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A Vector Neural Network for Emitter Identification

Ching-Sung Shieh and Chin-Teng L.i8enior Member, IEEE

Abstract—This paper proposes a three-layer vector neural ~ Many conventional signal recognition techniques including
network (VNN) with a supervised learning algorithm suitable  k-nearest neighbor classification, and template matching rely
for signal classification in general, and for emitter identification algorithms which are computationally intensive and require

(EID) in particular. The VNN can accept interval-value input . . .
data as well as scalar input data. The input features of the EID a key man to validate and verify the analysis [4]. At present, a

problems include the radio frequency, pulse width, and pulse histogrgmming approach is acce§§ed .by radio frequency (RF),
repetition interval of a received emitter signal. Since the values of pulse width (PW), and pulse repetition interval (PRI) of the col-
these features vary in interval ranges in accordance with a specific lected pulse descriptor words (PDWs). This approach is used
radar emitter, the VNN is proposed to process interval-value data jn g current EID system designed for sorting and comparing
in the EID problem. In the training phase, the interval values of oy |ated emitter parameters with measured signal parameters.

the three features are presented to the input nodes of VNN. A H h hni ineffici d i .
new vector-type backpropagation learning algorithm is derived owever, these techniques are inefficient and time-consuming

from an error function defined by the VNN's actual output and  for solving EID problems; they often fail to identify signals
the desired output indicating the correct emitter type of the cor- under high signal density environment, especially, in near real
responding_ feature intervals. The algorithm can tune the weights time.
gf gli\’)‘(e’\:lotfgmier‘]'éy ;%tag?rfoe);?JiGi;Tgrcglghgﬁzr mspg’:%gsmgﬁ% For many practical problems, including pattern matching and
set of desired emitter types. After training, the VNN can be CIa33|f|caF|on, function approximation, optimization, vector
used to identify the sensed scalar-value features from a real-time quantization, data clustering and forecasting, neural networks
received emitter signal. A number of simulations are presented have drawn much attention and been applied successfully in
to demonstrate the effectiveness and identification capability of recent years [4]-[7]. Neural networks have a large number of
VNr']\/L including the two-EID problem and the multi-EID problem  hjghly interconnected nodes that usually operate in parallel and
with/without additive noise. The simulated results show that the . configured in regular architectures. The massive parallelism
proposed algorithm cannot only accelerate the convergence speed, . . .

results in the high computation rate of neural networks and

but it can help avoid getting stuck in bad local minima and achieve : . .
higher classification rate. makes the real-time processing of large data feasible.

Index Terms—Convergence, emitter identification (EID) In this paper, the EID. problem is Con.Sidere.d as a nonlinear
interval value, pulse repetitiony interval, pulsewidth, radio fre-, mapping problem. The input featgres, including RF, PW, and
quency, supervised leaming, vector neural network, vector-type PRI are extracted from PDWs. Since the values of these fea-
backpropagation. tures vary in interval ranges in accordance with a specific radar
emitter, a vector neural network (VNN) is proposed to process
interval-value input data. The VNN can accept either interval-
value or scalar-value input and produce scalar output. The pro-

ODERN RADARS have been widely used to deteqtosed VNN is used to construct a functional mapping from the
aircrafts, ships, or land vehicles, or they can be used fepace of the interval-value features to the space of emitter types.
searching, tracking, guidance, navigation, and weather fofie input and output of the VNN are related through interval
casting [1]. In military operation, radar is an important piece @rithmetics. To train the VNN, a suitable learning algorithm
equipment which is used to guide weaponry [2]. Hence, an eletiould be developed. The training goal is to find a set of optimal
tronic support measure (ESM) system such as radar warnimgights in the VNN such that the trained VNN can perform
receiver (RWR) is needed to intercept, identify, analyze, atide function described by a training set of if-then rules. Most
locate the existence of emitter signals. The primary functi@xisting learning methods in neural networks are designed for
of the RWR is to warn the crew of an immediate threat withrocessing numerical data [4], [8]-{10]. Ishibuchi and his col-
enough information to take evasive action. To accomplish tHEagues extended a normal (scalar-type) backpropagation (BP)
function, a powerful emitter identification (EID) function mustiearning algorithm to the one that can train a feedforward neural
be involved in the RWR system. As the signal pulse densitetwork with fuzzy input and fuzzy output [11]. This BP al-
increases, further demands will be put on the EID functiogorithm was derived based on an error function defined by the
Clearly, the EID function must be sophisticated enough to fadéference of fuzzy actual output and the corresponding non-
the complex surroundings [3]. fuzzy target output through fuzzy arithmetics. Similar to their
approach, we derive a conventional vector-type backpropaga-
tion (CVTBP) algorithm for training the proposed VNN. Al-

Manuscript received August 3, 2000; revised June 27, 2001. This work V\feﬁqughv this a_Igorithm can train the VNN for the if-then type
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Fig. 1. The flowchart of emitter signal classification.

agation (NVTBP) algorithm derived from a different form of In this paper, the EID problem is considered as a nonlinear
error function. This learning algorithm has a higher convergenopping problem, the mapping from the space of feature vectors
rate and is not easily stuck in bad local minima. After trainingyf emitter signals to the space of emitter types. The three param-
the VNN can be used to identify the emitter type of the senseters RE'(x1), PRI(z2), andPW (z3), are used to form the fea-
scalar-value features from a real-time received emitter signlre vectorixy, 2, z3] in this problem. Such a nonlinear map-
The representation power of the VNN and the effectivenessmihg function can be approximated by a suitable neural network
the NVTBP learning algorithm are demonstrated on several E[B)], [5]. However, these parameters operate in interval ranges
problems, including the two-EID problem and the multi-ElCor a specific radar emitter; for example, RF ranges from 15.6 to
problem with and without additive noise. 16.6 GHz, PRI ranges from 809 to 966, and PW ranges from
The rest of this paper is organized as follows. Section |l givds8 to 3.6us for some specific emitter type. To endow a neural
the problem formulation. In Section Ill, the basic structure afetwork with the interval-value processing ability, we propose a
VNN is introduced. Section IV derives an NVTBP algorithm foNN that can accept either interval-value or scalar-value input
training the VNN. In Section V, four examples are simulated tand produce scalar output. In the training phase, the VNN is
demonstrate the identification capability of the proposed VNained to form a functional mapping from the space of interval-
with a NVTBP algorithm for emitter signals with and withoutvalue features to the space of emitter types base®;osam-
additive noise. Finally, conclusions are made in Section VI. ples of training pair$x,; d,) for the EID problem, wherg =

1,..., Ny indicating thepth training pairx, = [Zp1, £p2, Ep3).
II. PROBLEM FORMULATION In each training pairz,; is an interval value represented by
. . L gc]i;, z%;], andd,, is anm-dimensional0, 1} vector containing
In general, the problem of emitter signal classification is pe, hly one 1 to indicate the emitter type amongcandidates.

formed in a two-step process as illustrated in Fig. 1. The firgfonce the VNN has three-input nodes with each node receiving
step is called deinterleaving (or sorting), which sorts receivegl o faature’s value, ang output nodes with each node repre-

pulse trains into “bins” according to the specific emitter frondgiing one emitter type. The input—output relationship of the
the composite set of pulse trains received from passive receivgf§y; is denoted by

in the RWR system. After deinterleaving, the second step is to
infer the emitter type by each bin of received pulses to differen- v, = f(i ) 1)
tiate one type from another type. A PDW is generated from the b ’

sorting process. Typical measurements include RF, PW, timev(?rflereyp is am-dimensional vector indicating the actual output

_arrlval (TO.A)’ an_d (PRI). Thus, a PI_DW describes a state veclgfy,e VNN, andf represents the approximated function formed
in a multidimensional space. The primary focus of the paper w, the VNN. More clearly, the VNN is trained to represent the
be on the problem of EID. Emitter parameters and performan H mapping problem in the following if-then form:

are affected by the RF band in which they operate. Likewise, the

range of frequency band chosen for a specific emitter is detﬂf—x Lisin [xn xu] and - -- andz... isin [xn 2V ]

mined by the radar’s mission and specifications. The frequency” plpl o pnropn
information is very important for both sorting and jamming. By THENX, = [2p1,. .-, 2] belongs toCy (2)
comparing the frequency of the received pulses, the pulse trains .
can be sorted out and identified for different radars [2]. Whel ereC), denotes théth emitter type.

the frequency of the victim radar is known, the jammer can CO;}_The objective of learning is to obtain an approximated model

centrate its energy in the desired frequency range. The par r{l) for_ the mapping in (1) and (2) such that the error function
eter PW can be used to provide coarse information on the t))_ g|c_at_|ng the dlfferer_lce betweel), andyf_,, p=12,..., Nt’ .

of radars. For example, generally speaking, weapon radars h |n|m|ze_d. Two different error functions are used n this
short pulses. Another parameter of interest in electronic Wﬁfper, oneis the common root-mean-square error function, and
fare (EW) receiver measurements is the PRI. The informati ¢ other is

is the time difference between the leading edge of consecutive N,

transmission waves and is the reci_procal qf pulse repetition fre- E(w) = — Z {d,Iny, +(1-d,)In(1 —y,)}. (3)
quency (PRF). The parameter varies for different radars. =1



1122 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 50, NO. 8, AUGUST 2002

Output of VNN, the input—output relation of each node of VNN is ex-
A plicitly calculated as follows, wherg,,; = [zL;, z};].
1 Input nodes. Each input node just passes the external
input, #,; = [z5,zY], ¢ = 1,...,n, forward to the

hidden nodes.
Hidden nodes

7(*) 5 L U L U
v Zpj = [Zm"zpj] = [f (netpj) f (netpj)]
f(net. ) -
n J _17"'7l (7)
n n
1 1 J
netﬁj = Z w;z)l}i + Z wj(z)l’]l;z +0; (8)
L i= i=
£ et WD ROy
0 Input S S
» Inpu U 1)U 1)L
netiﬁ neti[rji P nety; = Z wgz)xm + Z wj(z)x;m +6;. 9)
WD e
Fig. 2. Interval sigmoid function of each node in the VNN, where gt = 7
(netl net?) andf (netf net? ) are aninterval input and an interval output,
respectively. Output nodes
~ L U L U
- _ _ _ ok = (Yo p] = [f (net) s f (netyy)]
After training, the trained VNN can be used in the functional r o e r r
. . k=1,...,m (20)
phase or the so-called testing phase. In this phase, the VNN . .
on-line accepts a feature vector, = [z1, 22, 23] containing L ) _L 2 U
' net, = w2 w2+ Oy 11
scalar values; from the sensors, and produces an output vector Pk ; ki %pi T ; ki Zp T 0K (11)
¥, with the highest value elementyr, indicating the identified w20 w? <o

emitter type. l l
et = S wlel+ 3wk 6 (12)
j=1 =1

j=
,(2) (2}
ukj >0 W <0

I1l. STRUCTURE OFVNN

In this section, we shall introduce the structure and function
of the VNN which can process interval-value as well as scalar- \yhere the Weights;(l)

. : ’ {2, wy? and the biases;, 6, are real
yalue datq. Befolre domg so, let us review some operations of parameters and the outpuis;, andg,, are intervals. It
interval arithmeticthat will be used later. Leti = [a%,aY]

- , ) is noted that the VNN can also process scalar-value input
andB = [b%,bY] be intervals, where the superscrift@and U

Nie = : data by setting:’; = «}; = x,,;, wherez,, is the scalar-
represent the lower limit and upper limit, respectively. Then, we  ,5,e input. Correspondingly, the VNN can produce scalar
have

output,yl, = v5 = .
A+ B=[a"a"] + [p"0Y] = [a" +0", 0¥ +3Y]  (4)
IV. SUPERVISEDLEARNING ALGORITHMS FORVNN

and In this section, we shall derive a NVTBP learning algorithm
k- A=k-[a" a"] = [ka®, ka"] for the proposed VNN with interval-value input data. A normal
[k L U] it >0 cost function in the CVTBP algorithmé,x, is first consid-
T A (5) ered using the interval outpgt, = |y 5| and the cor-
[kab ka"] it k<0 ered using the interval outpu,s Ypis Ypr. | @Nd the cor
’ ’ responding desired outpdj; for the pth input pattern, as
wherefk is a real number. The activation function of a neuron PR
can also be extended to an interval input—output relation as > M, if dpr =1 (13)
, , Pk = don—1 U, 2 .
F(Nety) = f ([net{;l,netﬁl]) = [f(net{;l),f(netibn)] (6) Gl 98 QJM) , fdy =0

L net?] is interval-valued ang(-) is a sig- for the case of an interval-value input vector and a crisp desired
moid function. The sigmoid function is denoted BgNet) — output. However, to enhance the identification power of VNN,
- we propose a NVTBP algorithm, which the error cost function

1/(1 —Net;,)). The interval activation function defined. . .
b{/((G;rigin}I)L(lstraied)i)n Fig '2 v vation funct ! instead of the squares of the differences between the actual in-

We shall now describe the function of the VNN using théerval outputy,. and the corresponding desired outpiy as

aboveinterval arithmeticoperations. The general structure of" (13), where the subscripk represents thpthjmp.ut pat_tern
VNN is shown in Fig. 3, where the solid lines show the forwarandkth'ompm node. The new error cost function is defined as
propagation of signals, and the dashed lines show the backwayd _ —dprInyly, — (1= dp)In(1 —yf), ifdpp =1
propagation of errors. In order to identify anydimensional in- 7% — —dpp lnyg}v — (1 —dpx)In(1 — y}j}g), if dpi = 0.
terval-value vector, we employ a VNN that hasnput nodes, (14)

! hidden nodes, angh output nodes. When the interval-valuelhe learning objective is to minimize the error function in (13)
input vectorx,, = (&1, .. ., &pn) IS presented to the input layerand (14). The weight updating rules for the VNN are illustrated

whereNet;, = [net/;
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Fig. 3. The three-layer architecture of the proposed VNN.

L U
X1 =[xpl’xpl]

200

—TvL WU
Xpi "[xpi’xpi

’ypk

000

U
xpn = [xi;n ’xpn]

Fig. 4. lllustration of backpropagation learning rule for the VNN.

in Fig. 4. To show the learning rules, we shall calculate the com-Layer 3 Using (10)—(12) to calculatéEpk/aw,g) for var-
putation ofdE,, /0w layer by layer along the dashed lines inous values of the weights and desired output. The results are

Fig. 3, and start the derivation from the output nodes. summarized in (15), as shown at the bottom of the page.
—(dpr — yfk)zlfjé — 6;%25]», if dp =1 andw,(fj) >0
OE —(dpg, — yB )ALV i dy =1 andw(? <0
Pk _ vk = Upk) 7pj pkpj7 Pk kj (15)
ow® | (o — yG)2EE = 852, if dp = 0 anduyfy) > 0
—(dpr — ygk)zlfjé — &0z, i dp =0 andw,(fj) <0
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Layer 2 Using (7)—(9) to caIcuIatéEpk/aw( ) for different

to compute the net input (net,r) and

values of the weights and desired output. Theresults aresumma- output (7,%) of the kth output node.
rized in (16), as shown at the bottom of the page. In the previous4) (Output error measure): Compute the

discussion, the notatior and¢5; are defined as follows:

fL2 OLpy _ 9Epk .
P anetﬁk ayﬁk anetﬁk
o OBy _ OB Yy
Pk Onetl, Iyl Onetly
Clearly, the value o, is proportional to the amount ¢#,,,. —
ypi) rather than(dpr — ypr)ype(l — ypr) as in the CVTBP
learning rule. When the actual outpy (representing;ﬁk or
ug}g) approaches the value of 1 or 0, the factgr(1 — y,x)

=(dpr — ) (A7)

= (dpr — yp2)-  (18)

makes the error signé},;. very small. This implies that an output

error signal 6,5, from (17) and (18).
5) (Error backpropagation): Propagate
the errors backward to update the
weight changes Aw,(j.) between hidden
and output nodes, and update the
weight changes ij(j) between input
and hidden nodes.
6) (One epoch looping): Check whether
the whole set of training data has
been cycled once. If P < N, then
p = p+ 1 and go to Step 1; otherwise,
go to Step 7.

node can be maximally wrong without producing a strong error 7y (Total error checking): Check whether
signal with which the connection weights could be significantly e current total error is accept-

adjusted. This decelerates the search foraminimuminthe error.  gpje: jf E < E,.., then terminate the
A detailed description of quantitative analysis can be found i raining process and output the final

[12].

weights; otherwise, set E =0 p=1,

In summary, the supervised learning algorithm for the VNN = anq jnitiate the new training epoch

is outlined in the following:

NVTBP algorithm:

Consider a 3-layer VNN with n input
nodes, [ hidden nodes, and m output
nodes. The connection weight wﬁ is from
node 4 of the input layer to the jth node
of the hidden layer, and w,(j) is from the
jth node of the hidden layer to the kth
node of the output layer.

Input: A set of training pairs
{(xp;dp),p=1,..., N}, where the input
vectors are in interval values.

1) (Initialization): Choose n > 0 and

FEax (maximum tolerable error). Ini-
tialize the weights to small random
values. Set E=0and p=1.

2) (Training loop): Apply the pth input

pattern  x, to the input layer.

3) (Forward propagation): Propagate the

signal forward through the network
from the input layer to the output
layer. Use (7)—(9) to compute the net
input  (net,;) and output (%,;) of the
sth hidden node, and use (10)—(12)

by going to Step 2.
END New vector-type algorithm

The above algorithm adopts tieerementalapproach in up-
dating the weights; that is, the weights are updated for each in-
coming training pattern. Finally, the optimal WeIgMé,pt and

w® can be obtained through the training procedure and ex-

O)t
prelssed by
@ @ M

e e ates
wip = | T (19)
1 (1 1
wiy  wpy wf)
and
2 2 2
wj(u) wj(a) wj(u)
w2 w2 w(2)
W= | %” (20)
IRCRNC) e

V. SIMULATION RESULTS

In this section, we employ the proposed VNN trained by
the NVTBP algorithm to handle the practical EID problems in

_ oL, (2)_L L\,.L

&, w,(u)ivw(l zpj)a:pi,

oL, (2) L1 LN U

6 w’(u)7p1(1 ij)xpi’

L, (2) U UN,U

6 kw’(w) m(l o zm')xpi’

1L, (2) U UL

OEpi _ —6;, kw,(u) 25 (1= 2p)7,,
(1) 1, (2) U UN,U
awji 6 wl(u) PJ(]' - ij)xpi’
1w, (2) U U, L

6 kwé]) m(l o zm')xpi’

1, (2) L Ly..L

—0, kwéj)7pj(1 — zpj)a:pi,

o, (2) L LN, U

6pk kj PJ(]' ij)xpi’

if dp = 1,w)7) > 0andw'y >0
if dypr = 1,0y > 0andw' <0
if dyp = 1, w(2) <0 andw(l) >0
if dpre = (2) <0 andw(l) <0
if dyy, = o,w,ﬁ? >0 andwj.}) >0
if dy = 0,y > 0andw! <0
if dpr, =0 w,(f) < Oandw(l) >0
if d,;, =0, w()<0andw()<0

(16)
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TABLE |
INPUT-OUTPUT TRAINING PAIRS FOR THETWO-EMITTER IDENTIFICATION

PROBLEM IN EXPERIMENTS 1 AND 3

TABLE Il

1125

INPUT-OUTPUT TRAINING PAIRS FOR THETWO-EMITTER IDENTIFICATION
PROBLEM IN EXPERIMENTS 2 AND 4

Pattern RF (GHz) PRI(ps) PW (us) Emitter Pattern RF (GHz) PRI( ) PW (1s) Emitter
Number | Lower | Upper | Lower | Upper | Lower | Upper | Type Number | Lower | Upper | Lower | Upper | Lower | Upper | Type
limit | limit | limit | limit | limit | limit limit | limit | limit | limit | limit | limit
1 156 | 166 | 8.09 | 960 | 1.80 | 3.60 1 1 156 | 166 | 809 | 960 | 1.80 | 3.60 1
2 42 50 | 220 | 450 | 245 | 475 2 2 420 | 500 | 220 | 450 | 245 | 475 2
3 43 49 | 230 | 440 | 250 | 470 2 3 430 | 490 | 230 | 440 | 250 | 470 2
4 4.4 48 | 240 | 430 | 255 | 4.65 2 4 1635 | 17.45 | 505 | 690 | 535 | 7.85 3
5 1570 | 1650 | 819 | 950 | 1.90 | 3.50 1 5 1570 [ 1650 | 819 | 950 | 1.90 | 3.50 1
6 1580 | 1640 | 829 | 940 | 200 | 3.40 1 6 1580 | 16.40 | 829 | 940 | 2.00 | 3.40 1
7 450 | 470 | 250 | 420 | 260 | 4.60 2 7 1645 [ 1735 | 515 | 680 | 545 | 7.75 3
8 1590 | 1630 | 839 | 930 | 210 | 3.30 1 8 1655 | 17.25 | 525 | 670 | 5.55 | 7.65 3
9 16.00 | 1620 | 849 | 920 | 220 | 3.20 1 9 450 | 470 | 250 | 420 [ 260 | 460 2
10 455 | 460 | 260 | 410 | 265 | 455 2 10 1590 [ 1630 | 839 | 930 | 2.10 | 330 1
TABLE I 11 1600 | 1620 | 849 | 920 | 220 | 3.20 1
PART OF THE TESTING SAMPLES FOR THETWO-EMITTER IDENTIFICATION 12 16.75 17.15 5.35 6.60 5.65 7.55 3
PROBLEM IN EXPERIMENTS 1 AND 3 13 440 | 480 | 2.40 | 430 | 255 | 4.65 2
14 1685 | 17.05 | 5.45 6.5 575 | 745 3
Pattern RF (CH2) PRI(z9) PW(15) | Bmitter 15 455 | 460 | 260 | 410 [ 2.65 | 4.55 2
Number | Lower | Upper | Lower | Upper | Lower | Upper | Type TABLE IV
limit | limit | limit | limit | limit | limit PART OF THE TESTING SAMPLES FOR THETWO-EMITTER IDENTIFICATION
1 15.65 | 15.65 8.09 8.09 1.80 1.80 1 PROBLEM IN EXPERIMENTS 2 AND 4
2 1570 | 1570 | 812 | 812 | 182 | 182 1
3 1575 { 1575 | 8.15 8.15 1.85 1.85 1 Pattern RF (GHz) PRI( ¢ s) PW (15) Emitter
4 1580 | 1580 | 8.19 8.19 1.88 1.88 1 Number | Lower | Upper | Lower | Upper | Lower | Upper | Type
5 1585 | 1585 | 823 | 823 | 191 | 191 1 limit | limit | limit | limit | limit | limit
6 15.90 15.90 8.25 8.25 1.93 1.93 1 1 15.65 15.65 3 09 2.09 1.80 1.80 1
8 16.05 | 1605 | 833 | 833 | 199 | 199 1 3 575 T 1575 | 815 | 815 | 185 | 185 1
9 16.10 | 1610 | 839 | 839 | 203 | 2.03 1 " 580 11580 | 510 | 310 | 188 | 188 3
10 1613 | 1613 | 843 | 843 | 2.05 2.02 1 S 1585 T 1585 | 823 | 823 | 1ol | 101 1
420 48 25 2028 2 2 6 | 1500 | 1590 | 825 | 825 | 193 | 193 | 1
13 [ 423 | 423 | 243 | 243 | 2.58 | 258 | 2 7 1595 | 1595 | 828 | 828 | 195 | 19 ] 1
14| 425 | 425 | 257 | 257 | 262 | 262 | 2 § | 1605 | 1605 ] 833 | 833 | 199 | 199 | 1
15 428 | 428 | 268 | 268 | 274 | 274 | 2 Ed 16,10 | 16.10 | 839 | 839 | 2.03 | 2.03 1
16 | 431 | 431 | 273 | 273 | 281 | 281 | 2 10 | 1613 | 1613 | 843 | 843 | 205 | 205 1 |1
17__| 433 | 433 | 282 | 282 | 285 | 285 | 2 11 420 | 420 | 219 | 219 | 245 | 245 | 2
18 435 | 435 | 201 | 201 | 208 | 2908 | 2 12 422 | 422 | 224 | 224 | 251 | 2.51 2
19 438 | 438 | 303 | 303 | 305 | 3.05 2 13 423 | 423 | 243 | 243 | 258 | 258 2
20 443 | 443 | 313 [ 313 | 315 | 315 2, 14 425 | 425 | 257 | 237 | 262 | 262 2
15 428 | 428 | 268 | 268 | 274 | 2.74 2
real-life; i.e., to map input patterns to their respective emitt___16 431 | 431 | 273 | 273 | 281 | 281 2
types. An input pattern is determined to belong toktetype, 17 433 | 433 | 282 | 282 | 285 | 285 2
if the kth output node produces a higher value than all the otk ig jgg 3';5; g‘g; g'g; ?gg §'3§ ;
output nodes when this input pattern is presented to the VN—; 1635 1 1635 | 505 | 505 | 535 | 535 3
All reference data of the simulated emitters are given by refe 23 1641 | 1641 | 513 | 513 | 542 | 542 3
ences [3], [5], and [13]. Before the input patterns are preseni__22 1645 | 1645 | 517 | 517 | 555 | 555 3
to the VNN, the range of each parameter must be normaliz gz }g; igg; 2;2 ggg ggfl‘ zg? ;
over the following bound to increase the network’s learnin 55 1661 T 166 T 535 535 [ 503 | 593 3
ability 26 | 16.65 | 1665 | 539 | 539 | 595 | 5095 3
RFE:2.0 GHz t0 18.0 GHz 27 1669 | 1669 | 543 | 543 [ 599 | 599 3
28 1672 [ 1672 | 559 | 559 | 6.03 | 6.03 3
PRIE1.0 s 1010.0 s 29 1683 | 1683 | 563 | 563 | 6.05 | 605 3
PW:0.1 1S t010.0 ps. 30 443 | 443 | 313 [ 313 | 315 | 3.15 2

Two problems are examined to demonstrate the identificati@Bation capability of the VNN trained by the NVTBP algorithm
capability of the proposed VNN in this section, the two-EIRynd the CVTBP algorithm, respectively.
problem and three-EID problem. The performance is Compal'eqfxperiment 1: For the two-EID problem, we employ a VNN
to that of the VNN trained by CVTBP algorithm on the samgith three-input nodes, five-hidden nodes and two-output nodes
training and testing data. (denoted by 3-5-2 network). We set the learning rate 2s0.01
and momentum constant as= 0.99 in the NVTBP learning
algorithm, and; = 0.05, « = 0.9 in the CVTBP learning al-

In this section, two experiments are performed for clean inpgorithm. The 10 input—output training pairs (five pairs for each
data without measurement distortion to demonstrate the ideftyipe) are listed in Table I. In the training phase, we use these

A. Performance Evaluation Without Measurement Error
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TABLE V
(A) TESTING RESULTS OF THE3-5-2 VNN ON THE TWO-EMITTER IDENTIFICATION PROBLEM WITH/WITHOUT NOISE (B) TESTING RESULTS OF THE
3-8-3 VNN ON THE THREE-EMITTER IDENTIFICATION PROBLEM WITH/WITHOUT NOISE

Error 3-5-2 VNN trained by the NVTBP algorithm 3-5-2 VNN trained by the CVTBP algorithm
> Type 1 Type 2 o) Type 1 Type 2 %)
15 99.54 99.87 99.71 88.08 94.01 91.04
13 99.92 99.88 99.90 93.08 94.42 93.75
11 99.94 99.88 99.91 95.07 94.63 94 .85
9 99.94 99.88 9991 96.19 94 80 95.49
7 99.94 99.88 99.91 96.74 94.93 95.83
5 99.94 99.88 99.91 97.03 95.03 96.03
3 99.94 99.88 99.91 97.19 95.11 96.15
1 99.94 99.88 99.91 97.29 95.17 96.23
0 99.94 99.88 99.91 97.31 95.21 96.26
()
Exror 3-8-3 VNN trained by the NVTBP algorithm 3-8-3 VNN trained by the CVTBP algorithm
E:‘\":lmon Average Correction Rate (%) Ezt;l e;‘;e;:;g:te Average Correction Rate (%) gﬁle;‘;e:gw
*  Type1 ] Type2 | Type3 %) Type 1| Type2 | Type3 *)
15 63.00 | 89.39 74.87 75.75 57.89 | 8797 | 70.78 72.21
13 7220 | 90.36 74.93 79.16 59.06 89.36 70.88 73.10
11 7425 | 92.26 74.95 80.49 60.05 90.27 70.96 73.76
9 79.15 | 93.78 79.35 84.09 60.85 92.15 75.50 76.17
7 86.35 { 96.18 85.80 89.44 67.11 93.12 80.52 80.25
5 96.01 97.94 94.16 96.04 75.16 94.04 88.69 85.96
3 99.34 | 99.30 99.69 99.44 80.56 94 .82 92.18 89.19
1 99.60 | 99.87 99.93 99.80 82.71 95.48 93.70 90.63
0 99.63 | 99.95 | 99.94 99.84 8336 | 95.80 | 94.07 91.08

(b)

training pairs to train two VNNSs using the CVTBP and NVTBRcation rate of 99.84% and the other VNN 91.08% as listed in
algorithms, respectively, and find individually a set of optimahe last row of Table V(b).

weights. In the testing phase, 80 testing patterns (40 pattern#n the above two experiments, the results show that the two-
for each emitter type) are randomly selected from the rangesamhitter and three-EID problems can be easily handled by the
emitter parameters and are presented to the trained VNNs ¥NN with the derived NVTBP algorithm and the CVTBP algo-
performance testing. Part of these testing patterns are shownitinm in real time. However, the VNN trained by the NVTBP
Table Il. Once a testing pattern is fed to the trained VNNs, tlegorithm has better identification capability than that trained
networks identify immediately its emitter type in near real timéay the CVTBP algorithm. These experiments are performed for
The testing results show that the two trained VNNSs achieve higlean input data without measurement distortion. The robust-
identification rates. However, the VNN trained by the NVTBRmess of the proposed scheme in noisy environment is tested in
algorithm performs better than the VNN trained by the CVTBEhe following experiments.

algorithm; the former achieves an average identification rate

of 99.91% and the latter 96.26% as listed in the last row & Performance Evaluation With Measurement Error

Table V(a). _ _ ~Inthis subsection, two experiments are performed to evaluate
Experiment 2:1n this experiment, a three-EID problem isihe ropustness of VNN with measurement distortion. In these
solved by two 3-8-3 VNN trained by the NVTBP and CVTBRyheriments, the measurement distortion is simulated by adding

algorithms, respectively. We first set the learning constant agjse. To perform the testing at different levels of adding noise,
n = 0.02 and momentum constant as= 0.7 in both learning e define the error deviation level (EDL) by

algorithms. The 15 input—output training pairs (five pairs for

each type) as listed in Table Il are used to train the two VNNSs. EDL;(%) = @ x 100%, i=1,2,3 (21)
After training, 120 testing patterns (40 patterns for each emitter Lpi

type) are presented to the trained VNNs for performance testirfigr emitter typei, where¢,,; is a small randomly generated de-
Part of these testing patterns are shown in Table IV. Again, bottation for thepth input pattern.

networks show high identification capability, where the VNN Experiment 3: First, we consider the two-EID problem with

trained by the NVTBP algorithm achieves an average identiflhe input data corrupted by additive noise. The noise testing
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patterns are obtained by adding random najsg; = 1, 2, 3), [4] G.B. Willson, “Radar classification using a neural network, Appli-

to each testin atter , = 1,....80, cations of Artificial Neural Networks Bellingham, WA: SPIE, 1990,
: 9p mxf’i’xﬂ’??’) p ORR vol. 1294, pp. 200-210.
used in Experiment 1 to form the noise testing databaseys; | Howitt, "Radar waring receiver emitter identification processing uti-

(2p1 £ &p1, Tp2 £ &po, 2p3 £ &p3). The noisy testing patterns lizing artificial neural networks,” inApplications of Artificial Neural
with different EDL's (from 1% to 15%) are presented to the _ Networks Belingham, WA: SPIE, 1990, vol. 1294, pp. 211-216.
. . . . [6] K. Mehrotra, C. K. Mohan, and S. Rankalements of Artificial Neural
trained 3-5-2 VNNs in Experiment 1 for performance testing. Networks Cambridge, MA: MIT Press, 1997.
The testing results are shown in Table V(a). [71 M. H. Hassoun, Fundamentals of Artificial Neural
Experiment 4:In this experiment, we consider the Networks Cambridge, MA: MIT Press, 1995. .
. . L. [8] S. K. Paland S. Mitra, “Multilayer perceptron, fuzzy sets and classifi-
thrlee'ElD prqblem W'th the input data cprrupted by additive cation,”|EEE Trans. Neural Networksol. 3, pp. 683—696, Feb. 1992,
noise. The noise testing patterns are obtained by adding randong] J. M. Keller and H. Tahani, “Backpropagation neural networks for fuzzy

i (i — ; logic,” Inform. Sci, vol. 62, pp. 205-221, 1992.
noise, &1 =1,2,3), to each testing patterf,., zp2, 2p3), [10] S. Horikawa, T. Furuhashi, and Y. Uchikawa, “On fuzzy modeling

p=1,...,120, used in Experiment 2 to form the noise testing using fuzzy neural networks with the backpropagation algorithm,”

Catabaselap & 2y & oo b ) The noioytesing 1555 o e el . S0 308 St 02,

patterns with dnfferent EDLs are presented to _the trained 3?8-51 from fuzzy if-then rjuies’:,iEEE Trans. Fuzzy Syswol. 1, pp. 85-97,

VNNSs in Experiment 2 for performance testing. The testing May 1993.

results are shown in Table V(b). [12] A.V.Ooyen and B. Nienhuis, “Improving the convergence of the back-
The testing results in Table V indicate that, as expected, thyy) FroPageion adorthm Neural Networkeial & pp. 465471, 1052

VNNs identification ability decreases as EDL increasing in

noisy environments. In conclusion, the proposed VNN trained

by the NVTBP algorithm not only has higher identificatior

capability, but is also relatively more insensitive to noise the

that trained by the CVTBP algorithm.
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