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Abstract

This work proposes an object-oriented unified optimization framework (UOF) for general problem optimization. Based on
biological inspired techniques, numerical deterministic methods, and C++ objective design, the UOF itself has significant potential
to perform optimization operations on various problems. The UOF provides basic interfaces to define a general problem and generic
solver, enabling these two different research fields to be bridged. The components of the UOF can be separated into problem and
solver components. These two parts work independently allowing high-level code to be reused, and rapidly adapted to new problems
and solvers. The UOF is customized to deal with several optimization problems. The first experiment involves a well-known discrete
combinational problem, wihle the second one studies the robustness for the reverse modeling problem, which is in high demanded by
device manufacturing companies. Additionally, experiments are undertaken to determine the capability of the proposed methods in
both analog and digital circuit design automation. The final experiment designs antenna for rapidly growing wireless communication.
Most experiments are categorized as simulation-based optimization tasks in the microelectronics industry. The results confirm that
UOF has excellent flexibility and extensibility to solve these problems successfully. The developed open-source project is publicly
available.
© 2007 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

A major obstacle in designing a general-purpose optimizer in any one programming language is the difficulty in
defining a comprehensive interface for problems and solvers. Appropriate interfaces for problems and solvers produce
objects that are heuristically easy to reuse again in a specific framework. Several optimization frameworks, such as
GALIB [31], DESMO [5], and NP-Opt [25] have been proposed in the public domain. These packages have certain
advantages, but still have room for improvement in terms of the connections between problem and solver for real-
world applications. This work implements a C++ unified optimization framework (UOF) for general problems and
solvers. Benefitting from C++ design pattern techniques, UOF allows users to define the problems and solvers from
the fundamental level. The developed UOF consists of two parts, the problem part and the solver part. The basic
interface of problem-related classes contains initialization, evaluation, and constraint procedures. The solver-related
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classes include the solver, solution, termination, and information procedures. Separating each part into several classes
increases the efficiency of reutilization.

This work address several problems to demonstrate the flexibility and extensibility of UOF, particularly in the
electronic design automation field. The first experiment considers the famous traveling salesman problem (TSP),
which is a NP problem, and the other experiments which are quite difficult problems in the fabrication of semiconductor
devices and electromagnetic fields. The modern microelectronics industry involves many optimization jobs that are
subject to simulated results from certain simulators, such as device model parameter extraction [18,19,22], automatic
design of integrated circuit (IC) [12], process simulation [7], reverse modeling [1], and antenna optimization [14,24].
These terms need to feed specific parameters into some commercial simulator to obtain the corresponding simulated
results. The engineers adjust the parameters based on the results, and again feed the adjusted parameters to retrieve
the improved results. This circular procedure continues until the results match the requirements of the customers or
supervisors. Currently, this mechanical procedure is typically performed by engineers with expertise. Therefore, a
well-defined framework can assist engineers to complete their work easily with various optimization techniques. In
particular, the proposed UOF contains biological inspired techniques which can been applied to solve optimization
problems without requiring much empirical knowledge.

The rest of this paper is organized as follows. Section 2 introduces the architecture of the UOF. Section 3 then explains
the detailed coding methodologies for problem and solver, and provides pseudocode for building problems and solvers.
Section 4 discusses the achieved results. Conclusions are finally drawn in Section 5, along with recommendations for
future research.

2. The unified optimization framework

Fig. 1 illustrates the class diagram of UOF. The class UOFId is the base-class of every class here for run-time type
information (RTTI) purposes. All members in UOF can be easily categorized into problem-related and solver-related
classes. The UOFProblem class is the main class to define the problem; the UOFInitializer class is responsible for the
initialization of the solution for each problem; the UOFEvaluator class provides the method for evaluating the result
obtained by the UOFProblem derived classes; the UOFConstraint class defines the constraint of each parameter; the
UOFSolver class takes the major character in solver relative category; the UOFSolution class stores possible solutions
and several operators of the specified solver; the UOFTerminator class judges when and how to stop the optimization
process of the solver, and the UOFInfo class logs the behavior of the solver during the solving process. All classes in
both categories are abstract classes, and need to be implemented in derived classes.

Fig. 2 shows the built-in class specializations of the most important two classes in current UOF. As shown in Fig. 2
a, NPProblem, FunctionProblem, and ExtSimProblem are directly inherited from UOFProblem. The UOFProblem
class has general interfaces for the user to define any problems. NPProblem provides convenient interfaces for defining
NP-hard problems such as TSP and the single/parallel machine scheduling problem. Moreover, optimization problems
of linear and non-linear continuous functions, such as DeJong functions [11], can be defined by FunctionProblem class.
ExtSimProblem class has basic linkages to external software to perform simulations, such as commercial TCADs and
ECADs. The solver-related classes illustrated in Fig. 2 b can be separated into two categories, namely gradient-based
and the population-based solvers. The gradient-based solver inherits directly from the UOFSolver class, and includes
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) [2] and Levenberg–Marquardt (LM) methods [29]. Both of these are
quasi-Newton methods and are popularly used in deterministic solving packages [26]. The population-based solver

Fig. 1. An illustration of the architecture of UOF. Solid lines indicate inheritance and dashed lines indicate the ownership.
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Fig. 2. The class hierarchy of the UOFProblem and UOFSolver. The solid lines indicate inheritance.

includes several heuristic methods such as GABaseSolver for genetic algorithm (GA) [8], PSOSolver for particle swarm
optimization (PSO) [13], ACOSolver for ant colony optimization (ACO) [3] and SASolver for simulated annealing
method [10,15]. The fundamental abstract classes are described in detail below.

2.1. The UOFProblem class

The interface of UOFProblem class is defined as follows:

The resulting function is the major function of UOFProblem class to calculate the results of given parameters. The
function has two overloaded versions. One is a convenient version which returns a result in a ‘double’ format, and the
other is the type-free version that returns data in any specified type. The GetJacobianResult function is used by the
gradient-based solvers, which return the Jacobian matrix back to the solver.

2.2. The UOFEvaluator class

The UOFEvaluator interface is declared as follows:

The UOFEvaluator itself is a function object [4] that acts like a function pointer in C, but takes advantages of
C++ object-oriented programming. It stores the pointer of UOFProblem, and performs the communications with
UOFProblem in the operator( ) function. UOFEvaluator is like an agent that connects the UOFProblem and UOFSolver
to reduce the coupling effects between UOFProblem and UOFSolver.
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2.3. The UOFInitializer class

The interface of UOFInitializer:

UOFInitializer performs solution initialization, which is called by UOFSolution object. The solution to be initialized
should be transferred to void* type. Moreover, UOFInitializer also stores the UOFProblem pointer, and allows the user
to retrieve extra information in UOFProblem object.

2.4. The UOFSolver class

The interface of UOFSolver is defined as follows:

In this class, the Initialization function performs the initialization steps before the solving procedure. Configura-
tion function allows the user to configure the solver through a script file, and the Solve function controls the entire
optimization process.

2.5. The UOFSolution class

UOFSolution is an abstract class to describe the solution format used in any UOF components. The class declaration
is listed as below:

The score function in UOFSolution invokes UOFEvaluator to obtain the simulation results of given parameters, and
calculates the fitness score.
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Fig. 3. The working flow and object inner connections in UOF from users’ point of view.

2.6. The working flow of the UOF

Fig. 3 shows the working flow and object inner connections in the UOF from the user point of view. Users initially call
the Solve function in the UOFSolver class to start the optimization operation. Meanwhile, the UOFInitializer initializes
the UOFSolution objects. The Solve function invokes the GetScore function in UOFSolution class to calculate the results
from the given parameters. The UOFSolution class redirects and passes the GetScore message to the UOFEvaluator
class. The UOFEvaluator object passes the solution to UOFProblem, and calls GetResult to obtain the corresponding
results. While the solver solves the problem, in each iteration the UOFInfo updates the current status of the solver, such
as the best parameter set. Moreover, the UOFTeriminator also updates the current best solution from UOFInfo, and
tells UOFSolver when to stop the optimization procedure. Finally, users can obtain the best solution from the UOFInfo
object.

3. Implementation examples

This section constructs of simulation-based problems and two solvers step by step given to demonstrate the capability
and extensibility of UOF.

3.1. Simulation-based problem

The major task in implementing a simulation-based problem in UOF is to encapsulate the I/O operations to external
simulators within the subclass of the UOFProblem class. This section describes the specialization of UOFProblem
class the specialization of UOFProblem class without loss of generality, taking the TCAD reverse modeling problem
as an example. Three classes, TCADProblem, TCADEvaluator and TCADInitializer, are derived. TCADInitializer
is responsible for generating a random initial parameter set. TCADEvaluator measures the error between the target
data and the simulated result. TCADProblem provides the GetResult, GenerateIntermediateFiles, and ReadOutput-
Files functions. Fig. 4 a shows the working flow of these methods. The Figure indicates that the GetResult function is
rather simple. GetResult first calls the GenerateIntermediateFiles function to generate the input files required by the
simulator, then runs the simulator, and finally calls the ReadOutputFiles to retrieve the simulated result. GenerateInter-
mediateFiles function generates the input files required by the simulator. These files are called m InterMediateFiles.
This procedure requires the m InputFile data, and maps the value of each parameter into the m InputFile to generate
the m InterMediateFiles. The ReadOutputFiles function parses the output file of the simulator to retrieve the necessary
simulated result. Fig. 4 b shows the flowchart of TCADEvaluator. TCADEvaluator calls GetResult in TCADProblem
to retrieve the simulated result, and returns the error between the simulated result and the target data to the caller.

3.2. Genetic algorithm solver

This section describes the construction of a genetic algorithm solver. The first step is to declare three classes
named GABaseSolver, TerminateUponIteration and GA1DArraySolution, which are inherited from PopBaseSolver,
UOFTerminator and PopSolution, respectively. In this experiment, the stopping criteria was set to reach the maximum
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Fig. 4. (a) The working flow of GetResult in TCADProblem and (b) the flowchart of TCADEvaluator.

iteration, therefore, so the TerminateUponIteration function would return true if the maximum iteration was reached. The
GA1DArraySolution class rewrites the GetScore function, and declares the GA crossover and mutation operator. The
Solve function is the entry point of the solver called by the main function of the program. It first calls the Initialization,
then performs Evolve to evaluate each individual and perform further genetic operators, namely selection, crossover,
and mutation until TerminateUponIteration (in Done function) reports the “true” event. The pseudocode for Solve and
Evolve functions are as follows:
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3.3. Particle swarm optimization solver

The PSO, like the GA, is a population-based solver, meaning that the content are alike. The major difference
between these two solvers occurs in the Evolve function. The PSOSolver performs a move operation defined in the
PSOMove function of the PSO1DArraySolution to update the parameters after sorting the individuals. The pseudocode
of the Evolve function is given below.

4. Results and discussion

This section presents the experimental results. The first experiment involved a traditional TSP; the second experi-
ment involved a reverse modeling problem of semiconductor device, the third and fourth experiment involved circuit
specification problems of low noise amplifier (LNA) and static random access memory (SRAM). The final experiment
involved an antenna design problem for wireless communication.

4.1. The traveling salesman problem

The TSP is a well-known discrete combinational problem. Its objective is to discover a minimized route for a salesman
to visit each city only once and finally return to the starting point. Three classes, the TSPProblem, TSPEvaluator,

Table 1
The optimized result of the TSP

Method Geometry Number of cities Average number of iterations Percent of success run

GA Circle 30 2231 80
ACO Circle 30 4 80
GA Circle 50 6562 30
ACO Circle 50 18 60
GA Matrix 9 24 100
ACO Matrix 9 4 100
GA Matrix 25 3600 30
ACO Matrix 25 26 100
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TSPInitializer, which are inherited from UOFProblem, UOFEvaluator, UOFInitializer, respectively, are defined to
implement TSP in the UOF standard. The TSPInitializer is utilized to create a random string as a route to travel to
each city. The TSPEvaluator simply returns the total length of the given route, which is derived from TSPProblem.
Pseudocode for TSPInitializer, TSPEvaluator, and GetResult function in TSPProblem is given below.

Four geometric distributions of cities were explored. The first and second distributions formed a circle, and contained
30 and 50 cities, respectively. The third and fourth distributions were 3 × 3 and 5 × 5 matrices, respectively. The GA
and ACO were performed to compare the efficiency of each problem, as shown in Table 1. The success run means that
the run can find optimal solution, and the low percent of success run for some cases with GA methods is due to the
limitation of iteration number. In our examinations, the number of iteration is limited to 10,000. Table 1 summarizes
the result, revealing that the ACO method is better than GA method for solving this problem. Fig. 5(a) shows the layout
of the 5 × 5 matrix, and Fig. 5(b) shows the optimal solution of this layout. The result also confirms that the UOF can
solve the discrete combinational optimization problem.

4.2. The device reverse modeling problem

TCAD simulation is widely used for the analysis of semiconductor devices [9,16,17,20,23,28]. Discovering the
associated optimal configurations for a set of I–V curves of a given device forms an inverse problem [1]. This problem
involves process and device simulations, and has sensitive parameters. Due to the above features, the problem currently
plays an important role in technology development, as well as the performance diagnosis of nanoscale CMOS devices.
As discussed in Section 3.1, the GetResult function needs to be defined in the TCADProblem class in order to generate
input file for the TCAD simulator, and receive results after the simulation. The following shows the pseudocode to
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Fig. 5. (a) A layout of the examination case of the TSP and (b) the optimal solutions for this layout.

invoke the external simulators, which can be used to generate a TCAD problem in the UOF.

This TCAD problem encodes the parameters as a real number string for evolution, and adopts the GA method for
optimization. The simulator outputs a set of drain current for each candidate, and obtains the score of each candidate
by measuring the error between the measured drain current and the simulated ones. The reverse modeling problem of
sub-65 nm N- and P-MOSFET [9,16,17,20,23] is described here. The inset of Fig. 6 shows a 2D cross-section view
of the simulated 65 nm MOSFET with an LDD doping profile. Fig. 6 shows the target I–V curves to be optimized,
and several most concerned physical quantities empirically. Fig. 7 displays the extracted curves for both N- and P-
MOSFETs under various device and process configurations. The result confirms the robustness of UOF for this reverse
modeling problem.

4.3. The low-noise amplifier optimization

In this experiment, UOF was adopted the hybrid optimization method for the LNA IC design [6,30]. First, the GA
searches the entire problem space. The candidates that GA searched are passed to the circuit simulator to retrieve
the results of circuit simulation during this period. According to the specified desired targets of S11, S12, S21, S22,
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Fig. 6. An illustration of the target I–V curves to be extracted and empirical knowledge. The important sections are pointed out in circles. The inset
plot is a cross-section view of the simulated MOSFET with LDD doping profile.

Fig. 7. The achieved accuracy of the extracted I–V curves for N- and P-MOSFETs, where gate length L = 65 nm and device width W = 1 �m.

Fig. 8. The explored LNA circuit in our experiment.
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K factor, the noise figure, and the input third-order intercept point, the simulated results are then passed to the
evaluation to measure the fitness score. The score is evaluated for the global optimization of GA. The LM method
then simultaneously makes local searches after obtaining an approximate solution, and sets the local optimum as the
initial values for the GA to perform further optimization. The pseudocode for the LNA problem is given below.

The LNA IC studied herein, which is shown in Fig. 8, focuses on the working frequencies ranging from 2.11 to 2.17
GHz. The LNA circuit has two cascaded transistors. In this investigation, the compact model BSIM 3v3 was adopted
for the 0.18 �m MOSFETs. More than 15 parameters need to be extracted in the designed 0.18 �m MOSFET LNA IC.
The stopping criterion of the optimization is the minimization of errors between the extracted outputs and the specified
target. Table 2 shows the optimized parameters of the investigated experiment. Table 3 shows the specified targets and
extracted results are listed in the demonstrating that the extracted parameters can satisfy all the specified targets.

4.4. The static random access memory optimization

Considering the static noise margin (SNM) of six- and four-transistors (6T and 4T) SRAM cells with 65 nm CMOS
devices [21,27], the device’s channel length and supply voltage were also successfully tuned to meet the specified
target of SNM. Fig. 9 shows the explored 4T and 6T SRAM cells. The circuit of 6T SRAM is a flip-flop comprising

Table 2
A list of the range of designing parameters and the optimized parameters for the LNA circuit

Element Unit Range Result

Cmatch1 F 300–800 657.738f
Cmatch2 F 1–10 4.505p
Cmatch3 F 1–10 4.951p
Lbond H 1–10 1.058n
Ldeg H 0.1–5 1.155n
Lmatch1 H 1–10 5.257n
VB1 V 0.5–1.5 0.69V
VB2 V 0.5–5 1.96V
L H 0.13–0.3 0.25u
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Table 3
A list of the specified targets and the extracted results for the LNA circuit

Specification Target Result

S11 (dB) < −10 −35.1
S22 (dB) < −10 −19.1
S12 (dB) < −25 −38.3
S21 (dB) As large as possible 11.3
K > 1 11.1
NF < 2 1.17
IIP3 > −10 0.3

two cross-coupled inverters and two access transistors, M3 and M6. The flip-flop consists of two load elements (M5,
M4), called pull-up (load) transistors and two storage elements (M2, M1), called pull-down (driver) transistors. Data
are stored as voltage levels with the two sides of the flip-flop in opposite voltage configurations. Pseudocode for the
SRAMEval and GetResult functions in SRAMProblem are given below.

Fig. 9. The explored (a) 4T and (b) 6T SRAM cells.
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In this experiment, the targets of SNM was set as 190 and 173 mV for the 4T and 6T SRAM cells, respec-
tively. The SNM is the minimum DC-voltage disturbance necessary to upset the state of the SRAM cell. It is
quantified by the length of the side of the largest square that can fit inside the butterfly curves formed by the cross-
coupled inverters. The cell stability is based on the ability of the cell to resist accidental overwrites during different
operating conditions in the presence of electrical noise and process variations. The factors that influence the cell
stability include the device size, supply voltage and temperature. In this work, the device’s channel length and sup-
ply voltage were adjusted to fit our targets. Table 4 summarizes the range of the circuit parameters and extracted
results.

4.5. The antenna design problem

In this experiment, the antenna design problem was studied. The major drawback of this problem is that the
geometry of the antenna affect the performance is well-known; however, the effect of the shape on performance
is unclear. Fine-tuning the shape of an antenna designer involves much guesswork. Based on our experience and
technique of optical proximity correction [32], this method appends or subtracts several small rectangles along the
edges of the antenna to improve the return loss. The applied simulator solves the Maxwell equation, which is an
important electromagnetic issue. The following is the pseudocode for the antenna problem.
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Table 4
A list of the range of designing parameters and the optimized parameters for the 4T and 6T SRAM cells

Factors (parameters) Range Result (6T) Result (4T)

L1: channel length of transistor M1 (nm) 60–70 68.3 67.8
L2: channel length of transistor M2 (nm) 60–70 62.2 65.9
L3: channel length for other transistors (nm) 60–70 69.1 63.2
Vdd: supply voltage (V) 1.08–1.38 1.35 1.22

Fig. 10. (a) The original geometry and (b) the optimized geometry of examined antenna.

The parameters of this antenna design problem are the shift offsets of segments shown in Fig. 10 a, encoded as
a real number string for evolution. Each segment from 1 to 15 can shift inward or outward within a specified range,
while the value of parameter 16–20 indicates the thickness of the top line. The simulator outputs a return loss curve,
and the score of each candidate is obtained by measuring the distance between the theoretical and the simulated curves
within the working frequency. Figs. 10 a and 11 a presents the original shape of the examined antenna and the return
loss. The working frequencies were set to 2.6 and 5 GHz. The frequency 2.6 GHz is the “S-band” used for mobile
broadcasting, and the frequency 5 GHz is used by the 802.11a WLAN protocol. Fig. 10 b shows the optimized shape,
and Fig. 11 b illustrates the corresponding result. The return losses at 2.6 and 5 GHz in Fig. 11 a are both lowered to
20dB. This finding indicates that this antenna easily fits the target.

Fig. 11. The return loss (S11) of (a) the original geometry and (b) the optimized geometry.
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5. Conclusions

This work presents a proposal of an object-oriented UOF for general problem optimization. The UOF is based
on biological inspired techniques, numerical deterministic methods and C++ objective design, and has significant
potential to perform optimization operations on various problems. The UOF bridges the gap between problems and
solvers. This work successfully customizes UOF to deal with the following electronic applications: the TCAD reverse
modeling problem; antenna shape optimization, and the specifications of LNA and SRAM circuits. Experimental results
confirm capability of the proposed UOF. We believe that the proposed UOF benefit electronic design automation, and
significantly help for engineers to complete their optimization jobs. The developed open-source project is available in
the public domain (http://140.113.87.143/ymlab/uof/ and http://sourceforge.net/projects/uof/).
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