ve = 07
(1) Qi + Qory, and f.. + g,. have nonzero values and of opposite sign,
(lll) S1,8 < 0 and S3,S4<0,

where Sy is given by (24) and

& 1 { ngxz + Qvaz
Sy = 2 2 T
307 +22,Q, 4 36 (2 + )2

[(QZ + 291)921’/‘,},

Q
+ (29 +3Q) Q1] + 71 (22 + 3fi)ry + 3Q18,,

& 2, 20
+ (Q]gxy - 2Qnyy)gyy + Q_ngxgxy + ngxxy + ?zfxxgxx

- QZf.;(yfyy + QIQZJ(:VW - 'Qlf;cxf;fy + 39% xxx}7 (28)
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~ 1
Sy = ———— 720 zz z_ZQ zzlxz Q Xy 2)0( 2z
3 92(91+92){ 2Ty 18zx: + Q1(gwy + 2/10)8
+ QIQZg)zz - 2Q2ﬁ2g}y - QZﬁ(yﬁz + QIQZ}(;CZZ
Q
Y72 e Y vz Q xz Q 3 29
gy e+ 8e) - (@it a8} 29)
. 1 Q,
Sp=—— 2 Qo fo+ Q1 f e
4 92(91+92){ 2yvz Q( 2fy+ lf)
+ (ngxz + QZf}z)’”xx + (ng}y + ngxx)rxz
Ql +Q [ng)z+(QZ+2~Ql)ﬁ(z}rxy+QIQ2rmz}- (30)

2.3. Stability of critical fourth-order nonlinear systems

In this section, we derive stability conditions for (2) in which 5 := (x,y,z,w)’,
F(nn) = (f(n),g(n),r(n),s(n)) and

0 9 0 0
0, 0 0 0
o 0 o0 ol (31)
0 0 - 0

All =

Here, Q,9Q,,2;Q4 > 0 and f, g,r,s are smooth, purely nonlinear scalar func-
tions with the form as

P = PuX + QXY + QX2+ QW+ 0,0 + 92 + QW
+ 0.2+ 02w+ 9+ QX+ (Pl + PrZ + P W)X
F (X + P + 012 + G W)Y+ 0uXIZ + P IW + @, ZXW
+ QoW+ (PX + @y + 0z + QW)
(@ + P + PaZ + D)W + O([[(x, 3,2, W) ). (32)

For the case in which Q) = @, = —1 and Q3 = Q; = —o & {+1, £}, +1, 42,
+3}, a normal form for the model (2) has been obtamed by using the techmque
given in (3) and (4); see for instance, [3,6]. In the following analysis, we do not
assume that Q; = Q, nor that Q; = Q, for facilitating possible applications.

Assume that Q;Q, # a;Q,, for each o € {%, %, 1,4,9}. By using the tech-
nique of normal form reduction to let # = { + P({) with P defined in Eq. (3), we
can write model (2) as Eq. (4). First, consider the case in which the nonlinear
function P is a purely quadratic function only (i.e., P = P,) as given in Ap-
pendix B, we can make %, (given in Section 2) 0 and Eq. (4) then becomes

{=AL+F(0), (33)

2
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where F({) = (£(0),8(0),#),5(C))'. Now, let P be a nonlinear function as
given in (3) with P, having being as discussed above such that %, = 0. By a
suitable choice of cubic function P;, as detailed in Appendix B, the transformed
model (4) takes the form

fC] = Q] {XZ + (51)(?1 + 61)(2)()(?% —|—x§) + (52)(?1 + 62)(2)()(?% —|—xi)}

+O([| (1, %2, x5, x0) 1), (34a)
= Qof—x + (912 — ) (6] +3) + (9012 — €x1) (x5 +3)}
+O([| (1, x2,x3, %) 1), (34b)
%3 = Qa{xs + (8303 + €334) (0 +x3) + (9433 + €43x4) (x3 +x2)}
+O([| (1, %2, %3, %) 1), (34¢c)
%4 = Qu{—x3 + (6334 — €333) (x] +33) + (8434 — €233) (3 +x3)}
+O(||(x1, %2, %3, x0) ), (34d)
where
5 = (38 +2J;122) + Ql(gmj 3i1) (35)
307 1 20,0, 1 32
¢ = Qi (fi12 — £1) + 3% — 300810 (36)
40Q,Q,(Q + Q)
5y — Q3(f1a3 + &33) + Qufras + &oaa) (37)

(@1 + Q) - (25 + Q)

o — Q(Dsfozs + Qufogs) — Q1 (8133 + Qi) (38)
2 20,90,( + Q)
Q1 (7113 + S11a) + Q2(Fro3 + §204)
(Q1+ Q) (25 + Q)

o Qu( Q17114 + QoF4) — 23(15113 + Q2523) (40)
’ 2Q,Q,(Q) + Q)

Q4(35444 + P3a4) + Q3(5334 + 37333)

9y = (39)

50 = 41
! 3Q2 + 20,0, + 307 @)

- Q3Q4 (7334 — 5344) + 3Q37aaa — 3Q3533 (42)
4 4Q;Q4(Q5 + Q) ’

Here, let { := (z1,22,23,24) in (33). Then ¢,; denotes the coefficient of the cubic
term z;z;z; of a function ¢, for ¢ = f,g,7,§and i,j,k=1,---,4.
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Referring to the transformed model (34a)—(34d), we readily obtain the fol-
lowing stability conditions for the original model (2).

Lemma 4. Let Q,Q, # aQ3Qy, for each o € {§,1,1,4,9}. The origin is asymp-
totically stable for system (2) if Q2,01 <0, Q2304 <0 and either 2,6, <0 and
2503 <0, or 2,0, and Q305 are nonzero and of opposite sign.

Proof. As discussed above, system (2) can be transformed into Egs. (34a)—(34d)
iff ©,Q, # a3, for each o € {3,1,1,4,9}. Let

1 Q 1 Q;
v = 3o (9 god) +gm(3+ ) @)

be a Liapunov function candidate for model (34a)-(34d) with p;,p, > 0.
Taking the time derivative of V along trajectories of the model (34a)-(34d),
we then have

V= pi@i0i(x} +33)° + (p1Q162 + p@333) - (x] +33) - (43 +x3)
+ P2 304(x3 +x3)7 + O([| (x1, 32, x3,x3) ). (44)

Since py,pr > 0 and Q,Q,, 2;Q, > 0, the scalar function V given in (43) is
positive definite. First, consider the case in which 2,6, < 0, Q2304 < 0, 2,5, <0
and Q305 <0. Since py, p» > 0, ¥ given in (44) is locally negative definite. So the
origin is asymptotically stable for the transformed model (34a)-(34d). By ([7],
Lemma 2.6), the origin is also asymptotically stable for the original model (2).

Next, consider the case in which Q;6; < 0, Q36, <0, Q,5, and Q365 are
nonzero and of opposite sign. Similarly, we can show that ¥ given in (44) is
locally negative definite by choosing p;, p, > 0 such that p;Q,0, + p,Q2303 = 0.
The stability of the origin for model (2) is hence implied by the Liapunov
stability criteria and ([7], Lemma 2.6). [

Note that, for the case in which Q;, =@, =—-1 and Q;=0Q,; =
—o & {£}, 44, £1, 42,43}, Lemma 4 agrees with a result of Behtash and
Sastry ([3], Theorem 3). The stability conditions of Lemma 4 expressed in terms
of the original nonlinear dynamics before normal form reduction are given in
the next result.

Corollary 5. Suppose ©,Q, # aQ3Qy, for each o € {§,%,1,4,9}. The origin of
(2) is asymptotically stable if 1,8, < 0 and S5,S4<0 or S5 and S; are nonzero

and of opposite sign, where
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1
S, = Q.13(Q2 v7+Q vor) T Q Xx +Q Xy
= T | 2@+ L) + @it + 2oL

QZ
+ gw(ngw - 292/{}37) - fxy(‘QZfW + Qlfxr) + _Q_;gxx(gxy + fox)

Q

+ Q_éll [(3Q2SJW + lexx)g)z + (3Q1Sxx + QZS},V)];CZ]
Q

- ,Q_] [(erxx + 3Q2ryy)gyw + (QZryy + 3erxx)fvw]

3
Q
400, — 0,000

[Ql (Q4gxw - 292&\2) + QZ(Q4ny + 291];2)]

2
(402,Q; — 2:Q4)25

— QZ(2Q1fxw — Qgﬂz)] . (Q3Sxy — ZQQVW + ZQIFXX)}7 (45)

. (Q4rxy — 2Q]SXX + 292Syy) —

[Ql (292gyw + Q3gxz)

1
S - Q 3 Q SW’W’W’ + Q rZZZ + Q; SZZW + Q rZWW'
? 3Q§+2Q3Q4+3Q§{ s[3( sraz) + (8 47z

2

Q
_3522(Szw + 2rzz)

+ SWW(Q3S2w - 294rww) - rzw(94rww + Q3rzz> + Q
4

Q
+ Q_3 [(3Q4gww + Q3gzz)sxw + (3Q3gzz + Q4gww)rxz]
2
Q3fzz + 3Q4ﬁvw)syw + (Q4fww + 3Q3J<Zz)ryz}
- &
(409, — 1 2)Qs
+ Q4(92ryw + 2Q3rxz)] : (Qlf;w - 293gzz + 2Q4gww)
()
(4Q:Q, — 0,2, Q,

- Q4(293ryz - erxw)] : (ngzw - 2Q4fww + 293,](22)}7 (46)

5
- ol

[Q3 (st}z — 2Q4wa)

[Q3(2Qss,, + Qi)

2

1
S - 2 zz + 29 ww! W
: (91+92)'(93+Q4){ felse 2 (2824 sy

+ Q]Q4(fxww + gyww)] + Ql (f;(zz + g}zz)

2Q
Q gzzr\fz + [93(Q4SWW + Q3Szz) (gvz +f;fz)

9294
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202,Q

- Q4(Q4rww + Q3rzz)(ng +ﬁcw)] - ! 4gww5xw
;0

+ Q3Q2 [Ql (Q3gzz + Q4gww) (gxy + 2fxx)

- QZ(‘Q3fzz + Q4ﬁvw) (fxy + Zgyy)]

1
Qu(Qrey — 20
@mm—m%delr )

+ Q3(lexz + 294syw)] : (ngzw - 294_fww + 293f22)

+

@
— Q(Q 2047
mmm—g%mmJ“2W+ o)
+ Q3(92Syz - 2Q4wa)] ‘ (Q2ﬁw' - 2"(23gzz + 2Q4gww)}7 (47)

Q {2 1 [
rxx xw
(Q1+ Q) - (23 + Q) Q

Q5
+—=— [Ql (QZgyy + ngxx)(sxw + rxz) Q2(92fyy + Qlf;rx)(syw + r)z)]

S4 = 292 ygyw + Q3QZ( )vz + syyu)]

Q Q,
ZQ 1
s Sxxf;cz [QS(Qlex + QZSvy)(Szw + 2rzz)
20;Q
- Q4(erxx + Q2ry}’) (rzw + 2Sww)] - #Syyg}z
Q0

1
+ (4Q192 — Q3Q4)Q1 [QZ(Qlfyz - ZQl.f;cw)
+ Ql (Q3gxz + 2Q2gyw)] : (Q3Sxy - 2Q2ryy + Zglrxx)
9
(49219, — 93Q4)Q, Q4

[QZ(Q4ny + ZQIf:cz) + Ql (Q4gxw

—2g,.)] - (Qaryy — 2218 + 2855,,) + Q3 (7. + sxxw)}‘ (48)

3. Double zero eigenvalue

In the following three sections, we apply the stability results obtained in
Section 2 to the stabilization problem of system (1a), (1b). First, we consider
the case in which 4;; is in the form of (47) below. Thus, both # and &; are both
two-dimensional vectors. Thus, 1 := (x,) and b; = (b1, b12)’, F := (f,g)" and

A“::(g é), (49)
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G(x,,8) =X Gu +xGyy, + 17 Gyy, + (xGye + ¥Gye)E
+Gee (&, 6) + X Goe + xznyxy + xyszw
+y3GW,V + (szxxé +xyGye ersz,vi)é +xGe (&, €)
+ Gy (E,8) + Geee(8,6,8) +O(|(x, 0, O (50)

The scalar functions f, g are taken to be the form

P(x,,8) = 0% + 0y + 0,07 + (¥, + )&
F Pl + QX + QXY+ @00
F P’ + (P Pus + 100 + 10 0,,0)E
+ & (5@ + 10,60+ 0::(8, 6, E) + O (2, ) (51)
The coefficients in the expansion in (50) and (51) are either constants or
symmetric multilinear functions of their arguments. For instance, ¢::: and G

denote a symmetric trilinear function and a symmetric bilinear function, re-
spectively.

3.1. The case b; =0

In this section, we consider the case in which 5; = 0 and let the feedback
control u be given by

u(xaya é) :k11x+k12y+K2§+U(xay7 5)7 (52)
where iy, ki, are scalars and U is a smooth function with U(0,0,0) = 0 and
DU(0,0,0) = 0.

Suppose 42, + b,K; is stable. According to the results of [2], the stability of
system (la), (1b) agrees with the stability of the reduced model

x=y+f(x,y,Eix + Ey+ h(x,y)), (53a)
y:g(x7y7E1x+E2y+h(x7y))a (53b)

where E = (E|, E,) and &(x,y) solve Egs. (54) and (55), respectively:

byKy + (A + byKs)E — EAy; = 0, (54)
Dh(n) - {Avn + F(n,h(n) + En)}
= (A + b2Ka)h(n) + b2U(n, h(n) + En) + G(n, h(n) + En), (55)

with boundary conditions #(0,0) = 0 and DA(0,0) = 0.
The boundary conditions above dictate that / be of the form

h(x,y) = he + by, + yhy, + O(|(x2)I1P), (56)

where A, h,,, h,, are constant vectors.
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Let the nonlinear control function U have the form (51) and

H(X,y) = bZU(x7y7E1x +E2y) + G(xvya E])C +E2y)
_f(x7y7E1x+E2J’)EI - g(X,y,E]X+E2y)E2

= X Hy + xyHy, + y*Hy, + O([|(x, ) 1)- (57)
By solving Eqgs. (54) and (55), we then have
Ei = —kn (A + b:Ky) ' by, (58)
Ey = —{(dn + b:Ka)*} ' - {kia(Aoy + oK) + ki 1}, (59)
and

he = — (A + b2K>) ' Hy, (60)
hy = —2{(4n + b2K>)*} 'Hy — (Am + b:K>)"'H,, (61)
hy = — (A + boKy) " (H,y — hy). (62)

The reduced model (53a), (53b) is hence obtained as

=y 4 fo X+ Loy + [0+ X

+ oy + oy + F” + O e ), (63a)
y = g,mxz + gxyxy + gyvyz + gxxxx3
F 8+ B + 8,0 +O( (22, (63b)

where ¢;; and ¢, denote the coefficients of quadratic terms ij and cubic terms
ijk of function ¢, for ¢ = f gand i, j, k € {x,y}, respectively, and are given in
Appendix C.

Now, referring to the stability criterion given in Corollary 2 and the fore-
going discussions, we have:

Proposition 2. Assume that by, = by, = 0, the control input is given by (52) and
the nonlinear function U has the form as the one given in (51). Then the origin
of (1a), (1b) is asymptotically stable if:

(1) Axn + byK; is stable,
(i) g, =0, ng +2f.. =0, o
(iil) g, + 2fm <0 and (iv) g, + 3fm fulf, +28,) <0.

It can be seen from Proposition 2 and Appendix C that only the quadratic
terms of the function G, and the linear and quadratic terms of control input u
contribute to the stability conditions. Thus, a linear and/or quadratic feedback
stabilizing control law is implied by Proposition 2. Although a purely linear
feedback stabilizing control law might conceivably be obtained by using
Proposition 2, in general, construction of such a control law is not feasible.
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Consider a special case of system (1a), (1b) in which ¢ is a scalar. So, b, is a
scalar. Referring to Egs. (57)—(62), we can determine the values of Ey, E,, h,,,
hy, and h,, from the linear and quadratic gains of the control input. A linear-
plus-quadratic stabilizing control law can hence be obtained as follows.

Lemma 5. Assume that & is a scalar and byy = b;y = 0. If Ay + byK; is stable
and g.: # 0, then a linear-plus-quadratic feedback can be designed to guarantee
the stability of the origin of (1a), (1b). The proposed feedback control has the
form

u = kix + kiy + Ko& + uex® + Xy + )7

Note that a purely quadratic feedback stabilizing control law, under the
assumptions: g, = 0, gy, + 2f.x» = 0 and g, # 0, given by Behtash and Sastry
([3], Corollary 1) for a three-dimensional version of (1a), (1b) is a special case
of Lemma 5.

Suppose the control input u is a purely nonlinear function. Then a purely
quadratic stabilizing control law follows readily from Proposition 2.

Lemma 6. Assume that by, = by, = 0 and Ay, is stable. Then there exists a purely
quadratic stabilizing feedback u = u.x* + u,xy + u,,)* for the origin of (la)
and (1b) if the following conditions hold.:

(1) & = 0, &y + zfrx =0,
(11) xxx + gxfh.!oc + zf;i < Oa
(i) guoy + Guchtay + &yehee + 3(fows + frche) — fixfiy + 28) <O,

where
he = — Ay, (uxhs + Gyo), (64)
hy = —2(4%) (b + o) — A7) (by + Gy). (65)
A stability criterion for the uncontrolled version of (1a), (1b) is obtained as

follows.

Corollary 6. Assume that u = 0. The origin of (1a) and (1b) is asymptotically
stable if:

(1) Ay, is stable,
(i) g = 0, gy + 2/ =0,
(111) o + gxfhxx + 2f~(2V < 09
(IV) gxxy + gxihxy + gyihxx + 3(](;;)5)5 +fx§hxx) _f‘cx(,ﬁcy + Zg}y) < 0,

where hy. and h,, are given in (64) and (65) by letting u,, = u,, = 0.
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3.2. The case b; # 0

Next, we consider the case in which either b;; or by, is nonzero. It is known
that by, # 0 implies the controllability of system (la). For simplicity, the
control law is restricted to be purely nonlinear such that the control input u
has the form as given in (51).

Let 45, be stable. Similarly, from [2], the stability of system (1a), (1b) agrees
with that of the reduced model

x :y+ bll”(xvy»h(x’y)) +f(x7y7h(xay))’ (663)
y:bIZM(xvy7h(xvy))+g(x7yah(xvy))7 (66b)

where £ is the solution of

Dh(n) - {Aun + buu(n, h(n)) + F(n, h(n))}
= Anh(n) + bau(n, h(n)) + G(n, h(n)) (67)

with boundary conditions 4(0) = 0 and DAi(0) = 0.
Here, the function / is assumed to be given by Eq. (56). Choose the control
input to be a function of only x and y as follows:

u(x,y, f) = uxxx2 + Uy Xy + u)/yy2 + uxxxx3
F Uy XY+ Uy X+ Uy (68)

A stability criterion for control system (la) and (1b) is obtained as follows.

Proposition 3. Assume that by # 0 and Ay is stable. Then the origin is as-
ymptotically stable for (1a), (1b) if:

(1) &xx + blzuxx = Oa gxy + blZ“xy + 2(_](;0( + blluxx) = 03
(11) Grxx + blZ”xxx + gxihxx + Z(fﬂcx + blluxx)2 < 0,
(lll) g)ocy + blzu%xy + gxihxy + gytfhxx + 3(f;cxx + bllu)ocx + frcfhxx) - (j;cx + blluxx)
. {f;w + b“uxy + 2(gyy + b12uyy)} < 07

where hy. and hy, are given in Egs. (64) and (65).

According to Proposition 3, b, plays a key role in all stability conditions
(1)—(iii). Thus we have the following result.

Lemma 7. Let A»y be stable, but the full system need not be stable. If by, # 0,
then the stability of the origin of (1a), (1b) can be guaranteed by a purely qua-
dratic-plus-cubic state feedback of the form (68).
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4. One zero and a pair of pure imaginary eigenvalues

In this section, we apply Corollaries 3 and 4 to design stabilizing control
laws for control system (la), (1b), where 1 := (x,y,z)" and b, = (by1,b12, b13)
are both three-dimensional vectors, F := (f,g,r)" and

0 @ 0
A11 = —.Qz 0 0]. (69)
0 0 0

Also, in the following analysis, ¢;; and ¢,; denote the coefficients of the
quadratic terms Jj and the cubic terms ijk of function ¢, respectively, for all
i,j,k €{x,y,z,&} and ¢ € {f,g,r,G}. As usual, these coefficients are either
constants or symmetric multilinear functions of their arguments.

4.1. The case b; =0

Let the control input u be of the form
u(x,v,2,&) = knx + kpy + kinz + Kl + U(x, p,2, &), (70)

where ky;, i =1,2,3, are scalars and function U is smooth enough with
U(0,0,0,0) =0 and DU(0,0,0,0) = 0.

Let 4y + b,K, be stable. From [2], the stability of (1a), (1b) agrees with the
stability of the reduced model

x=Qy+f(x,y,2,En+ h(x,,2)), (71a)
y=—Qx+g(x,y,2,En + h(x,y,z)), (71b)
z=r(x,y,z,En+ h(x,y,z)), (71c)

where E = (E|, E», E3) and h(x, y,z) solve Egs. (54) and (55), respectively, with
n = (x,¥,2)" and boundary conditions /4(0,0,0) = 0 and D/(0,0,0) = 0.
Referring to the boundary conditions above, we can write / as
h(x,v,2) = X*hy + Xyhyy, + Xzhy, —i—yzhyy + yzh,,
+2he +O(]|(x, 3, 2)II), (72)

where h;;, i,j € {x,y,z} are constant vectors.
Let

H(x,y,z) .= byU(x,y,z,En) + G(x,y,z,En) — f(x,y,z,En)E,
—g(x,y,z,En)Esy — r(x,y,z, En)E;
= X’Hy + xyH,, + xzH,. + y*H,, + yzH,.
+2H.. + O(||(x, 3, 2)|1°). (73)
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Solving Egs. (54) and (55), we have
E=—{(dn+ szz)2 + 91921}71 Ak (A + b:K,) — k121 } by, (74)
Ey = —{(An + K + Q1Y " - {1z (A + boKs) + ik Yo, (75)

Ey = —ki3(4pn + b2K2)71b27 (7
and

o
g
|

= —{(An + bKy)* + 42,21}
A-2QH,, + 2Q1H,, + (A2s + b2K>)H,y, }, (77)
he = — (An + b:K>) " (Ho + Do), (78)
— (A + brKs) ™ (Hyy — Qi) (79)
(80)
(81)
)

>
3
|

he = — {(An + boKy)* + Q@01 } " - {(A2s + boKo)Hyz — QH,.}
—{(An+ b2K2)2 + 91921}71 A4z + b2Ky)H,, + Q1 H,. }
7z — (AZZ + bQKZ)ilez- (82

S
®
|

Let ¢(x,v,2) := @(x,y,z, En + h(x,y,z)), for ¢ = f, g, r, where the elements
of E are given in (74)—(76) and function # is defined in (72) with A;; given in
(77)—(82). The coefficients of the quadratic terms and the cubic terms of
functions £, g,7 expressed in terms of E; and « are also given in Appendix C.

The reduced model (71a)—(71c) can hence be rewritten as

x =0y +f(xayvz)a (833')
j} = —sz—i—g(x,y,z), (83b)
z="F(x,p,z). (83c¢)

As discussed above, the stability of the overall system (1a), (1b) agrees with
that of the reduced model (83a)—(83c) if 42, + b,K; is stable. In the following
design, we will focus on the stabilization of (83a)—(83¢) by assuming 4», + b,K,
is stable.

The next result follows readily from Corollaries 3 and 4 and the foregoing
discussions.

Proposition 4. Let by; = by = 0 and the control input be given by (70). Then the
origin of (1a), (1b) is asymptotically stable if A» + byK; is stable, 7., =0, and
either of the following two conditions holds:

(1) Q17 + o7, =0, f;z +&,=0,8,8 <0and S3,S, <0 or S3 and S, are non-
zero and of opposite sign, where S;, i = 1,...,4, are given in (24)—(27) with
coefficients @, ¢, replaced by ¢;; and ¢y, respectively, for all ¢ = f, g, r.

(i) Q17 + oy, and f,, + &,. have nonzero values and of opposite sign, Sy,8, <0
and S5, 8, <0, where S| is given in (24) and S;, i = 2,3,4, are given in (28)-
(30) with coefficients @;, ¢, replaced by ¢, and @, respectively, for all
P = fa g7
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Here, ¢(x,y,z) = @(x,y,2, En + h(x,y,z)) for ¢ = f,g,r, as defined above.

It is obvious from Proposition 4 and Appendix C that only up to the qua-
dratic terms of function G and the control input u contribute to the stability
conditions of Proposition 4 in the case by = 0. A linear and/or quadratic
feedback stabilizing control law can hence obtained from Proposition 4.
Similar to the results given in Proposition 2, a purely linear feedback stabilizing
control law might conceivably be obtained by using Proposition 4, however, in
general construction of such a control law is not feasible. A stability criterion
for the uncontrolled version of (la) and (1b) can also be obtained from
Proposition 4 by letting u = 0.

Consider a special case of system (1a), (1b) in which ¢ is a scalar. So, b, is a
scalar. Suppose the nonlinear control function U in (70) is a function of x, y
and z only and has the form given in (14). According to Egs. (74)—(82), the
values of E;, and h; can be determined by the linear and quadratic gains of
control input. A linear-plus-quadratic stabilizing control law can hence be
obtained from Proposition 4 as follows.

Lemma 8. Let & be a scalar and by; =0 for i =1,2,3. Then a linear-plus-
quadratic feedback can be designed to guarantee the stability of the origin for
(1a) and (1b), if:

(1) A + b:K; is stable,
(i1) ree = 0,
(i r.: #0
(V) Qireegze — Qaryefze 70,
(V) Qg + Qofye # 0, or gye + otfre # 0 for o =1 and o, = %

This feedback control has the form

u(x,,z,&) = kux + kiy + kisz + K& + upx’
+ Uy xy + uxz + uWy2 +uyyz + u,.z’. (84)

Proof. In the following, we check the stability conditions of Proposition 4
under the assumptions of Lemma 8. Suppose & is a scalar, b;; = 0fori = 1,2, 3,
and conditions (i)—(iii) hold. Then the values of 7., and S; (given in (24)) can be
made to be real numbers through r,: by the choice of E; and ... Moreover,
since condition (iv) holds, the values of Q,7,, + ©,7,, and f..+8,. can be as-
signed arbitrarily by a proper choice of E| and E,, while the values of S; and S,
(given in (26) and (27)) or S5 and S, in (given in (29) and (30)) can be assigned
by proper choice of A, and A,..
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Finally, condition (v) provides the opportunity for assigning the values of S,
(given in (25)) and S, (given in (28)) by proper choice of A, or hyy. According to
Appendix C and Egs. (73)-(82), ¢,; and ¢,; can be determined by the linear
and quadratic control gains through the linear matrix £ and the vector func-
tion /. The conclusions of the lemma follow. [

A purely quadratic feedback stabilizing control law can also be obtained
as given below. The proof is similar to that of Lemma 8. Details are omitted.

Lemma 9. Let Ay, be stable, ¢ be a scalar and by; =0 for i =1,2,3. Then a
purely quadratic feedback

U(X,,2) = X’ + Uy XY + UpXZ + Uy + Uy)z + U2 (85)

can be designed to guarantee the stability of the origin of (1a) and (1b), if the
following conditions hold.

(1) Q7 + Qory, =0 and f. + 8. =0, or Qi + o1y, and f. + g,. have non-
zero values and of opposite sign,
(i) ., = 0 and r.: # 0, and
(ili) Qugec + Qufy £ 0. and g.: # 0 or iz 0.

4.2. The case b; # 0

Next, we consider the case in which one of by;, i = 1,2, 3, is nonzero. It is
known that b3 # 0, and by, # 0 or b, # 0 implies the controllability of system
(1a). For simplicity, the control law is restricted here to be a purely nonlinear
function of x, y and z only and to have the form (14).

Let 45, be stable. According to the results of [2], the stability of system (1a),
(1b) agrees with that of the reduced model (83a)-(83c). Here,

g(xayvz) = bl2u(xvyaz) +g(xayvzvh(xvyaz))v (86b)
i‘(x’yaz) = b13u(x7y7z) + ”(xay,Z,h(an’aZ))a (86C)

and /% is the solution for (67) with boundary conditions #(0) = 0 and DA(0) =
0. Similarly, function /% is assumed to be given by Eq. (72).
By letting
H(x,y,z) := byu(x,y,z) + G(x,y,2,0)
= szxx + xnyy + -XZsz + sz_])W + yZH)Z
+2H, +O(||(x, 3, 2)1), (87)

we can obtain k;; as given in (77)—(82) with K, = 0 and H;; given in (87).
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A stability criterion for control system (la), (1b) in the case of by # 0 is
obtained as follows.

Proposition 5. Let by # 0 and Ay be stable. Then the origin of (1a), (1b) is
asymptotically stable if 7., =0, and either of conditions (1) and (i) given in
Proposition 4 hold. Here, ¢,; and ¢ denote the coefficients of quadratic terms
and cubic terms of function ¢ (= f,&,F given in (86a)—(86¢)), respectively.

It is obvious from Proposition 5 that the vector b, plays a key role in all
stability conditions (i)—(iii). The next two results follow readily from Propo-
sition 5.

Lemma 10. Let Ay, be stable, but the whole system may not be stable. If by3 # 0
and one of by and by is not zero, then the stability of the origin of (1a), (1b) can
be guaranteed by a purely quadratic-plus-cubic state feedback as follows:

2 2 2

u(x,,2) = UpX” + Uy XY + UpXZ + Uy~ + Uz + U,z
3 2 2 2 2
F U X + Uy XY + U X Z + Uy XY™+ UpyoXYZ + Uy XZ

+ uy)yy3 + quyzz + u}ZZyZZ + uzzzz3-

Lemma 11. Let Ay be stable, but the full system need not be stable. Then the
stability of the origin for (1a), (1b) can be guaranteed by a purely cubic state
feedback

_ 3 2 2 2 2
U(X,,2) = UeoaX” + Uy XV + UeeXZ + Uy XY~ + Uy XZ

ity A UV Z A Uyy? (88)
if r.. = 0 and following conditions hold.

(1) b1z # 0 and one of by and by, is not zero, and
(i) @1y + o1y, =0 and f.+g. =0, or the expressions Q\ry + r,, and
fr: + 8 have nonzero values and of opposite sign.

5. Two distinct pairs of pure imaginary eigenvalues

In this section, we continue the stabilization study of the system (1a), (1b) in
which #:= (x,y,z,w)" and b; = (b1, b1, b13,b14) are both four-dimensional
vectors, F := (f,g,r,s) and

0 @ 0 0
-2, 0 0 0

0 0 0

0 0 —-Q 0

Ay = (89)
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As in the previous two sections, in the following analysis, ¢;; and ¢, denote
the coefficients of the quadratic terms ij and the cubic terms ijk of function ¢,
respectively, for all i, j,k € {x,y,z,w, ¢} and ¢ € {f,g,r,s, G}. As usual, these
coefficients are either constants or symmetric multilinear functions of their
arguments.

5.1. The case b; =0

First, we consider the case in which 5; = 0, and
u(xaya zZ,w, é) = kll-x + klZy + k13Z + kl4W + KZ& + U(XJ’;Z, w, é)a (90)
where ky;, i=1,...,4, are scalars and U is sufficiently smooth with
U(0,0,0,0,0) = 0 and DU(0,0,0,0,0) = 0.

Let 45 + b,K, be stable. Similarly, the stability of (1a), (1b) is known to
agree with the stability of the reduced model

x=Qy+ f(x,y,z,w, En+ h(x,y,z,w)), (91a)
y=—Qx+glx,y,z,w,En + h(x,y,z,w)), (91b)
Z=Qw+r(x,y,z,w,En + h(x,y,z,w)), (91c¢)
W= —Quz+s(x,y,z,w, En+ h(x,y,z,w)), (91d)

where E = (E|,Ey, E5,E4) and h(x,y,z,w) solve Egs. (54) and (55), respec-
tively, with #:= (x,y,z,w)’ and boundary conditions #(0,0,0,0) =0 and
Dh(0,0,0,0) = 0.
The boundary conditions above require / to have the form
h(x,y,2,w) = X*hy, + XVhy, + X2hy, + XWhy, + Vhy, + y2h,,
+ ywhyw + ZZhZZ + ZWhZ"V + thlVM) + O(” ('x7y7 Z7 W) ||3)7 (92)

where Ay, i,j € {x,y,z,w} are constant vectors.
Similarly, let

H(x,y,z,w) :== byU(x,y,z,w,En) + G(x,y,z,w,En) — f(x,y,z,w, En)E|
—g(x,y,z,w, En)Ey — r(x,y,z,w, En)Es — s(x,y,z,w, En)E,

= ¥ Hy + XyH,y, + xzHy. + xwH,, + y*Hy, + y2H,. + ywH,,,
+ 22H.. + zwH.,, + W H,,, + O(||(x,y, 2, w)|). (93)

By solving Egs. (54) and (55), we have

Ey = —{M?>+ QQ,1} " - {ky M, — Q:kp21}bs, (94)
Ey = —{M?+ QQ0} " - {kinM, + Qky, )by, (95)
Ey=—{M] + Q1" - {kisMy — Qukial Yo, (96)
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Ey = —{M?+ Q:Qu1} " - {kyaM, + Qskyi3}bs, (97)
- (M2 +4Q3Qu0)  (=2QuH,, + 2Q3H.. + My H.,), (98)
hzz ( 2z + Q4hzw) (99)
hww ( ww Q3 hzw ) ) ( 100)
h H H
= M2+ Q1) My 7 ) = )T, 101
hvu ) + e ) { ? (I_wa ) ? (Hyw > } ( )

(1) =+ ey fon () o (1)) (102)

where the expressions of h, A, h,, are given in Eqs. (77)—(79) with H;; defined
in (93), M1 = A22 + b2K2 and

(Ml
o= (a0, (103)

The reduced model (91a)—(91d) can hence be obtained as

x=Qy+ flx,p,z,w), (104a)
y=—Qx+g(x,y,z,w), (104b)
z=Qw+7F(x,y,z,w), (104c¢)
W= —Quz+3(x,y,z,w). (104d)

Here, ¢(x,y,z,w) := @(x,y,z,w,En+ h(x,y,z,w)) for ¢ = f,g,r,s with E;
given in (94)—(97) and / defined in (92). The values of 4;; are given in (77)—(79)
and (98)—(102), and the coefficients of the quadratic terms and cubic terms of
the functions f ,8, 7,5 expressed in terms of £; and hj are given in Appendix C.

A linear and/or quadratic feedback stabilizing control law readily follows
from Corollary 5 and the foregoing discussions.

Proposition 6. Ler QQ; # aQ3Qy, for each o€ {§,1,1,4,9} and b,; =0 for
i=1,...,4. The origin is asymptotically stable for control system (la), (1b) if
S1,8 < 0 and S3,5, <0 or S; and Sy are nonzero and of opposite sign, where S;
are given in (45)~(48) with coefficients @,;, @ replaced by @,;, ¢, respectively,
for all ¢ = f,g,r,s. Here, f,8,F,§ are defined above and the control input is
given by (90).

Note that a stability criterion for the uncontrolled model of (1a), (1b) can
also be obtained from Proposition 6 by letting u = 0. Next, consider a special
case in which £ is a scalar. Referring to Egs. (93), (77)-(79) and (98)—(102), we
can determine /;; from the quadratic gains of the control input. A purely
quadratic stabilizing control law is hence obtained as follows.
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Lemma 12. Let & be a scalar, Q1Q, # aQ3Q4, for each o € {é, 11,49} and
b =0 fori=1,... 4. A purely quadratic feedback

u(x,y,z,w) = u. x>+ Xty + Uz + U,w) + u)_wy2

+ y(upz + upw) + UnZ® + UnZW + Uy W (105)

exists guaranteeing the asymptotic stability of the origin for (la), (1b), if
See + 8¢ # 0, re + 5, # 0 and either of the following two conditions hold:

(1) fre # & and 1z # sy,
(11) ngxg + sz;,cj 75 0 and Q3Szg + Q47'w§ 75 0.

Proof. In the following, we check the stability conditions of Proposition 6
under the hypotheses of Lemma 12. Suppose £ is a scalar, b;; =0,i=1,...,4,
Sfre + ge¢ # 0 and 1 +5,: # 0. Then the values of S; and S, (given in (47) and
(48)) can be made equal to any real numbers by a proper choice of
thxx + Q2hyy and .Q3hzz + Q4hww.

If condition (i) holds, then the value of S; (given in (45)) will be determined
by hy and h,,, independent of the value of S4. Similarly, the value of S, is
determined by 4., and 4,,,, irrespective of the value of S;. The values of S} and
S, can also be adjusted by the choice of #,, and #.,, when condition (ii) holds.

According to Egs. (77)~(79), (93) and (98)—(102), the values of 4;; can be
directly determined by the quadratic feedback gains when ¢ is scalar. The
conclusion is hence implied. [

A similar stabilizing control law can also be designed as follows.

Lemma 13. Suppose ¢ is a scalar, ©,Q, # 0834, for each o € {§,1,1,4,9} and
b =0 fori=1,...,4. A purely quadratic feedback as given in (105) can be
designed to guarantee the stability of the origin for (1a), (1b) if f: # ag,: and
roe 7 0S¢ for o = =3 and o = —% and either of the following conditions holds:

(1) Qlfwisyf - 'ngwisxi 7é 0 or QZfZir,Vi - ngzirxcf 7é O,
(11) Q4ﬁvirx5 - Q3f;ésx§ 7é 0 or Q2Q4ﬁviry§ - QIQ3gz§sx§ 7é 0, or
(iil) 21 Quguerse — L foesye # 0 or Quguerye — Qa3gaesy: # 0.

Proof. The proof is very similar to that of Lemma 12. Suppose fi: # ag,: and
7o 7# asye for o = =3 and a = —%. The values of S| and S, (given in (45) and
(46)) can then be adjusted by A,, (or k) and 4., (or h,,). Moreover, the values
of S3 and S, (given in (47) and (48)) can be any real numbers by a proper choice
of Ky, My, By OT by, when either of conditions (i)—(iii) holds. Since the values of
h;; can be directly determined from the quadratic control gains when ¢ is a
scalar, the conclusion is hence implied. [
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5.2. The case b; # 0

In this section, we consider the case in which one of by, i=1,...,4 is
nonzero. It is known that by, # 0 or by, # 0, and b3 # 0 or by4 # 0 imply the
controllability of system (1a). Similar to Section 2, the control law, here, is also
restricted to be a purely nonlinear function of x,y,z,w and has the form as
given in (32).

Let 45, be stable. Then according to the discussions in [2], the stability of
(1a), (1b) is determined from the reduced model (104a)—(104d), where

f(x,3,2) = buu(x,p,2) + f(x,9,2,h(x,»,2)), (106a)
&(x,»,z) = biou(x,y,z) + g(x,»,2,h(x,y,2)), (106b)
#(x,y,2) = bisu(x,y,2) +r(x,,2,h(x,y,2)), (106¢)
8(x,»,2) = biau(x,y,z) + s(x,y,2, h(x,,2)), (106d)

o

and /& is the solution for (67) with boundary conditions #(0) =0 an
Dh(0) = 0.
Suppose /4 is given by Eq. (92) and let
H(x,y,z,w) := byu(x,y,z,w) + G(x,y,z,w,0)
= szxx + xnyy + szrz + XWI_wa + yzHyy + yZH)Z + yWI_I}w
+ 2 He. + 2WHoy + W Hy + O(||(x, 3,2, W) ). (107)
h;; are hence obtained as given in (77)—(79) and (98)—(102) with K, = 0 and H;;

given in (107). A stability criterion for control system (la), (1b) in the case
b, # 0 readily follows from Corollary 5.

Proposition 7. Suppose Q1Q, # aQ3Qy, for each o € {%,%, 1,4,9} and by; = 0 for
i=1,...,4. The origin is asymptotically stable for control system (la), (1b) if
S1,8 < 0 and S3,5, <0 or S; and Sy are nonzero and of opposite sign, where S;
are given in (45)~(48) with coefficients @,;, @ replaced by ¢,;, @, respectively,
forall o = f,g,r,s. Here, f,g,7,§ are defined in (106a)—(106d) and the control
input u is a purely nonlinear function and has the form as given in (32).

A purely cubic stabilizing control law is obtained as follows.

Lemma 14. Let Ay, be stable, but the full system need not be stable. If by; # 0
or by, # 0, and byz # 0 or by # 0, then the stability of the origin of (1a), (1b) can
be guaranteed by a purely cubic state feedback
U, Y, 2, W) = X + (U + UoZ + Uy W)X
F (U X+ Uy + U2 + Uy, W)Y
(X + Uy + UnaZ + Uy W)Z
+ (uXVVW'x + uywwy + uZH}lVZ + uW\’VVVW)WZ' (108)
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6. Conclusions

The center manifold reduction technique proposed in [2], along with the
normal form reduction recalled in Section 2, are applied in this paper to study
the stability and stabilization of smooth, nonlinear autonomus systems in
doubly critical cases. Specifically, the linearized model of the system has two
zero eigenvalues with geometric multiplicity 1; one zero eigenvalue and a pair
of nonzero pure imaginary eigenvalues; or two distinct pairs of nonzero pure
imaginary eigenvalues. The feedback stabilizing control laws are proposed for
both linearly controllable and linearly uncontrollable cases, while a purely
nonlinear feedback design is considered in the former case and linear and/or
nonlinear control designs are obtained for the latter case.

Some of the results given in this paper agree with those obtained by Behtash
and Sastry [3]. However, the results obtained in this paper cover more detailed
design for general high-dimensional systems. For instance, the stability criteria
and stabilizing control laws are given in terms of the original system dynamics
before normal form reduction. Moreover, there is no restriction on the number
of the noncritical modes and the stabilizing control algorithms proposed in this
paper can be coded easily.
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Appendix A

The polynomial functions P, and P; for deriving the normal form for the
case in which 4;; has exactly one zero eigenvalue and a pair of nonzero, pure
imaginary eigenvalues are given below.

Let Py(x,y,z) = (P}, P?,P})’, where Pi(x,y,z) has the form as

P =X + QY+ QX2+ Q) + @7+ 9.7,
forallp =P,i=1,...,3.
The coefficients of polynomial functions Pj are
(Zg.vy + fxy)QZ + gxel
30,2, ’

P] — _ (gxy + Zf;(x)Ql - zf;/yQZ
Zxy 3Q1 Qz ’

I
P24xx -
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— f)zQZ + gszI

pl =l T &I
2.xz 49192 ;

Pl - _ ( xy g){")gz - 2g)avgl
2 302 ’
Lm0
e 2%+ 212’

gZZ

Pl ==
2.2z QZ

P2 — 2fWQ2 + ( xx gxy)Ql
2xx 39% ,

P o— (2gyy +fxy)~QZ — 288
o 30,2, ’

P - _ Jiz822 — 28

2.xz M7
_ _fyy‘QZ + (gxy + zfvx)Ql

P2 = ,
29 30,0,
P2 _ f:WQ2 + gszI
257 49192 ’
2 fzz
PZ,zz = = Q_l’
Vv
P3 Xy
2.xx 491 ’
ry, —F
P3 _ xx
2.xy QZ 4 Ql ’
P23,xz = ;2_5’717
3 Txy
PZJ/y - 4Q2 ’
3 Vxz
P, = - Q—z,
P, =0.

Next, let Py(z1,22,23) = (P}, P2, P})', where Pi(z),z;,23) has the form as

@ =11z, + (0122 + 011373)71 + (P1071 + Paz2)7
+ 032573 + Q13712273 + (13321 + oz + P33323)7

forall p =P, i=1,...,3.

345
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The coefficients are given as follows.
(=3fom + 2/ + (812 — 28111 +/10) 22 + 2112
40,Q5 + 4912,
P317112 = —{(-38m + 38— fin + 1)
+ (=98 + &2 — 310 + 3021}

1 —_
P3,lll -

)

/{693 +4Q,Q, + 627},
Pl (28,03 + f123) 2 + &1
3,113 39192 )
P31,122 =0,
Pl 2320 + (=123 — 2f113)
3,123 30,2 ;
P3],133 =0,
Pl _f~1229§ + (=28 + &1 + 3/11) 212 — 38,2
22 300 4+20,Q% + 3220, ’
Pl — (823 — f123) @2 + 2811,
3023 = 3 ;
32
Pl = _];13392 — &3¢
3233 = Fr00,
2 1542
&
P31,333 = ;2—323’

Pilll ={(-38m +38n— fim + 3f~111)95

+ (=38 + &2 — fioo — [111) 212 + 281,27}
J{69Q,9Q5 +4Q71Q, + 627},
(—=3fo + f112) 2 + (8120 — 38111) 21

P, =

. 20,Q, + 2 ’
P 2]22392 + (f~113 — 8123)€

3113 = > ;

37

P32,122 =0,
J - (28203 + f123)22 — 28115

3123 30,0, )

2 _
})3‘133 - 0’
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—fzzzgg + (=812 — 4 + f112) 2 — 38,9

Piyy = :
3222 40,Q% + 42 Q,
J - S + (8123 + 21113) €
3223 — 39192 ’
P — /23382 — &133¢%
3233 7291(22 )
f333
P32,333 = = ?17
P 2720 + 17112
3,111 —39% )
3 Fiin
P3,112 - = Q—27
3 7123
P3,113 = 2—917
3 )
P37122 = Q71
3 7223 — 7113
Py = e
3 7233
P3,133 = Q71,
P _9271224-2917111
3,222 3Q§ )
P33‘223 =0,
3 F133
P3,233 - = 9—27
P33,333 =0.
Appendix B

The polynomial functions P, and P; for deriving the normal form for the
case in which 4;; has exactly two distinct pairs of nonzero, pure imaginary
eigenvalues are given below.

Let Py(x,y,z,w) = (P}, P?, P}, P})’, where Pi(x,y,z,w) has the form as

P = 0 + Py + Pz + W + @)
+ 0oz + Quw + 9.2 + @2+ @, W

forall p = P, i =1,...,4. The coefficients are given as follows:
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(2gyy +ﬁcy)92 + gxeI

Pl
2 = 30,0, ’
o (80 20000~ 2/,
2.xy 3QIQZ ’
P1 f:v»vQ3Q4 + Ql((_zgyw - 2ﬁ(w)Q2 - gsz3) _f}zQZQ3
25 = Q2Q, — 4Q,2,0; ’
Pl — Ql (gwa4 + (_2g}z 2f)€2)92) +fsz3Q4 +fyw92Q4
2w Q0 —4Q,2,0,
Pl _ ( xy gyy)QZ - ngxgl
2,0y 395 ’
le Q3 (ijWQ“ + ( xz gyZ)Ql) B 2nyQIQ2 + ngwg% ’
e Q3Q, — 4Q,2,Q;
Pl _ ((f:vw - gyw)Ql _f}zQS)Q4 + Zf)ZQlQZ - 2gszT
2 Q% — 4Q,2,0, ’
Pl 2gWWQ + (2gzzQ3 +,fszZ)Q4 - gzleQZ
2 = 40,0:Q, — O,
P] 2‘fww£24 - 2fzzQS - gszI
2w 49394 7 Ql QZ ’
P] 2gwa3Q4 + 2gzzQ§ - f;vaZQS - gwaIQZ
2w = 40,0:Q, — Q2 ’
PZ _ nyy.Qz + (,fxx - gxy)Ql
2xx T 3Q% ’
PZ (2gw +f;cy)92 - 2gxeI
22y = 30,0, ’
P2 _ Q3(gwa4 + ( xz = g)z)QZ) + Zf;nvgg - 2g)mfgzl'()Z
2 QQ, — 4Q,2,0; ’
P2 — (gthf; + ( fhw)QZ)Q4 + 2fyzQ2 2gszIQZ
2o Qﬂ}A@@m
g falt (80 22
2 30,0 ’
P2 g}wQSQ4 + Ql (gszS + ( ngw zfxw)QZ) +f}z~Q2~Q3

22 = Q20 — 40,2,0;
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Ql((72gyz - 2fXZ)92 - gxw~Q4) + g}zQ3~Q4 *ny.QzQ4

Pl = -
2w Q;Q2 — 40,Q,Q,
o 2t (fa2 — 0 Q) — 2
22 40Q,0:Q, — B2, ’
Pz _ 2gwa4 - 2gzzQ3 +Jrzw92
2w 4Q3Q4 — QIQQ ’
P2 _ 2ﬁva3Q4 + 2ﬁzQ§ + Ql (gzw93 - fwa2)
2 40Q,0;Q, — B0, ’
o 2035, — 3Qus. + 29, Qos, + D Qury,
e Q22 — 4Q,0,Q, ’
P3 _ _ —Q3SXy + 2927'),), — 2erxx
2y Q394 — 4.91.(22 ’
P - Q4(2Q35, + Q17vy) + 21235, + (2Q23Q4 — Q)72
2z 40,Q:Q, — Q) '
P 208+ Q5w — 1) + 2252 — Qi)
2o 40Q,Q0:Q, — QQ, ’
P By 201Dy, — 2950 + Q1 Qury,
2 Q322 — 40Q,Q,Q, ’
P3 _ Q3 (st},z — 2Q4wa — 2Q4l’xz) + QQQ4I’}W + ngzl"xz
20 40Q,Q0:Q, — Q2 ’
po_ Qs - 225, + D Qsry. + 2Q3Quray — Q1 Qory
2w 40,0,Q, — O,
P3 _ 2{24sww + Q3Szz + Q4rzw
2,2z 39394 ’
P3 _ Q3szw - 2'(247‘ww + 2'(23;"22
2.ow 3Q3Q4 ’
P3 _ _Q4SWW - ZQ3SZZ + Q4rzw
2ww 3~Q421 ?
o By — Qur) + 2007, + 2Q1 Qo1
o Q2Q, — 40,Q,0; ’
2Qs,, — 2Q Qur,
P;xy _ 2Syy 1xx + 4r,y

2;Q4 — 40,6, ’

i

349
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Q1(Qa5,. — Qs + Qur) — 2Q:3Qus,. + 2251,

P o= —
e 4Q,0:Q, — Q2Q, ’
P; L Q4(2.Q3Syw - erxw) - Qlesyw — Q1(ss,, + 29394”;2 ,
o 49,Q0,Q, — Q12
P — Q1 Q5 + (30Q4 — 20,Q))r,, — 2Q07,
e Q0 — 420 ’
o Q2055 — Dos) = QDo + BOurye — 2041
e 40Q,Q0:Q, — Q2 ’
P4 - _ Q3 (QZS_}Z + 2Q4wa + 2Q4rxz) - QIQZwa + QZQ4r)Av
e 40Q,Q0:Q, — Q ’
*Q3Szw + 2'(24}"ww + Q3rzz
P;,ZZ = = 392 ’
3
P4 _ 2'g24sww - ZQ3SZZ + Q4rzw
2,zw 39394 )
P4 _ Q3Szw + Q4rww + 2“g23rzz
2ww T 3Q3Q4 .

Let {:= (z1,22,23,24) and Pi(zy,2,23,24) = (P31,P327P33,P34)’, where Pi(z,z,
z3,24) has the form
=iz + (@122 + Q11323 + Q11474)7
+ (P1021 + PanZa + 022373 + P20474)75
1 0123212223 + P124Z12274 + Q134732128 + Pr34727374
+ (1321 + Pa3za + P33373 + P33474)73
+ (Pr4471 + PrsaZ2 + P34473 + PusaZ4)7;

for all p = Pi, i =1,...,4. The coefficients of P; are given as follows.
Pl fzzzgg + (&1 + f112) 22 + 8112
3111 4020,

P31,112 = {2f~1229§ + (=8 — &1z + fim — 3fin) 2

+ (382 — &112 + 3fim — 3J;111)Q%}/{6QIQ§ +40Q]Q) + 607},
Py = {/1a @2 + (Q((—2812s — T/18) 21 — f1323) — 8132125,

- 2]@2492)94 + (6223 + 3f~123)QIQ§ + 383212}

J{RQ8 — 10Q,2,0Q0:Q, +921Q3},

)
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Py = — {10 + f124@ 25 + 8114 2123) Q4 + Do(21(—2825
= %) = 38142) + A ((—6204 — 3120)2
— 2y 23) } /{232 — 10Q12,0:2, + 99,23},
oD + (&1 + 4o — fi12) 120 + 381, 2
40,0Q5 + 4912, ’

P31,123 = {fie B2 + (211139 — 815323) + D ((—4824

— 5£120) Q1 = 2f1325) + 4211420 Qu + 6/ 2 23

+ (=381 — 6/113) A2} /{230 — 1021222, + 92123},
P3],124 = —{(inQ + 2/0240Q + (Z124 — 2/11) 2 2) L

+ (Q1 (4222325 — 5£12325) + (3&124 + 6/110)2))

+ 4§1139%Q3 - 6]@24919%}/{9392 — 1082,2,2:Q4 + 99%95}7

(fas@ + 8102024 + (fr332 + £15:2) D5 + (8234 + f130) 22
40,0, )

P31,134 = {21042 — 2804421) 2 + (((2f 120 — 2f133) 22
+ (220 — 28033 + 4f1as — 4133) Q1) 25
— [ + (=814 — [r) 012 — 813,202
+ (28321 = 2/1332) 9 + (—ou D + (—&1
— [ 219 — 8132025 + (— 280 + 2803
— 244 + 2f133) 02 + (=280 + 28033
— 2fas + 2f133) 210} /{42, + 4Q,)Q3Q3 + ((4Q; + 40Q)) 22
—4Q1Q5 — 4Q1D)Q + (—42, Q5 — 421 2,)Qs},
Py gy = {(fous@ + 81 20) 22 + (f3 2 + 8113212
+ (231 — S130) 022 — 2/, 0D — 28,2100}
/{4Q,2,Q,Q, — 42]Q3},

1 _
P3,122 =

1 _
P3,133 =

P3],222 =0,

P3l,223 = {2 + (1 (f132 — 82323) — T2y
+ (28124 — 2/114)2D) 24 + (383 — 3/12) A2
+ 62,327} /{23Q; — 102,2,Q:Q4 + 92123},
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Py = — {(fan @ + (224 — f124)2125) Q4 + (314
—3800)Q] — T/ 2123) + Q] (2812 — 2/11323)
— 62112} /{205 — 100,2,0:0, + 90703}
Py yy = {(2f2a(2 + Q)25 — 2/ 142125 + 28,0, 20) 25 + (23422 + 2123
+ (28 — 2823) 2 + (2f133 — 2/14)20) 25
— a1+ (&134 — fr3a) 2120 + 81342
+ (2f15 212 — 28530 + (— /42 + (813
— Fr) QD + £1342]) Q1 /{(4Q, + 4Q) Q] + ((4Q; + 49,23
+ (4995 — 4Q7Q,)Q3)Qy + (—4Q,Q; — 427Q,) 23},
P31,234 = {(fas2 + g14491)9i + (((3foas — 3f233)
— 21041 + 1202 + (fi3a — 23) 012) 2
+ (/232 — 2133209 + (f13a — E230) U225
+ (2f — 260) D + (281620 — 28122}
J{42,Q:2; + (42,Q5 — 4Q2,Q5)Q4 — 40,05},
P3].244 =0,
P}y = {6/ss 2 + (3125 — 28042024 + (72332125
— [34@122)Qu + 23, 212}/ {9230] — 102, 2,0:0, + 0103}
Py = — {68412 + (9352 + Q1 (383425 + 2/30422)) 2
= 3£ D0 — £33, 21D} /{9952 — 10Q,Q,Q:Q, + 2123},
Py = {9/ss 22 + (=380 23 — 3f10s21920)Qu — 623,025
+ Q2(2f~3349193 + g344Q?)}/{9Q§Qi — 102,Q,2:Q4 + QfQ%}
Py = — {3/ + T80aa 21 Q3) Q4 + 633325 + 21 (2833423
— s R3) — 2 QDY {9RBQ; — 10Q,2,Q,Q4 + 2123}

P:sz,m = — {21+ (& — &1z + i + 3F111) Q1) 23
+ (=38m — &2 + fim + /i) Q12 — 28,27}
J{697Q5 +40Q0, + 601},

P32,112 = D + (8122 — 2f + f112) 22
+ (2g122 - 3.5’111)9%}/{49%92 + 49%}7
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Pz?,m = {81142 + (2812 + f13 — 7811421)

+ (2104 — 2824) D) — /232 + (38123 — 3£113) 2123}

J{Q30Q5 — 10Q,2,0Q:,Q, + 99725},

Py = {((fi1s — 8124) 295 — 811:23) Qs + B (2820325 — 21325

+ (38124 — 3f110) Q1) + 7811321 Q5 — 6]22493}
J{Q0Q —10Q,2,Q0:Q, + 9202 Q3},

_flzzgg + (=282 + &2 + 3/10) 2190 — 3802

P =
312 30,Q +20°Q, + 30

)

P32,123 = {81242 + (D(—282323 + f1325
+ (=514 — 4110 Q1) + 22132125 + 4/, 23) 2
+ (682 + 3f123) 2125 — 6113212}
J{Q39; — 102,2,Q;Q, + 99723},
Py = — {(@m D + 2804 — f124) 205 — 28152125) 2,
+ 2(Q1(—5213Q5 — 4£1132s) + 6211,27)
+ D (425 + (—6224 — 3f120)1)}
J{Q32; — 10Q,2,Q;Q, + 9975},
Py = —{(2f1a@ = 2542) Q4 + (2/1:2 — 28,3,21) 25
+ 4 + (s — 2130) 0190 — £ 21}
/{4219, +4Q7) 3},
P} isy = {(fra@ + 8122 + (fn5 — frua) 2
+ 3210421 — 3813212 + (fi3a — £34) 222) 2
+ (=132 — 820D + (N3a — 823) 21 20
+ (2o — 2/3) D + (281327 — 281,212}
J{491Q:Q; + (4Q,Q5 — 4Q7Q,)Qy — 4272, Q5},
P3?,144 = - {(2ﬁ4492 - 2g244QI)Q3Qz2; + (((2f14s + 2f133) 22
+ (—28m — 2833)R0)Q + (HuD + (&1
+ f13) 21D + 21321 Qs — 41144212 + 4824, Q1 20) 2

353
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+ (2f13322 = 28132025 + (Hu D + (&1
+ f) @2 + 81322 + (28214 — 2803
— 21 = 2/13) D + (2ons + 28033
— 214 + 2f133) Q1 2) 23} /{(4Q1 Qs + 4Q7) Q325 + (4212, +40Q7) 25
—407Q — 4Q]D,)Q + (—4Q7Q5 — 42]2,) 25},
P32,222 =0,
P32,223 = {2242 + (02325 + (— T804 — 2/124)Q1)
+ 810 — 281149]) Q4 — 3/ 02 + (=381
— 6/113) Q2 2} /{29; — 10Q12,0:Q, + 90723}
Py = {(—823Q + fru Q5 + 8124 2193) Q4 + (1 (7822
+ 2f12325) + (=381 — 6/110)27) + 281,212
— 30215} /{RQ; — 102,222, + 99103}
P}y = {(2824Q5 — fraa@s — 104 21) 24 + (o325
+ 8112125 + (—2n4 — f120) 212}/ {42304 — 401,25},
P32,234 = —{(2f142 = 28 2) D9 + (((—482us + 48033
— 2fras + 2f133)2 + (28533 — 28244) 1) 25
— fru s+ (=813 — [r) 12 — 213,202
+ (283 — 213322 + (—/ru D + (—&1
— [ 212 — 8132025 + (284 — 28033
+ 2148 — 2f13) 0D + (2844 — 2833
+ 210 — 2133) A2} /(42 + 4Q0) Q25 + (42, + 401) 23
—40Q,Q) — 4Q7Q,) Q4 + (42,25 — 4Q7Q,) 23},
P32,244 =0,
Py = {622 + (3233425 + 2/ 2) Q5 + (7f3332:25
- §334QIQZ)Q4 _J%33QIQ§}/{9Q§Q§ — 102,Q,Q2:Q4 + 9?95}7
P32,334 = {6/14 229 + (0 (3f334 2 — 28304 21) — 9833,23) 2
+ 3853321200 — f13, 220} /{995Q]) — 10Q,Q,Q3Q, + 2123},
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P}y = {9244s239 + (3344225 — 3210 212) Q4 + 6/, 02
+ Q1(28334 25 _J;344Q§)}/{9Q§Qi — 101,050 + Qfgg},
P sy = {(7fss 225 — 3854420) Q4 — 6853325 + (2132423
+ §344QIQ3) _f~444QIQ§}/{9Q§Qi — 109, 2,Q2;Q, + Q%Qé}
Py = {037 — 2Q381n) + (524 — 7212,Q5)511
+ 6Q370 — D Q3 Q47112 }/{23Q% — 10Q,2,Q0:Q, + 921 Q3},
P33,112 = {Q3(2(—3Qi5112 — 2QuF1n) — 6Q352))
+ Q12 + (3QQ — 92[2)F 1 }
J{2Q; — 10Q,2,Q0:Q, + 921 Q3},
P33.113 = — {Q5(28223 + Q4(—5124 — F123) — Q15113)
+ Q2 Quing + 2Q1 oF1n3 — Q1 Quifiia} /{491 Q3Q4 — 4Q7 Dy},
Py = — {Q(—2Q504 — 2Q15114) + 2324(S123 — Fioa)
+ Q§§123 + 2Q, Q43 — 927124 +2Q, Q47115 }
J{4Q19Q] +4Q,2:Q4},
P33,122 = - {94(—955122 + 322372 — 2Q1Q37112) + 32122351
+ 61235111 — 99, Q3 } /{Q3Q7 — 102,Q,2;Q4 + 9Q1 23},
P}y = {Qa(Q5(284 — 25114) + (25123 + Fing)
+ Q1 (5123 + F12a))) + Q5 (Q3(28204 — 25114)
+ QoFiq + QiF124) + 93(2935224 + Q,92,(25114
— 284) — 2Qf§114) + Q5(925123 + Q15123)
+ (2,2 + (295 — 295 — 2Q,2,) Q4 — 4Q, Q33
+ (=232 + (293 +2Q,Q) +20Q7)Qy + 42,Q,Q3)7113}
J{(4Q) 4+ 4Q)) Q0% 4 ((4Q; +4Q)) Q% — 40,5 — 4Q10,)Q,
+ (42105 — 4Q12) 23},
P 1oy = {Q3(2(21 (8223 — §113) + Qu(S124 — F123))
— D5y + Q145124 — 7123) + Q15113)
+ Q§(294§113 — 2Qu823) + (2939421 - 9594 — 3Q21Q2,Q4) 724
+ (292:2; + 3Q2,Q,Q4 + 21Q4) 114}/ {Q23(4Q,2;
+40,Q) — 42,Q5Q, — 470},

355
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P33,133 = { Q4 (Q3(—25234 — Tin3) — Qii13a) + 25(6Q35144
— 2QoFous + 3Q37134) + (3Q§Q4 — Q1Q,23)8133 + 91957233}
J{99Q32; — 10Q,Q,2:Q, + X123},
P33,134 = — {Q4(2,925(45244 + S5P234) + 3Q§§134 +2Q,Q)F144)
- 4929§§233 + Q15134 — Q1 Q5234 — 6237144
+ (6Q5Q — 2Q2,Q:Q3)7133} /{902 — 10Q,2,0Q:Q4 + Q1 Q3},
P33,144 = {Qy(Q3 (28234 — 27233) — Q1 Q35144 + Q1 Q37134)
+ Q4(3Q§5144 — 737244 — 3Q§f134) + 6935133
+ Q1Q57244 } /{90 QF — 10Q,2,0Q:Q4 + Q1 5},
P33,222 = — {Q(721Q2522 + 2975110 — Q1 Q1) — Q3 Qudon
+ 321 Qo0 + 6Q37111 } /{32 — 10Q,2,Q;Q, + 90131,
P33,223 =0,
P33,224 = — {Qu(Q5(Q1(—28504 — 25114) — 4D5204) — D321(Q) + Q) (5123
+ F124)) + Q3(Q] (25204 + 25114) + 2Q1 5oy
+ 29?5114) + 92(9193(25114 — 2804) — 1257124,
— Q1) — Q3(Qy + Q) Q5103 + (42, +20Q))Q:2;
+ (22195 — 20,95 — 2270, Qu)ims + (22,Q:;
+ (29195 - 2010, — 200) Q)13 }/{(40; + 42252
+ (4, +49Q)) Q3 — 4Q,Q; — 4Q7Q) Q) + (—4Q,Q; — 4Q71 Q) Q3 Qu},
P3 oy = {Q25(Q3(68244 + 3F234) + 2Q217144) + Qu (3235033
+2Q, Q235134 — Q17234) — Q12,5533 + (792,2:Q4 — 9%92)17133}
/{900 — 10Q,2,Q;Q, + Q1 },
Py = —{Q(Qs(Qi5254 — 2Q17233) + QF13a) + Qa5 (35234
+ 6733) — 491 Q35148 + 291 Dofras — 5 Qs7134)
+4Q, D513 — 637 } /{9932, — 10Q,2,2:Q, + Q1 23},
P33,244 = {94(Q§(3§244 — 37234) + TQ1Q37144) + Q12,25 (234
— §oa) + 6Q35233 — 2Q1 35134 — Q1 Dofraa
+20,Q5713: /{99395 — 10Q2,Q,Q2:Q, + Q;Q3},
P33,333 = — {Q230Q4(285333 — $304) — D35333 + 3QFaas
+ (=22 — Q3Q,)733} /{4Q:Q% + 4Q22Q,},
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P337334 = {Q3(95444 — 5334) + Q4(3S4a4 — 38334)
4 (Q4 + 3Q3) s + (—9Qy — 3Q3)7333} /{69 + 4Q;Q4 + 6Q3},
P33,344 =0,
B —3Q§§444 + Q4(Q23(8334 — 284a0) + Qif344 + 32347333
300 420,27 + 3030, ‘
P;,m = - {_6935222 + Qﬁ(—3915112 —2QuF127) + 2:Q3Q4811»
+ (2:9Q5 — 7Q12:Q4) 7111}/ {2395 — 10Q2,2,2:Q4 + 99723},
Py = {Qu( (321711 — 22381) + 625722) + (3212324 — 915111
— Q0711 /{Q590; — 10Q,2,Q;Q + 90723},
P?,m = {Q4(Q:(2215114 — 2Q35204) + (Q3 — 2Q,2,) (21 + Q,)5123)
+ 92(9192(25114 — 25204) + Q5(21 + 22)(S123 — F14))
+ Q3(Q5(=2Q15123) — 2Q7D5123) + (225Q] + 2Q12:Q3Q4)73
+ Qi(—szm — Q1F14) + (—ZQfQi —2Q1Q2,Q;Q4)7113}
/{4912, +4Q7)Q3Q; + ((421Qs + 4Q7) 2,
—4QQF 4D Q 4+ (—4Q105 — 40Q10,) 05},
P = — {Q3(Q0503 + Qu(—5104 — F123) + Q15113)
+ Q4 + Q1 QuF114} /{421 2:Q4 ),
P?,m = {Q3(—3Q2, Q8 + 291 QuS112 — Qiflzz) + 991955222
+ 3212 QuF 12 + 6Q7 Q47111 } /{23097 — 10Q,2,Q2:Q, + 927 Q3},

P;,m = — {Q3(2:(2: (35223 — 35113) + Qu(Fr23 — 5124))
+ 955223 + Q1 Q4(F123 — §124) — Q%5113)
+ Q§(2945113 — 2Q4853) + (293912; + 9594 — Q1QQ4) P24
+ (=235 + Q1 0,Q4 — Q1Q4)F114} /{25 (42,Q,
+40Q,Q4) + (—4Q,Q; — 4Q72,)Q5},
o4 = {Q4(3 (2524 — 28114) + Q1 (45114 — 45204)
+ Q3(2x(—58123 — F1oa) + 21 (—8123 — F124)))
+ Q3(Q23(28204 — 25114) — Qof1os — QiF124)
+ 93(*2955224 + Q19Q5(25114 — 2524) + 29%5114)
+ Q3 (— Q123 — QiS13) + (2Q2:Q5 + (2Q3 + 205 — 20Q,Q,)Q4) s
+ (=225 + 2019, — 2Q7)Qy — 20007113}
J{(4Qs +4Q)Q5Q5 + ((4Qs +4Q)) 23
— 421D — 4Q7D,) Q4 + (—4Q2,2; — 4Q7Q0) 3},

3 _
P 3444 =

"
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P;m = — {25(2:(25244 — 27n3a) — 3238134) + Qu(72:2353;
+ Q1D5813) — Q1 Bfozs + 6QF1us + (32325
— Q1Q0,Q0)713} /{9903Q; — 102,2,Q:Q4 + 213},
130 = — 122Q4(925(58234 + 47233) + 2215144 — Q17134)
- 91955234 + Qi(—693§144 — 4QyFous — 3Q37134)
+ (6230 — 2Q,0,03)5133 } /{903QF — 10Q,2,Q:Q, + Q1 23},
aa = — 124(2225(752aa + 27234) + 3Q§§134 — Q,Q>7144)
— Q1Q35044 + 2205033 — Q1235134 + 3014
+ 62324713 }/{90.2; — 102,2,2:Q, + Q1Q3},
P}y = — {Qu(— Q12351 — TQ1 QoFany — 2Q77112) + 3Q1 D51
+6Q)5111 + Q3Q70 }/{Q50Q; — 10Q,2,Q2:Q4 + 92; 25},
P;223 =0,
P;,224 = — {22553 + Q3 (— 21 Qo8m3 + Q1 Qu(F123 — 5124)
— 25113) + (2Q:Q5 — Q1Q,Q4)Fa0s — Q1 Quii14}
/{4Q50Q; — 4Q,2,Q,Q,},
P?,233 = {Q3(Q23(35234 — 3F233) + 221514 — 2Q17134)
+ (1733 — 18234) + (T212;Q4 — 9%92)5133
— 6Q3as} /{9930 — 109,2,2;Q, + 1 Q3},
P;,234 = {Q3(Q3(68244 + 3F234) — 4Q17144) + Qu (212 (734
— 25544) — 6Q353 + 51 DaF134) + 221 QD353
— Q15134 + 49, Q3 Q33 } /{90325
—109,9,2:Q, + 293},

"

23

P;244 = {Qy(Q1 235234 — Qi5144) + 94(52%(—35234 — 67233)
+ 71235144 + Q1 Q0P 2us + 201 Q37134) + 291955133
— 303Q57244 } /{923Q5 — 10Q,2,0Q,Q, + Q1)

P§,333 = — {Q4(Q3(35444 — $331)) + 2 (35uas — 35334)
- 2955334 4 (QF 4 Q3Q4)344 + (23Q4 — 3Q7) 7333}
/{69:Q; + 40304 + 623},
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Q3(38333 — $3a4) + 3QuFgaa — QuFs34

P = — ,
3,334 20Q:Q, + 207

P34,344 =0,

P Q48235344 + 3Q§§333 + (QF 4+ 4Q3Q, ) Fagy — 3 Qui334
3444 = T .

40,0Q% + 4230,

Appendix C

The coefficients of the quadratic terms and cubic terms of functions f 8, 7,8
are as follows:

@i = @i+ QiEl + EyoeEp,
Gy = @i+ @icEy + @Bl + 2E 0 Ey),
Gii = @i + PiEy + Ejy@iceEl + @ece (B, iy En) + @ichis + 2By 9echi,
Giiy = @ychii + @ichij + 2E @ cchii + 2E[y0echi; + ¢y + @45:Eq
+ @B + Ey@ecEn + 2Ej 0By + 30 (B, En, E1p),
Qi = Pij + Pichix + @chix + @yehy
+ 2EEi](pé§hjk + 2Eii](p§5hik + 2Efk]([)¢5hik~

Here, i, j,k are distinct, ¢ € {f,g,r,s}, and i,j,k € {x,y,z,w} with Ey = E|,
Ey = Es, Ej = Es, Ey = Ey, .
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