
1348 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 50, NO. 8, AUGUST 2002

A Recursive Frequency-Splitting Scheme for
Broadcasting Hot Videos in VOD Service

Yu-Chee Tseng, Member, IEEE, Ming-Hour Yang, and Chi-He Chang

Abstract—One way to broadcast a popular/hot video is to let
multiple users share a few channels. The stress on the scarce chan-
nels can be alleviated without sacrificing viewer waiting time. One
common approach is to partition the video into fixed-length seg-
ments, which are broadcast on several channels periodically. Two
representative approaches are the Fast Broadcasting scheme and
the PAGODA scheme, which can broadcast a video using chan-
nels by having new viewers wait no longer than�(2) and
�(5 2) time, respectively, where is the length of the video.
In this paper, we propose a new scheme, calledRecursive Frequency
Splitting (RFS), that significantly improves on existing schemes in
terms of viewer waiting time. Some lower bounds on the viewers’
waiting time are also developed.

Index Terms—Broadband networks, broadcasting, cable TV,
digital video broadcasting, scheduling, video-on-demand (VOD).

I. INTRODUCTION

W ITH THE advancement of broadband networking tech-
nology and the growth of processor speed and disk ca-

pacity, video-on-demand (VOD) services have become possible
[20], [22]. Offering such services is likely to be popular in local
residential areas, and viable in metropolitan areas in the near fu-
ture.

A VOD system is typically implemented by a client-server ar-
chitecture supported by certain transport networks such as cable
TV or satellite networks [5], [13], [27]. The simplest scheme
is to dedicate a channel to each client [9], [21]. Many VCR-
like functions may be provided (e.g., forward, rewind, pause,
search, etc.). Since video is an isochronous medium, the video
server has to reserve a sufficient amount of network bandwidth
and input–output (I/O) bandwidth for each video stream before
committing to a client’s request [11]. Such systems may easily
run out of channels because the growth in the number of chan-
nels can never keep up with the growth in the number of clients.
This results in tremendous demand for computing power and
communication bandwidths on the system.

Paper approved by M. R. Civanlar, the Editor for Image Processing of the
IEEE Communications Society. Manuscript received February 12, 2001; revised
December 31, 2001. The work of Y.-C. Tseng was supported by the Lee and MTI
Center for Networking Research at National Chiao Tung University, Hisn-Chu,
Taiwan, R.O.C., by the Ministry of Education under Contract 89-H-FA07-1-4
and Contract 89-E-FA04-1-4, and by the National Science Council, Taiwan,
R.O.C. under Contract NSC90-2213-E009-154.

Y.-C. Tseng is with the Department of Computer Science and Information En-
gineering, National Chiao Tung University, Hsin-Chu, 30050, Taiwan, R.O.C.
(e-mail: yctseng@csie.nctu.edu.tw).

M.-H. Yang and C.-H. Chang are with Department of Computer Science
and Information Engineering, National Central University, Chung-Li 32054,
Taiwan, R.O.C.

Publisher Item Identifier 10.1109/TCOMM.2002.801466.

To relieve the stress on the bandwidth and I/O demands, many
alternatives have been proposed by sacrificing some VCR func-
tions, or known asnear-VOD services. Thebatchingapproach
collects a group of requests that arrive close in time, and serves
them all together when a channel is available [1], [7], [8]. A
scheduling policy based on the arrival of requests is required to
best utilize the channels. Twopatchingschemes [10], [14] are
proposed on top of the batching approach to allow late-coming
clients to join the service with some buffering space and server
channel constraints. A stream-tapping technique is proposed in
[3]. Adaptive batching schemes are proposed in [25] and [26]. A
survey on different scheduling techniques in a near-VOD system
can be found in [12].

In this paper, we consider thebroadcastingapproach, where
the server uses multiple dedicated channels to broadcast a video
cooperatively. Each channel is responsible for broadcasting
some portion of the video. Each client follows some reception
rule to grab data from appropriate channels to play the whole
video continuously. The server’s broadcasting activity is inde-
pendent of the arrivals of requests. Such an approach is more
appropriate for popular or hot videos that may interest many
viewers at a certain period of time. According to [7] and [8],
80% of demands are on a few (10 or 20) very popular videos.

One important issue in the broadcasting approach is theseg-
ment-scheduling problem, which refers to how a video server
partitions a video into segments and schedules these segments
on the communication channels. To reduce the new viewers’
waiting time, one naive approach is to periodically broadcast
the video in several channels differentiated by time [6]; this can
decrease the maximum waiting time linearly with respect to the
number of channels used. To further reduce viewers’ waiting
time, many approaches that are based on partitioning the video
into segments have been proposed. Here we categorize seg-
mentations into two types,vertical andhorizontal. Let be the
bandwidth required to transmit a video to a client sequentially
through unicast. In vertical segmentation, the video is allowed
to be partitioned into a number of segments along the time axis,
such that each segment still needs a bandwidthto transmit. In
horizontal segmentation, the video is allowed to be partitioned
along the bandwidth axis, such that each segment only needs
a fraction of to transmit. In the literature, solutions may be
solely based on vertical segmentation, or based on a combina-
tion of vertical and horizontal segmentations. This classification
is illustrated in Fig. 1.

Schemes based on vertical segmentation include [2], [15],
[19], [23], [24], [28], and [29]. In [2] and [29], apyramid scheme
is proposed, which can reduce the maximum waiting time in an
exponential ratio with respect to the number of channels used.
In [15] and [19], aFast Broadcasting (FB) schemeis proposed,

0090-6778/02$17.00 © 2002 IEEE

TSENGet al.: A RFS SCHEME FOR BROADCASTING HOT VIDEOS IN VOD SERVICE 1349

Fig. 1. Classification of video partitioning. (a) The original video. (b) Vertical
segmentation. (c) Combination of vertical and horizontal segmentations.

which incurs waiting time when using channels to
broadcast a video of length. A PAGODA Broadcasting (PB)
schemeis proposed in [23] and [24], which further reduces the
new viewers’ waiting time to if is even,
and if is odd.

Schemes based on combinations of vertical and horizontal
segmentations include [16]–[18]. In theharmonic scheme[16],
[18], a video will be partitioned horizontally according to the
harmonic series into segments of bandwidths .
In the staircase scheme[17], a video will be partitioned
horizontally into segments of bandwidths .
(Fig. 1(c) is drawn based on the staircase scheme.) The stair-
case scheme can reduce clients’ buffering requirement, while
keeping viewers’ waiting time the same as the FB scheme. The
harmonic scheme can significantly reduce viewers’ waiting
time. In fact, this scheme is recently proved to be optimal with
respect to viewers’ waiting time given a particular transmission
bandwidth [31]. However, horizontal segmentation is less
practical than vertical segmentation due to the partitioning
itself. An implementation of the FB scheme has been reported
recently in [30].

In this paper, we propose a new broadcasting scheme based
on the vertical segmentation model. Called aRecursive Fre-
quency-Splitting (RFS) scheme, our approach is very system-
atic and simple in concept. Our scheme is based on a simple
observation (seeLemma 1) on how frequently a video segment
should be broadcast. The result significantly improves over the
existing schemes [2], [15], [19], [24], [23], [29] that also use the
same model. To our knowledge, this is the best vertical segmen-
tation scheme in terms of viewer waiting time. To understand
how close our result is to the optimal solution, we also develop
some lower bounds on the viewer waiting time under the ver-
tical segmentation model.

The rest of this paper is organized as follows. In Section II,
we review the FB scheme and the PB scheme. Some important
observations are made based on these schemes, and a more effi-
cient scheme is proposed in Section III. Some analysis and sim-
ulation results on the performance of our scheme are presented
in Section IV. Conclusions are drawn in Section V.

II. REVIEWS

To help understand the essence of the segment-scheduling
problem, we review two representative vertical segmentation
schemes in the literature.

Fig. 2. FB scheme.

A. Fast Broadcasting (FB) Scheme

In the FB scheme [15], [19], we are given a videoof length
of bandwidth . Since it is assumed that is a popular video,

providing each client a dedicated channel to viewis infea-
sible. To relieve the demand on channels, the FB scheme as-
signs a fixed number of channels, , each of
bandwidth , to the video. These channels will work together
to broadcast with some special arrangement. The main goal
is to reduce the waiting time incurred by new viewers to start
watching the video.

The video server broadcastsas follows.

1) Partition vertically and evenly into segments,
, where . That is, the concate-

nation (we denote as the
concatenation operator). The length of each segment is

.
2) Divide each channel into time

slots of length . On , broadcast data segments
periodically and in that order.

Note that the first segment of each
should be aligned in the same time slot.

An example is in Fig. 2. Channel broadcasts the first segment
periodically, broadcasts the next two segments periodically,

broadcasts the next four segments periodically, etc.
To view , a client should monitor and receive data from all
channels according to the following rules.

1) To start the service, wait until the beginning ofanynew
time slot.

2) Concurrently from each channel ,
download consecutive segments starting from the first
time slot.

3) Right at the moment when step 2 begins, start to consume
the video .

Let us use an example to show how the FB scheme works. In
Fig. 2, suppose the video server allocates channels to .
So will be partitioned evenly into segments.
For a client starting at time in Fig. 2, in the first time slot, it
will receive segments from , re-

1350 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 50, NO. 8, AUGUST 2002

spectively. During the first time slot, segment will be con-
sumed, and the other premature segments will be
buffered at the client’s local storage for future use. In the second
slot, the client will consume segment from its local storage.
At the same time, segments from , re-
spectively, will be buffered. In the third time slot, the client
will consume the from its local storage, and simultaneously
buffer and from and , respectively. This will be
repeated until the client has received data segments
from . At last, the client will finish watching the video at time

. The reader should be able to derive similar
results easily for viewers starting at other time slots.

In some special time slots, it is possible for a client to play the
video without buffering. For instance, if a client starts at time
of Fig. 2, it can continuously receive every required segment (the
darker segments in the figure) just in time from one of the chan-
nels. However, this happens only once every time slots.

In summary, the FB scheme allows a client to start at the be-
ginning of any time slot by ensuring that whenever a segment
is needed to be consumed, either it has been buffered previ-
ously, or it is being broadcast just in time on one of the chan-
nels. We briefly outline the proof as follows. Suppose that a
client begins to download at time . Consider the seg-
ments , which are periodically broad-
cast on . These segments will be downloaded
by the client from in the time interval . However,
these segments will be viewed by the client in the time interval

. There is only one slot of over-
lapping, i.e., between the above two time
intervals. In this time slot, is the segment to be played. It can
be easily observed that either has appeared on previously,
or is currently being broadcast on in time. This concludes the
proof.

What the FB scheme achieves is to shorten viewers’ max-
imum waiting time with only a few channels. A client has to wait
no longer than time to start viewing the video. The average
waiting time is . Since , a small increase in

can reduce the waiting time significantly. For instance, given
a 120-minute video, with 5 channels, a viewer has to wait no
more than minutes to start the service, and
with 6 channels, the maximum waiting time further reduces to

minutes.
One problem with the FB scheme is that the number of chan-

nels used on a video can not be changed according to the level
of “hotness” of the video. In [28], an interesting scheme is pro-
posed to enhance the FB scheme so that the number of channels
used by a video can be dynamically adjusted on the fly without
causing any interruption.

B. PAGODA Broadcasting (PB) Scheme

The PB scheme [24] can further reduce the users’ waiting
time. Still, we are given a video of length and channels,

. The video server uses the following rules to
broadcast .

1) Partition evenly into segments, ,
where if is even, and

(a)

(b)

Fig. 3. The PB scheme. (a)k = 3 channels. (b)k = 4 channels.

if is odd. Also, divide each
channel into time slots of fixed length .

2) On , broadcast segment periodically. For
, periodically broadcast on

channel the segments

and on channel the segments

where .
3) If is even, then periodically broadcast on the last

channel the segments

where .
Fig. 3 shows the PB scheme’s scheduling for and

. The video will be partitioned into and
segments, respectively. In the figure, we

mark by gray when and where to grab the necessary segments
for a client starting at the first time slot.

In summary, the PB scheme places segments in a more ef-
ficient and compact way than the FB scheme. The number of
segments will grow much faster as increases than in the
FB scheme. So the waiting time (i.e.,) can be significantly
reduced. For instance, with 8 channels, a video will be parti-
tioned into 499 segments by the PB scheme, and 254 segments
by the FB scheme.

The New PAGODA Broadcasting (NPB) scheme [23] further
improves on the PB scheme on the waiting time. However, a less
regular arrangement pattern is used.

TSENGet al.: A RFS SCHEME FOR BROADCASTING HOT VIDEOS IN VOD SERVICE 1351

III. OUR RFS SCHEME

From the above reviews, we can see that both the FB and the
PAGODA schemes partition the video into a number of fixed-
length segments, each of which is scheduled to broadcast on
one of the channels periodically. The maximum waiting time
incurred by viewers is thus reflected by the length of a segment,
or equivalently, the inverse of the number of segments. We thus
formally define our problem as follows.

Definition 1: Given a video of length and a set of
channels , theFixed-Length Segment-Sched-
uling (FLSS) Problemis to find a partition of into fixed-
length segments , and to find a placement of these

segments on the channels. Channels will be synchronously
divided into time slots of length . The placement
should guarantee that for any viewer starting to play the video
at the beginning of any time slot, each video segment will be
received or has been received at the time slot when the viewer
needs to consume the segment. The goal is to maximize, or
equivalently to minimize .

The following lemma gives a necessary and sufficient condi-
tion to solve this problem.

Lemma 1: For any solution to the FLSS problem, each seg-
ment , must be broadcast at least once on one of
the channels in every continuoustime slot.

Proof: Suppose that a viewer starts to play the video at
time slot . Then the viewer will consume segment at time
slot . This implies that must be broadcast on one of
the channels at time slot , or has been broadcast on one
of the channels during slots . This proves
that the condition given in the lemma is a sufficient condition.
To see that this is also a necessary condition, simply observe
that if has not been sent in the aforementioned time slots, the
viewer will experience an interruption at time slot .

The basic idea of our scheme is as follows. To satisfy the
above lemma, we will schedule to be broadcast on one of the
channels periodically with a frequency no less than. Sup-
pose our scheme can accommodatesegments. Then, overall,
our scheme needs to determinesequences of periodical time
slots, each of which appears in one of thechannels, and each of
which can accommodate one of thesegments. The challenge is
that when putting all thesesequences together, we must guar-
antee that in no time slot, more than one segment is scheduled
to be broadcast on any of the channels simultaneously.

The above discussion introduces the concept of “periodical
time slots,” which can be regarded as an infinite sequence of
time slots, each spaced by a fixed amount of time. The following
definition shows how we represent such a concept.

Definition 2: A slot sequence is an infinite se-
quence of time slots belonging to channel

, beginning at slot , and repeating infinitely with a period of
slots, where is one of the channels, is an integer,

and is an integer,
Note that for ease of presentation, throughout the paper, we

will count the time slots of a channel starting from 0, instead of
1. Several examples of slot sequences are shown in Fig. 4. Also,
note that when , the time slots will be continuous, and it
represents a complete channel (e.g.,).

(a)

(b)

Fig. 4. (a) Splitting result after applyingLemma 2onSS(C ; 3; 5) andS .
(b) Splitting result after applyingLemma 2onSS(C ; 3; 7) andS .

Our scheme is based on a concept called “frequency split-
ting.” According toLemma 1, we should allocate a slot sequence

for segment , such that . It is desirable that
the value of be as close to as possible, since a largermeans
less waste in communication bandwidth. The best case is .
However, in case that , the following lemma shows how
to split the slot sequence into a number of subsequences to save
bandwidth.

Lemma 2: Given a free slot sequence and a
video segment , such that , one possible placement for

is to partition into the following
slot sequences:

assign one of the slot sequences to, and keep the remaining
slot sequences free.

Proof (Sketched):The period is the maximal period
that is a multiple of and can satisfy the condition inLemma
1.

Fig. 4(a) shows an example of applying this lemma
to and . We partition into

subsequences , ,
and . We can assign one subsequence to,
and keep the remaining two free for future use. Fig. 4(b) shows
another example when applying this lemma to
and . is partitioned into
subsequences and . In this
case, assigning to any of these sequences will waste

bandwidth of channel .

1352 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 50, NO. 8, AUGUST 2002

A. RFS Scheme

Next, we present our RFS scheme. We are initially given
a set of channels , which is considered a
pool of slot sequences. We will start the placement from.
For each segment to be placed, we will take one slot sequence
from the pool and applyLemma 2on it. After applyingLemma
2, some new subsequences may be generated and returned to
the pool after the splitting. The is recursively repeated until the
pool becomes empty. The outputs of the scheme are a value of

, and the assignment of one slot sequence for each segment
.

1) Let POOL be a set of slot sequences:

Intuitively, this is the set of free channels
that we are given initially.

2) Initialize .
3) Pick a slot sequence , such that

. If more than one sequence in POOL satisfies this
condition, apply the following rules to pick one.

a) The sequence(s) with the smallest value ofmod
should be picked first.

b) If step a) still renders more than one sequence, pick
any one with the largest.

Then do the subtraction
.

4) Apply Lemma 2on sequence and segment
to split into slot sequences.

a) Assign to .
b) Do the union

.
5) If there exists a slot sequence such

that , then increase by 1 and go to step 3
to schedule the next segment; otherwise, terminate this
procedure and output the value of.

In the above procedure, we try to increase the value ofre-
peatedly. In step 3, we try to pick one slot sequence in POOL
that can be used for . Step 3 a) is a heuristic for reducing the
waste of bandwidth when performing the assignment in step 4.
Step 3 b) is a heuristic for leaving more flexibility in subsequent
assignments. Step 4 performs the splitting. Finally, step 5 checks
whether we can proceed to accommodate the next segment. If
so, is increased by 1, and we loop back to step 3. Also note that
step 5 is written in a way for ease of understanding. The condi-
tion, “there exists a slot sequence such
that ” in step 5 can be reduced to, “if .” The
reason is that when doing splitting, we never generate a subse-
quence which has a period larger than the current value of.

For example, let us consider . A total of nine iterations
will be executed, as shown in Fig. 5(a). The final arrangement
is shown in Fig. 5(b).

B. -RFS

In the above RFS, we try to arrange one segment in each itera-
tion. In the following, we propose a modification of RFS called

-RFS, which tries to arrange segments in each iteration,

(a)

(b)

Fig. 5. Running our RFS scheme givenk = 3 channels. (a) Result of POOL
after each application ofLemma 2. (b) Final placement. In (a), sequences that
are stricken out are assigned to segments, and sequences with a superscript
are picked for splitting byLemma 2.

where is any positive integer. Specifically, in each iteration,
segments , will be consid-

ered. We then schedule these segments one by one usingLemma
2 in different orders (there are such permutations). Among
all possible choices, we then choose the one that has the min-
imal waste of bandwidth. This is repeated until it is impossible
to schedule segments at a time, and then we go back to RFS
and schedule one segment at a time, until no more segments can
be scheduled. Intuitively, by different permutations, we hope to
find a better solution than RFS. When , this degenerates
to RFS, and when , this becomes a brute force exhausted
search.

For example, when there are channels, 4-RFS can
schedule as many as 26 segments, as opposed to 25 segments by
RFS. Figs. 6(a) and (b) show the broadcasting sequences found
by 4-RFS when and , respectively.

IV. A NALYSIS AND COMPARISON

In this section, we propose some upper bounds on the value
of for the FLSS problem, and then compare the value of
found by our RFS scheme against the upper bounds and those
found by existing schemes.

Theorem 1: For any solution to the FLSS problem, given
channels, an upper bound on the value ofmust satisfy

Proof: According toLemma 1, segment must be broad-
cast at least once in every continuoustime slot. Thus, will
consume at least bandwidth of a channel. Summing this over
all segments gives this upper bound.

The above upper bound is applicable toany solution to the
FLSS problem. However, it does not impose that a segment al-

TSENGet al.: A RFS SCHEME FOR BROADCASTING HOT VIDEOS IN VOD SERVICE 1353

(a)

(b)

Fig. 6. Placement of 26 and 73 segments found by 4-RFS given (a)k = 4 and (b)k = 5 channels, respectively. (On each channel, for each time slot, two
elements are shown. The first element on the top is the segment number, while the second element on the bottom with dark background is the period in whichthe
corresponding segment appears.)

ways be broadcast on a fixed channel. That is, it is possible
that the broadcast scheduling of a segment switches from one
channel to another channel when collision occurs. If we do not
allow such flexibility, the following derivation gives a tighter
bound that applies to any solution thatbroadcasts each peri-
odically in a fixed channel. Note that this condition is applicable
to all existing schemes [15], [19], [23], [24] and our scheme.
This assumption also makes implementation easier.

Lemma 3: It is impossible to find two disjoint slot sequences
and , such that .

Proof: It is obvious that this lemma is true if or
. So we assume that . We need to prove that for

any integers and , , i.e.,
and share no common time slot. Sinceand
are relatively prime, according to the Little Fermat’s Theorem,
there exist two integersand , such that .
Multiplying both sides by , we have

Letting and , we reach a
contradiction

Based on the above lemma, we can derive a tighter upper
bound on . Intuitively, we consider the waste of bandwidth
when broadcasting segment by slot sequence ,
such that . A fraction of the bandwidth
of a channel are wasted in this case. The following theorem
will apply this concept to prime numbers. For ease of presen-
tation, let be the th prime number (i.e.,

, etc.).
Theorem 2: For any solution to the FLSS problem that uses
channels and that satisfies the condition that each segment is

periodically broadcast in a fixed channel, an upper bound on the
value of must satisfy

where

if is a prime number and
otherwise.

Proof: Similar to the philosophy in the proof ofTheorem
1, we will calculate an upper bound onbased on the bandwidth
required in a scheduling. We assume that there is a perfect solu-
tion, such that for any such that is a composite number,
can be broadcast with a period. So a fraction of the band-
width of a channel is required for each of these segments.

Now consider the placement of segments, such that
is a prime number. According toLemma 3, no two segments

and , such that and are primes, can be broadcast in
the same channel with periodsand , respectively, since

. So one of and must be broadcast with
a smaller period. Now consider the use of thechannels in
accommodating segments, such that is a prime. One of
the channels must be used to broadcast. The other
channels can each accommodate one, such that is a
prime. Based on the “waste of bandwidth” concept that we
pointed out earlier, under the best situation we may place
each of the segments in a
separate channel by broadcasting them with perfect periods

, respectively. The other segments
will each be forced to broadcast

with a smaller period less than its segment number no matter
on which channels they are broadcast (otherwise, conflicts will
occur). In the best case, these segments may be broadcast with
periods . This will lead
to the least waste of bandwidth; if one tries to broadcast any

, such that is a prime and with a perfect period
, then one of the segments will be

1354 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 50, NO. 8, AUGUST 2002

(a)

(b)

Fig. 7. The maximal numbers of segments,n, offered by different schemes.

forced to be broadcast with a smaller period and the waste can
only become larger.

Similar to the philosophy inTheorem 1, summing all band-
widths necessitated by all segments together gives this upper
bound on .

To understand how well our RFS scheme performs, we have
calculated the values ofoffered by the FB, PB, NPB, RFS, and

-RFS schemes given different numbers of channels. The result
is shown in Fig. 7. The upper bound is obtained fromTheorem
2. From Fig. 7(a), we see that our RFS scheme outperforms all
other schemes except , as compared to the NPB scheme.
By using -RFS with , this problem can be conquered,
but there is only very slight improvement over RFS. As can be
seen from our experiments, in the range of , only with

and can 4-RFS outperform RFS. So using RFS is
quite efficient and simple. In fact, from Fig. 7(b), which is drawn
in a logarithmic scale, we see that our RFS scheme performs
asymptotically quite close to the upper bound.

The inverse of offered by each scheme reflects the average
waiting time for a new viewer to start his/her VOD service.
Fig. 8 compares the average waiting time of different schemes.

The schemes discussed above all require buffering pre-
matured segments at the client side. We do not have a close
formula for the required buffering space of our RFS and

-RFS schemes. So we wrote a simulator to broadcast a
120-minute movie. We exhaustively searched all possibilities
to find the maximum buffering space required at different
numbers of channels. The comparison of maximum buffering
spaces required by FB, seamless FB (with seamless channel
transition capability [28] by setting), RFS, 4-RFS,
and staircase broadcasting [17]) is in Table I. Surprisingly, in
addition to smaller waiting time, our schemes have a slightly
lower buffering space requirement than that of FB and seamless
FB. The staircase scheme incurs significantly less buffering
space, however, this scheme does not fit into the category

Fig. 8. Comparison of average waiting time incurred on new viewers at
different numbers of channels (D = 120 min).

TABLE I
COMPARISON OFMAXIMUM BUFFERINGSPACESREQUIRED BY FB,
SEAMLESS-FB, RFS, 4-RFS,AND STAIRCASE (SB) IN THE NUMBER

OF MINUTES OF A120-MINUTE VIDEO USING k CHANNELS

of fixed-length segmentation approach since segments in the
staircase scheme are partitioned in both vertical and horizontal
directions and have different sizes and lengths.

V. CONCLUSION

The video broadcasting service is already popular in cable TV
systems. Asynchronous video service is likely to grow quickly
when the network infrastructure is ready. In this paper, we have
proposed a new scheme for scheduling video segments on mul-
tiple channels to reduce viewers’ waiting time. The result is
shown to be more efficient than the best known schemes. Fu-
ture research could be directed toward finding a more efficient
scheme that can further reduce the viewers’ waiting time, or
toward deriving a tighter bound than the ones derived in this
paper. The requirement of buffering space is obtained experi-
mentally, but not analytically, and thus deserves further inves-
tigation. While most existing results adopt fixed scheduling, a
recent work [4] that may deserve our attention proposes to use
a reactive scheduling that can adapt to the popularity of a video.

ACKNOWLEDGMENT

The authors would like to thank Dr. J.-F. Paris for providing
some experimental data on the New PAGODA scheme.

REFERENCES

[1] C. C. Aggarwal, J. L. Wolf, and P. S. Yu, “On optimal batching policies
for video-on-demand storage servers,” inProc. IEEE Int. Conf. Multi-
media Computing and Systems, June 1996, pp. 253–258.

TSENGet al.: A RFS SCHEME FOR BROADCASTING HOT VIDEOS IN VOD SERVICE 1355

[2] , “A permutation-based pyramid broadcasting scheme for
video-on-demand systems,” inProc. IEEE Int. Conf. Multimedia
Computing and Systems, June 1996, pp. 118–126.

[3] S. W. Carter and D. D. E. Long, “Improving video-on-demand server
efficiency through stream tapping,” inProc. Int. Conf. Computer Com-
munications and Networks, 1997, pp. 200–207.

[4] S. W. Carter, J. F. Paris, and D. D. E. Long, “A dynamic heuristic broad-
casting protocol for video-on-demand,” inProc. Int. Conf. Distributed
Computing Systems, 2001, pp. 657–664.

[5] Y. H. Chang, D. Coggins, D. Pitt, and D. Skellern, “An open-system
approach to video on demand,”IEEE Commun. Mag., vol. 32, pp. 68–80,
May 1994.

[6] T. Chiueh and C. Lu, “A periodic broadcasting approach to video-on-
demand service,”Int. Soc. Optical Eng., vol. 2615, pp. 162–169, Oct.
1995.

[7] A. Dan, D. Sitaram, and P. Shahabuddin, “Scheduling policies for an
on-demand video server with batching,” inProc. ACM Multimedia, Flo-
rence, Italy, 1994, pp. 15–23.

[8] , “Dynamic batching policies for an on-demand video server,”Mul-
timedia Syst., vol. 4, no. 3, pp. 112–121, June 1996.

[9] D. Deloddere, W. Verbiest, and H. Verhille, “Interactive video on de-
mand,”IEEE Commun. Mag., vol. 32, pp. 82–88, May 1994.

[10] L. Gao and D. Towsley, “Supplying instantaneous video-on-demand ser-
vices using controlled multicast,”IEEE Multimedia, pp. 117–121, June
1999.

[11] L. Gao, J. Kurose, and D. Towsley, “Efficient schemes for broadcasting
popolar videos,” inProc. Int. Workshop Network and Operaing Syst.
Support for Digital Audio and Video, Aug. 1998, pp. 317–329.

[12] D. Ghose and H. J. Kim, “Scheduling video streams in video-on-de-
mand systems: A Survey,”Multimedia Tools and Applicat., vol. 11, pp.
167–195, June 2000.

[13] W. Hodges, S. Mabon, and J. T. Powers Jr., “Video on demand: Architec-
ture, systems, and applications,”SMPTE J., Building an Infrastructure
for Managing Compressed Video Systems, pp. 791–803, Sept. 1993.

[14] K. A. Hua, Y. Cai, and S. sheu, “Patching: A multicast technique for true
video-on-demand services,”ACM Multimedia, pp. 191–200, Sept. 1998.

[15] L.-S. Juhn and L.-M. Tseng, “Fast broadcasting for hot video access,”
Real-Time Comput. Syst. and Applicat., pp. 237–243, Oct. 1997.

[16] , “Harmonic broadcasting for video-on-demand service,”IEEE
Trans. Broadcast., vol. 43, pp. 268–271, Sept. 1997.

[17] , “Staircase data broadcasting and receiving scheme for hot video
service,”IEEE Trans. Consumer Electron., vol. 43, pp. 1110–1117, Nov.
1997.

[18] , “Enhanced harmonic data broadcasting and receiving scheme for
popular video service,”IEEE Trans. Consumer Electron., vol. 44, pp.
343–346, May 1998.

[19] , “Fast data broadcasting and receiving scheme for popular video
service,”IEEE Trans. Broadcast., vol. 44, pp. 100–105, Mar. 1998.

[20] T. L. Kunii et al., “Issues in storage and retrieval of multimedia data,”
Multimedia Syst., vol. 3, no. 5, pp. 298–304, 1995.

[21] T. D. C. Little and D. Venkatesh, “Prospects for interactive video-on-
demand,”IEEE Multimedia, vol. 1, pp. 14–24, Mar. 1994.

[22] B. Ozden, R. Rastogi, and A. Silberschatz, “On the design of a low cost
video-on-demand storage system,”Multimedia Syst., vol. 4, no. 1, pp.
40–54, 1996.

[23] J.-F. Paris, “A simple low-bandwidth broadcasting protocol for
video-on-demand,” inProc. Int. Conf. Computer Communication and
Network, 1999, pp. 118–123.

[24] J.-F. Paris, S.-W. Carter, and D.-D. Long, “A hybrid broadcasting pro-
tocol for video on demand,” inProc. Multimedia Computing and Net-
working Conf., 1999, pp. 317–326.

[25] W. F. Poon and K. T. Lo, “New batching policy for providing true
video-on-demand (T-VoD) in multicast system,” inProc. IEEE ICC,
vol. 2, 1999, pp. 983–987.

[26] W. F. Poon, K. T. Lo, and J. Feng, “Adaptive batching scheme for mul-
ticast video-on-demand systems,”IEEE Trans. Broadcast., vol. 47, pp.
66–70, Mar. 2001.

[27] W. D. Sincoskie, “System architecture for a large scale video on demand
service,” Computer Networks and ISDN Syst., vol. 22, pp. 565–570,
1991.

[28] Y.-C. Tseng, C.-M. Hsieh, M.-H. Yang, W.-H. Liao, and J.-P. Sheu,
“Data broadcasting and seamless channel transition for highly-de-
manded videos,” inProc. INFOCOM, Mar. 2000, pp. 727–736.

[29] S. Viswanathan and T. Imielinski, “Metropolitan area video-on-demand
service using pyramid broadcasting,”IEEE Multimedia, pp. 197–208,
Aug. 1996.

[30] Z.-Y. Yang, “The telepresentation system over Internet with latecomers
support,” Ph.D. Dissertation, National Central Univ., Chung-Li, Taiwan,
R.O.C., July 2000.

[31] Z.-Y. Yang, L.-S. Juhn, and L.-M. Tseng, “On optimal broadcasting
scheme for popular video service,”IEEE Trans. Broadcast., vol. 45, pp.
318–322, Sept. 1999.

Yu-Chee Tseng(S’91–M’95) received the B.S. de-
gree from the National Taiwan University in 1985,
and the M.S. degree from the National Tsing-Hua
University in 1987, Hsin-Chu, Taiwan, both in com-
puter science. He received the Ph.D. degree in com-
puter and information science from Ohio State Uni-
versity, Columbus, OH, in 1994.

He was an engineer for D-LINK Inc., Hsin-Chu,
Taiwan, in 1990. From 1994 to 1996, he was an Asso-
ciate Professor in the Department of Computer Sci-
ence, Chung-Hua University, Hsin-Chu, Taiwan. He

joined the Department of Computer Science and Information Engineering, Na-
tional Central University, Chung-Li, Taiwan, in 1996, and has been a Full Pro-
fessor since 1999. In 2000, he joined the Department of Computer Science and
Information Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan,
as a Full Professor. His research interests include wireless communication, net-
work security, parallel and distributed computing, and computer architecture.

Dr. Tseng serves as a Guest Editor in the special issue of “Advances in Mo-
bile and Wireless Systems” inACM Wireless Networks, and in the special issue
of “Wireless Internet” of the IEEE TRANSACTIONS ON COMPUTERS. He is a
member of the IEEE Computer Society and the Association for Computing Ma-
chinery.

Ming-Hour Yang received the M.S. degree in elec-
tronic engineering from the Chung-Hua University,
Hsin-Chu, Taiwan, in 1996, and the Ph.D. degree in
computer science and information engineering from
the National Central University, Chung-Li, Taiwan,
in 2001. He is currently a Research Fellow of Na-
tional Strategic Studies Institute at National Defense
University, Taipei, Taiwan.

His research interests include video on demand,
parallel and distributed computing, fault tolerance,
mobile computing, and wireless networks.

Chi-He Chang received the B.S. degree in computer
science from the Chung Yuan Christian University,
Chung-Li, Taiwan, in 1998, and the M.S. degree in
computer science from National Central University,
Chung-Li, Taiwan, in 2000.

His interests include video on demand and interac-
tive multimedia.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

