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A Vector Neural Network for Emitter Identification
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Abstract—This paper proposes a three-layer vector neural
network (VNN) with a supervised learning algorithm suitable
for signal classification in general, and for emitter identification
(EID) in particular. The VNN can accept interval-value input
data as well as scalar input data. The input features of the EID
problems include the radio frequency, pulse width, and pulse
repetition interval of a received emitter signal. Since the values of
these features vary in interval ranges in accordance with a specific
radar emitter, the VNN is proposed to process interval-value data
in the EID problem. In the training phase, the interval values of
the three features are presented to the input nodes of VNN. A
new vector-type backpropagation learning algorithm is derived
from an error function defined by the VNN’s actual output and
the desired output indicating the correct emitter type of the cor-
responding feature intervals. The algorithm can tune the weights
of VNN optimally to approximate the nonlinear mapping between
a given training set of feature intervals and the corresponding
set of desired emitter types. After training, the VNN can be
used to identify the sensed scalar-value features from a real-time
received emitter signal. A number of simulations are presented
to demonstrate the effectiveness and identification capability of
VNN, including the two-EID problem and the multi-EID problem
with/without additive noise. The simulated results show that the
proposed algorithm cannot only accelerate the convergence speed,
but it can help avoid getting stuck in bad local minima and achieve
higher classification rate.

Index Terms—Convergence, emitter identification (EID),
interval value, pulse repetition interval, pulsewidth, radio fre-
quency, supervised learning, vector neural network, vector-type
backpropagation.

I. INTRODUCTION

M ODERN RADARS have been widely used to detect
aircrafts, ships, or land vehicles, or they can be used for

searching, tracking, guidance, navigation, and weather fore-
casting [1]. In military operation, radar is an important piece of
equipment which is used to guide weaponry [2]. Hence, an elec-
tronic support measure (ESM) system such as radar warning
receiver (RWR) is needed to intercept, identify, analyze, and
locate the existence of emitter signals. The primary function
of the RWR is to warn the crew of an immediate threat with
enough information to take evasive action. To accomplish this
function, a powerful emitter identification (EID) function must
be involved in the RWR system. As the signal pulse density
increases, further demands will be put on the EID function.
Clearly, the EID function must be sophisticated enough to face
the complex surroundings [3].

Manuscript received August 3, 2000; revised June 27, 2001. This work was
supported by the MOE Program for Promoting Academic Excellence of Uni-
versities under Grant 91-E-FA06-4-4, R.O.C.

The authors are with the Department of Electrical and Control Engineering,
National Chiao-Tung University, Hsinchu, Taiwan, R.O.C.

Publisher Item Identifier 10.1109/TAP.2002.801387.

Many conventional signal recognition techniques including
-nearest neighbor classification, and template matching rely

on algorithms which are computationally intensive and require
a key man to validate and verify the analysis [4]. At present, a
histogramming approach is accessed by radio frequency (RF),
pulse width (PW), and pulse repetition interval (PRI) of the col-
lected pulse descriptor words (PDWs). This approach is used
in a current EID system designed for sorting and comparing
tabulated emitter parameters with measured signal parameters.
However, these techniques are inefficient and time-consuming
for solving EID problems; they often fail to identify signals
under high signal density environment, especially, in near real
time.

For many practical problems, including pattern matching and
classification, function approximation, optimization, vector
quantization, data clustering and forecasting, neural networks
have drawn much attention and been applied successfully in
recent years [4]–[7]. Neural networks have a large number of
highly interconnected nodes that usually operate in parallel and
are configured in regular architectures. The massive parallelism
results in the high computation rate of neural networks and
makes the real-time processing of large data feasible.

In this paper, the EID problem is considered as a nonlinear
mapping problem. The input features, including RF, PW, and
PRI, are extracted from PDWs. Since the values of these fea-
tures vary in interval ranges in accordance with a specific radar
emitter, a vector neural network (VNN) is proposed to process
interval-value input data. The VNN can accept either interval-
value or scalar-value input and produce scalar output. The pro-
posed VNN is used to construct a functional mapping from the
space of the interval-value features to the space of emitter types.
The input and output of the VNN are related through interval
arithmetics. To train the VNN, a suitable learning algorithm
should be developed. The training goal is to find a set of optimal
weights in the VNN such that the trained VNN can perform
the function described by a training set of if-then rules. Most
existing learning methods in neural networks are designed for
processing numerical data [4], [8]–[10]. Ishibuchi and his col-
leagues extended a normal (scalar-type) backpropagation (BP)
learning algorithm to the one that can train a feedforward neural
network with fuzzy input and fuzzy output [11]. This BP al-
gorithm was derived based on an error function defined by the
difference of fuzzy actual output and the corresponding non-
fuzzy target output through fuzzy arithmetics. Similar to their
approach, we derive a conventional vector-type backpropaga-
tion (CVTBP) algorithm for training the proposed VNN. Al-
though, this algorithm can train the VNN for the if-then type
training data, it has the problems of slow convergence and bad
local minima as a normal scalar-type backpropagation (BP) al-
gorithm does. To obtain better learning results and efficiency
for the VNN, we further propose a new vector-type backprop-
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Fig. 1. The flowchart of emitter signal classification.

agation (NVTBP) algorithm derived from a different form of
error function. This learning algorithm has a higher convergence
rate and is not easily stuck in bad local minima. After training,
the VNN can be used to identify the emitter type of the sensed
scalar-value features from a real-time received emitter signal.
The representation power of the VNN and the effectiveness of
the NVTBP learning algorithm are demonstrated on several EID
problems, including the two-EID problem and the multi-EID
problem with and without additive noise.

The rest of this paper is organized as follows. Section II gives
the problem formulation. In Section III, the basic structure of
VNN is introduced. Section IV derives an NVTBP algorithm for
training the VNN. In Section V, four examples are simulated to
demonstrate the identification capability of the proposed VNN
with a NVTBP algorithm for emitter signals with and without
additive noise. Finally, conclusions are made in Section VI.

II. PROBLEM FORMULATION

In general, the problem of emitter signal classification is per-
formed in a two-step process as illustrated in Fig. 1. The first
step is called deinterleaving (or sorting), which sorts received
pulse trains into “bins” according to the specific emitter from
the composite set of pulse trains received from passive receivers
in the RWR system. After deinterleaving, the second step is to
infer the emitter type by each bin of received pulses to differen-
tiate one type from another type. A PDW is generated from the
sorting process. Typical measurements include RF, PW, time of
arrival (TOA), and (PRI). Thus, a PDW describes a state vector
in a multidimensional space. The primary focus of the paper will
be on the problem of EID. Emitter parameters and performance
are affected by the RF band in which they operate. Likewise, the
range of frequency band chosen for a specific emitter is deter-
mined by the radar’s mission and specifications. The frequency
information is very important for both sorting and jamming. By
comparing the frequency of the received pulses, the pulse trains
can be sorted out and identified for different radars [2]. When
the frequency of the victim radar is known, the jammer can con-
centrate its energy in the desired frequency range. The param-
eter PW can be used to provide coarse information on the type
of radars. For example, generally speaking, weapon radars have
short pulses. Another parameter of interest in electronic war-
fare (EW) receiver measurements is the PRI. The information
is the time difference between the leading edge of consecutive
transmission waves and is the reciprocal of pulse repetition fre-
quency (PRF). The parameter varies for different radars.

In this paper, the EID problem is considered as a nonlinear
mapping problem, the mapping from the space of feature vectors
of emitter signals to the space of emitter types. The three param-
eters, , , and , are used to form the fea-
ture vector in this problem. Such a nonlinear map-
ping function can be approximated by a suitable neural network
[4], [5]. However, these parameters operate in interval ranges
for a specific radar emitter; for example, RF ranges from 15.6 to
16.6 GHz, PRI ranges from 809 to 960s, and PW ranges from
1.8 to 3.6 s for some specific emitter type. To endow a neural
network with the interval-value processing ability, we propose a
VNN that can accept either interval-value or scalar-value input
and produce scalar output. In the training phase, the VNN is
trained to form a functional mapping from the space of interval-
value features to the space of emitter types based onsam-
ples of training pairs for the EID problem, where

indicating the th training pair, .
In each training pair, is an interval value represented by

, and is an -dimensional vector containing
only one 1 to indicate the emitter type amongcandidates.
Hence, the VNN has three-input nodes with each node receiving
one feature’s value, and output nodes with each node repre-
senting one emitter type. The input–output relationship of the
VNN is denoted by

(1)

where is a -dimensional vector indicating the actual output
of the VNN, and represents the approximated function formed
by the VNN. More clearly, the VNN is trained to represent the
EID mapping problem in the following if-then form:

IF is in and and is in

THEN belongs to (2)

where denotes the th emitter type.
The objective of learning is to obtain an approximated model

for the mapping in (1) and (2) such that the error function
indicating the difference between and , ,
is minimized. Two different error functions are used in this
paper, one is the common root-mean-square error function, and
the other is

(3)



1122 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 50, NO. 8, AUGUST 2002

Fig. 2. Interval sigmoid function of each node in the VNN, where
(net ; net ) andf (net ;net ) are an interval input and an interval output,
respectively.

After training, the trained VNN can be used in the functional
phase or the so-called testing phase. In this phase, the VNN
on-line accepts a feature vector, containing
scalar values from the sensors, and produces an output vector

with the highest value element in indicating the identified
emitter type.

III. STRUCTURE OFVNN

In this section, we shall introduce the structure and function
of the VNN which can process interval-value as well as scalar-
value data. Before doing so, let us review some operations of
interval arithmeticthat will be used later. Let
and be intervals, where the superscriptsand
represent the lower limit and upper limit, respectively. Then, we
have

(4)

and

if
if

(5)

where is a real number. The activation function of a neuron
can also be extended to an interval input–output relation as

(6)

where is interval-valued and is a sig-
moid function. The sigmoid function is denoted by

. The interval activation function defined
by (6) is illustrated in Fig. 2.

We shall now describe the function of the VNN using the
aboveinterval arithmeticoperations. The general structure of
VNN is shown in Fig. 3, where the solid lines show the forward
propagation of signals, and the dashed lines show the backward
propagation of errors. In order to identify any-dimensional in-
terval-value vector, we employ a VNN that hasinput nodes,

hidden nodes, and output nodes. When the interval-value
input vector is presented to the input layer

of VNN, the input–output relation of each node of VNN is ex-
plicitly calculated as follows, where .

Input nodes: Each input node just passes the external
input, , , forward to the
hidden nodes.
Hidden nodes:

(7)

(8)

(9)

Output nodes:

(10)

(11)

(12)

where the weights , and the biases , are real
parameters and the outputs , and are intervals. It
is noted that the VNN can also process scalar-value input
data by setting , where is the scalar-
value input. Correspondingly, the VNN can produce scalar
output, .

IV. SUPERVISEDLEARNING ALGORITHMS FORVNN

In this section, we shall derive a NVTBP learning algorithm
for the proposed VNN with interval-value input data. A normal
cost function in the CVTBP algorithm, , is first consid-

ered using the interval output and the cor-
responding desired output for the th input pattern, as

if

if
(13)

for the case of an interval-value input vector and a crisp desired
output. However, to enhance the identification power of VNN,
we propose a NVTBP algorithm, which the error cost function
instead of the squares of the differences between the actual in-
terval output and the corresponding desired output as
in (13), where the subscript represents theth-input pattern
and th-output node. The new error cost function is defined as

if
if

(14)
The learning objective is to minimize the error function in (13)
and (14). The weight updating rules for the VNN are illustrated
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Fig. 3. The three-layer architecture of the proposed VNN.

Fig. 4. Illustration of backpropagation learning rule for the VNN.

in Fig. 4. To show the learning rules, we shall calculate the com-
putation of layer by layer along the dashed lines in
Fig. 3, and start the derivation from the output nodes.

Layer 3: Using (10)–(12) to calculate for var-
ious values of the weights and desired output. The results are
summarized in (15), as shown at the bottom of the page.

if and

if and

if and

if and

(15)
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Layer 2: Using (7)–(9) to calculate for different
values of the weights and desired output. The results are summa-
rized in (16), as shown at the bottom of the page. In the previous
discussion, the notations and are defined as follows:

(17)

(18)

Clearly, the value of is proportional to the amount of
rather than as in the CVTBP

learning rule. When the actual output (representing or
) approaches the value of 1 or 0, the factor

makes the error signal very small. This implies that an output
node can be maximally wrong without producing a strong error
signal with which the connection weights could be significantly
adjusted. This decelerates the search for a minimum in the error.
A detailed description of quantitative analysis can be found in
[12].

In summary, the supervised learning algorithm for the VNN
is outlined in the following:

NVTBP algorithm:
Consider a 3-layer VNN with input

nodes, hidden nodes, and output
nodes. The connection weight is from
node of the input layer to the th node
of the hidden layer, and is from the
th node of the hidden layer to the th

node of the output layer.
Input: A set of training pairs

, where the input
vectors are in interval values.

1) (Initialization): Choose and
(maximum tolerable error). Ini-

tialize the weights to small random
values. Set and .

2) (Training loop): Apply the th input
pattern to the input layer.

3) (Forward propagation): Propagate the
signal forward through the network
from the input layer to the output
layer. Use (7)–(9) to compute the net
input and output of the
th hidden node, and use (10)–(12)

to compute the net input and
output of the th output node.

4) (Output error measure): Compute the
error signal from (17) and (18).

5) (Error backpropagation): Propagate
the errors backward to update the
weight changes between hidden
and output nodes, and update the
weight changes between input
and hidden nodes.

6) (One epoch looping): Check whether
the whole set of training data has
been cycled once. If , then

and go to Step 1; otherwise,
go to Step 7.

7) (Total error checking): Check whether
the current total error is accept-
able; if , then terminate the
training process and output the final
weights; otherwise, set , ,
and initiate the new training epoch
by going to Step 2.

END New vector-type algorithm

The above algorithm adopts theincrementalapproach in up-
dating the weights; that is, the weights are updated for each in-
coming training pattern. Finally, the optimal weights and

can be obtained through the training procedure and ex-
pressed by

...
...

...
(19)

and

...
...

...
(20)

V. SIMULATION RESULTS

In this section, we employ the proposed VNN trained by
the NVTBP algorithm to handle the practical EID problems in

if and

if and

if and

if and

if and

if and

if and

if and

(16)
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TABLE I
INPUT–OUTPUT TRAINING PAIRS FOR THETWO-EMITTER IDENTIFICATION

PROBLEM IN EXPERIMENTS1 AND 3

TABLE II
PART OF THE TESTING SAMPLES FOR THETWO-EMITTER IDENTIFICATION

PROBLEM IN EXPERIMENTS1 AND 3

real-life; i.e., to map input patterns to their respective emitter
types. An input pattern is determined to belong to theth type,
if the th output node produces a higher value than all the other
output nodes when this input pattern is presented to the VNN.
All reference data of the simulated emitters are given by refer-
ences [3], [5], and [13]. Before the input patterns are presented
to the VNN, the range of each parameter must be normalized
over the following bound to increase the network’s learning
ability:

RF GHz to GHz

PRI s to s

PW s to s

Two problems are examined to demonstrate the identification
capability of the proposed VNN in this section, the two-EID
problem and three-EID problem. The performance is compared
to that of the VNN trained by CVTBP algorithm on the same
training and testing data.

A. Performance Evaluation Without Measurement Error

In this section, two experiments are performed for clean input
data without measurement distortion to demonstrate the identi-

TABLE III
INPUT–OUTPUT TRAINING PAIRS FOR THETWO-EMITTER IDENTIFICATION

PROBLEM IN EXPERIMENTS2 AND 4

TABLE IV
PART OF THE TESTING SAMPLES FOR THETWO-EMITTER IDENTIFICATION

PROBLEM IN EXPERIMENTS2 AND 4

fication capability of the VNN trained by the NVTBP algorithm
and the CVTBP algorithm, respectively.

Experiment 1: For the two-EID problem, we employ a VNN
with three-input nodes, five-hidden nodes and two-output nodes
(denoted by 3-5-2 network). We set the learning rate as
and momentum constant as in the NVTBP learning
algorithm, and , in the CVTBP learning al-
gorithm. The 10 input–output training pairs (five pairs for each
type) are listed in Table I. In the training phase, we use these
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TABLE V
(A) TESTING RESULTS OF THE3-5-2 VNN ON THE TWO-EMITTER IDENTIFICATION PROBLEM WITH/WITHOUT NOISE. (B) TESTING RESULTS OF THE

3-8-3 VNN ON THE THREE-EMITTER IDENTIFICATION PROBLEM WITH/WITHOUT NOISE

(a)

(b)

training pairs to train two VNNs using the CVTBP and NVTBP
algorithms, respectively, and find individually a set of optimal
weights. In the testing phase, 80 testing patterns (40 patterns
for each emitter type) are randomly selected from the ranges of
emitter parameters and are presented to the trained VNNs for
performance testing. Part of these testing patterns are shown in
Table II. Once a testing pattern is fed to the trained VNNs, the
networks identify immediately its emitter type in near real time.
The testing results show that the two trained VNNs achieve high
identification rates. However, the VNN trained by the NVTBP
algorithm performs better than the VNN trained by the CVTBP
algorithm; the former achieves an average identification rate
of 99.91% and the latter 96.26% as listed in the last row of
Table V(a).

Experiment 2: In this experiment, a three-EID problem is
solved by two 3-8-3 VNNs trained by the NVTBP and CVTBP
algorithms, respectively. We first set the learning constant as

and momentum constant as in both learning
algorithms. The 15 input–output training pairs (five pairs for
each type) as listed in Table III are used to train the two VNNs.
After training, 120 testing patterns (40 patterns for each emitter
type) are presented to the trained VNNs for performance testing.
Part of these testing patterns are shown in Table IV. Again, both
networks show high identification capability, where the VNN
trained by the NVTBP algorithm achieves an average identifi-

cation rate of 99.84% and the other VNN 91.08% as listed in
the last row of Table V(b).

In the above two experiments, the results show that the two-
emitter and three-EID problems can be easily handled by the
VNN with the derived NVTBP algorithm and the CVTBP algo-
rithm in real time. However, the VNN trained by the NVTBP
algorithm has better identification capability than that trained
by the CVTBP algorithm. These experiments are performed for
clean input data without measurement distortion. The robust-
ness of the proposed scheme in noisy environment is tested in
the following experiments.

B. Performance Evaluation With Measurement Error

In this subsection, two experiments are performed to evaluate
the robustness of VNN with measurement distortion. In these
experiments, the measurement distortion is simulated by adding
noise. To perform the testing at different levels of adding noise,
we define the error deviation level (EDL) by

EDL (21)

for emitter type , where is a small randomly generated de-
viation for the th input pattern.

Experiment 3: First, we consider the two-EID problem with
the input data corrupted by additive noise. The noise testing
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patterns are obtained by adding random noise, ,
to each testing pattern , ,
used in Experiment 1 to form the noise testing database,

. The noisy testing patterns
with different EDL’s (from 1% to 15%) are presented to the
trained 3-5-2 VNNs in Experiment 1 for performance testing.
The testing results are shown in Table V(a).

Experiment 4: In this experiment, we consider the
three-EID problem with the input data corrupted by additive
noise. The noise testing patterns are obtained by adding random
noise, , to each testing pattern ,

, used in Experiment 2 to form the noise testing
database, . The noisy testing
patterns with different EDLs are presented to the trained 3-8-3
VNNs in Experiment 2 for performance testing. The testing
results are shown in Table V(b).

The testing results in Table V indicate that, as expected, the
VNNs identification ability decreases as EDL increasing in
noisy environments. In conclusion, the proposed VNN trained
by the NVTBP algorithm not only has higher identification
capability, but is also relatively more insensitive to noise than
that trained by the CVTBP algorithm.

VI. CONCLUSION

In this paper, a VNN along with a new vector-type back-
propagation (NVTBP) learning algorithm was proposed to solve
the EID problem. The VNN can learn the teaching patterns
in the form of interval-value input and scalar-value output in
the training phase, and then operate in the way of scalar-value
input and scalar-value output in the testing phase by means
of interval arithmetics. The main contribution of this paper is
to propose an idea for integrating the processing of interval-
value and scalar-value data into a single processing system and
derive a NVTBP learning algorithm for solving the practical
EID problem in real time. In fact, the proposed network with
the NVTBP learning algorithm can not only solve the learning
problem with interval-value data, but also improve the conver-
gence of the CVTBP algorithm. The simulated results show that
the proposed VNN can always produce high identification ac-
curacy for the emitter signals. Also, it was demonstrated that the
VNN is quite insensitive to the additive error. With these results
achieved in this paper, the proposed VNN may be widely ap-
plied to military applications (such as reconnaissance and threat
reaction) for achieving high power of identification for emitter
signals to replace the EID function in the electronics support
measures (such as RWR). In this paper, we have shown that the
proposed VNN can be used for identifying unambiguous emit-
ters. In the future work, we will use the extra parameters of emit-
ters such as angle of arrival and amplitude to form a new en-
larged input feature vector for handling the problem of multiple
ambiguous emitter; i.e., different types of emitters have similar
characteristics.
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