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Robot Motion Command Simplification and Scaling
Kuu-Young Young and Shi-Huei Liu

Abstract—It has been observed that human limb motions are
not very accurate, leading to the hypothesis that the human motor
control system may have simplified motion commands at the ex-
pense of motion accuracy. Inspired by this hypothesis, we propose
learning schemes that trade motion accuracy for motion command
simplification. When the original complex motion commands
capable of tracking motion accurately are reduced to simple
forms, the simplified motion commands can then be stored and
manipulated by using learning mechanisms with simple structures
and scanty memory resources, and they can be executed quickly
and smoothly. This paper also proposes learning schemes that
can perform motion command scaling, so that simplified motion
commands can be provided for a number of similar motions of
different movement distances and velocities without recalculating
system dynamics. Simulations based on human motions are re-
ported that demonstrate the effectiveness of the proposed learning
schemes in implementing this accuracy–simplification tradeoff.

Index Terms—Accuracy–simplification tradeoff, command sim-
plification and scaling, robot learning control.

I. INTRODUCTION

WHEN bringing robots from factories into the human
world and letting them perform tasks involving

human–robot interactions, it is quite natural to introduce human
motor control strategies into robot control. The human motor
control system has demonstrated several appealing features and
has stimulated research into human limb motions and control
strategies [4], [5], [7], [9], [18], [22]. Among the features of
human motor control, effectiveness in accommodating a wide
variety of motions is of great research interest; by contrast,
robot learning schemes usually have difficulties in facing too
large a learning space for many practical applications [17], [20],
[23], [26]. Because human beings are not very accurate in their
movements, one hypothesis posits that the human motor control
system may have the learning space simplified at the expense of
accuracy in movement [24]. Meanwhile, when dealing with a
group of similar motions, the human motor control system may
also have executed motion command scaling, by which motion
commands can be generated by scaling commands derived for
some motions selected from a group rather than by repeatedly
performing the learning process for each individual motion.

Even though there is still some doubt as to whether the
human motor control system actually performs this tradeoff,
the hypothesis is supported by evidence in human motor
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control studies such as the speed–accuracy tradeoff in human
movements, the simplification hypothesis that the mechanism
supporting a skill becomes progressively simpler with practice,
etc. [3], [18]. In daily life, the process of how humans learn to
generate signatures demonstrates the tradeoff between motion
accuracy and command simplification. Signature generation in-
volves fast handwriting with little demand for motion accuracy,
yet handwriting is a skilled human action acquired via practice
[16]. Because humans learn how to sign their names after
they learn how to write, in the second learning process, they
somehow learn to trade motion accuracy for motion speed and
command simplicity, given that signatures are simplified forms
of original handwriting. Likewise, an orchestra conductor using
the same gestures with different sizes and speeds to control the
tempo is a good example of motion command scaling execution
in the human motor control system.

Motivated by this accuracy–simplification hypothesis, this
study concentrates on how the tradeoff can be realized by using
learning mechanisms and what benefits it may bring for robot
learning control. This paper proposes learning schemes for
motion command simplification based on the equilibrium-point
hypothesis, discussed in Section II [5], [18]. By applying the
proposed learning schemes, adjusted according to the degree
of accuracy given up, motion governing can be transitioned
from accurate motion tracking toward point-to-point motion
regulation. Correspondingly, the original complex motion com-
mands capable of tracking motion accurately are simplified.
With motion commands in simple forms, learning controllers
can then be designed that do not consume excessive memory
resources [24]. In addition, simplified motion commands also
lead to faster and simpler command execution and smooth mo-
tion control with fewer oscillations. We also propose learning
schemes to trade motion accuracy for simplified motion com-
mands that generate motions similar to the original motion, but
different in movement distance and velocity. In other words,
by performing motion command simplification and scaling
simultaneously, the proposed learning schemes are able to
achieve motion command scaling without recalculating system
dynamics [8]. The rest of this paper is organized as follows. In
Section II, biological backgrounds related to the human motor
control system and equilibrium-point hypothesis are described.
Section III proposes a learning scheme for accurate motion
tracking. The proposed learning schemes for motion command
simplification and scaling are introduced in Section IV; dis-
cussion about how the structure of the learning controller can
be simplified according to command simplification is there as
well. In Section V, simulation results and analyses based on
using robot manipulators to generate human signatures and
imitate orchestra conducting are reported. Conclusions are
given in Section VI.
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Fig. 1. Simplified block diagram of the human motor control system.

II. HUMAN MOTOR CONTROL SYSTEM AND

EQUILIBRIUM -POINT HYPOTHESIS

Fig. 1 shows a simplified block diagram of the human motor
control system that governs limb motion. In Fig. 1, we can
see that human motion is governed by a hierarchical structure
[9], [10], [18]. In response to various demands, the central
nervous system (CNS) makes motion plans. Appropriate motor
commands are then generated and sent to the peripheral neu-
romotor system, which may then modify the motor commands
according to sensory feedback. The peripheral neuromotor
system behaves as a local controller that adapts to different
motions, loads, and environments, in addition to accepting
commands from the CNS. Finally, the modified commands
are sent to the muscular–skeletal system for motion execution.
With this hierarchical structure, the difficulty of performing
complex motions can be shared by the CNS at the higher level
and the local controller at the lower.

Among those hypotheses for human motion control, the equi-
librium-point hypothesis suggests that the CNS specifies equi-
librium points between agonist and antagonist muscle groups
that correctly position limbs in relation to the target by indi-
cating new sets of length–tension curves for the muscle groups
[4], [9], [18]. In other words, motions are treated as transitions
between postures. The CNS needs only to select new levels for
the motor commands. The subsequent result, mediated by auto-
genetic reflexes and the mechanical properties of the muscles,
should be a smooth transition from one posture to another. The
simple control-signal format makes the equilibrium-point hy-
pothesis very attractive for robot motion control, although there
are still some debates about this hypothesis. However, since only
one equilibrium point is selected, a control strategy based on this
hypothesis would not let one even vary the motion speed be-
tween two given postures. To exploit the simplicity of the equi-
librium-point hypothesis and let it deal with different velocities
and loads in reaching various positions, motor commands may
consist of a number of equilibrium points. Thus, slow motions
can be produced by progressive shifts of equilibrium points.
Motions can be speeded up by assigning an initial shift that is
larger than necessary, followed by a return to a proper static level
[9]. In light of both physiological and engineering considera-
tions, the number of equilibrium points in the motor command
should be kept fairly small [7], [12], [22].

The proposed learning schemes for motion command sim-
plification and scaling were developed according to the equi-
librium-point hypothesis. By applying the proposed learning
schemes, the original complex motion commands for motion

governance can be simplified into series of equilibrium points
in the form of square pulses of various heights and widths [12],
[22], [24]. With the controlled parameters in the motion com-
mand being the heights and widths of the square pulses, the
learning space for dealing with variations exhibited by different
motions is greatly reduced. In the authors’ previous paper [24],
we demonstrated how to implement a fuzzy system with a rea-
sonable number of rules to store and manage the heights and
widths of the square pulses of the simplified equilbrium point
trajectories, derived for governing a group of robot motions.
This motion command simplification is, however, achieved by
sacrificing motion accuracy, because continuous control signals
suitable for accurate tracking are approximated by signals con-
sisting of square pulses. Note that the controlled parameter in
the equilibrium-point hypothesis is muscle compliance instead
of the equilibrium point used in the proposed schemes. Our pur-
pose is not to propose a new biological hypothesis, but rather to
develop control strategies for robot motion control inspired by
the human motor control system.

III. L EARNING SCHEME FORACCURATEMOTION TRACKING

Before the proposed learning schemes for motion command
simplification and scaling can be used to derive simplified
motion commands for robot motions, motion commands ca-
pable of accurate motion tracking must be provided. Therefore,
we propose a learning scheme for accurate motion tracking
based on using robot manipulators, as shown in Fig. 2 [25].
This scheme basically emulates the simplified structure of the
human motor control system shown in Fig. 1: the fuzzy neural
network (FNN) acting as the CNS of the human motor control
system and the local controller as the peripheral neuromotor
system. The scheme is used to derive the accurate robot motion
trajectory and the corresponding continuous complex motion
commands for tracking the human motions studied in this
paper. The derived motion trajectory and commands are then
used for the study on the tradeoff between motion accuracy and
command simplification.

In Fig. 2, input desired motions, such as human signature
trajectories, are first transformed into Cartesian trajectories

in the robot workspace via a trajectory mapping
process. The Cartesian trajectory is further
mapped into a joint trajectory via an inverse-kine-
matic transformation. According to the joint trajectory

, the FNN generates motion commands
for trajectory tracking. Note that motion commands generated
by the FNN consist of equilibrium points in continuous forms.
In turn, the local controller modulates the motion commands
via sensory feedback and uses the resultant torqueto move
the robot manipulator. According to some biological evidence,
the CNS may provide only the desired equilibrium points for
motion control [18]. Therefore, to simplify the design of the
scheme, only the desired equilibrium points and no desired
velocities are specified in the motion commands. A simple
position control law with linear damping is then used for the
local controller [21]:

(1)
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Fig. 2. Learning scheme for accurate motion tracking.

Fig. 3. Structure of the FNN.

where stands for the equilibrium point vector, and
are the actual position and velocity vectors obtained via sensory
feedback, and and are symmetric positive definite ma-
trices for stability considerations [19].

The FNN for motion command generation is basically a fuzzy
system implemented in the form of a neural network, as shown
in Fig. 3 [1], [14]. The representation of a fuzzy system using
a fuzzy neural network lets one take advantage of the learning
ability of the neural network for automatic tuning of the param-
eters in the fuzzy system. The fuzzy reasoning parameters are
thus expressed in the connection weights or node functions of
the neural network. One major reason for adopting the FNN is
that we also intended to investigate how the learning mechanism

as a command generator can be simplified according to motion
trajectory and command simplification. The simplification in a
fuzzy system can be easily analyzed from its rule number and
distribution [2], [13], [27]. In the proposed scheme, we chose
an FNN with a structure similar to that in [1]; of course, other
types of FNN can also be used. As Fig. 3 shows, the inputs to the
FNN are the joint position and velocity trajectories of the input
motions, , and the outputs are the equilibrium point
trajectories .

It was assumed that stability and convergence of the FNN
in learning to track continuous trajectories are guaranteed, and
these issues are well dealt with in previous studies [1], [14]. Our
previous results have demonstrated that the FNN is capable of
governing continuous robot trajectories [26], and the results in
this paper also show that the motions generated by the proposed
scheme approximated the originals quite well. For the motions
of signature generation and orchestra conducting studied in this
paper, the FNN with a simple structure, described in Section V,
is capable of motion governing. Thus, we did not apply sophis-
ticated techniques to design the FNN. Nevertheless, for more
complicated human motions, we suggest using FNNs with vari-
able structures and applying the structure-parameter learning
technique, for instance, that in [14], so that the FNNs can learn
to govern human motions in a more flexible and effective way.
Detailed discussions of the structure and learning process of this
FNN are in Appendix A.

IV. L EARNING SCHEMES FORMOTION COMMAND

SIMPLIFICATION AND SCALING

Fig. 4 shows the block diagram of the proposed learning
scheme for motion command simplification and Fig. 5 that
for motion command scaling. A progressive simplification
process based on system performance is employed for motion
command simplification, discussed in Section IV-A. Motion
command scaling is used to generate motion commands for mo-
tions similar to the original motion, but different in movement
distance and velocity, discussed in Section IV-B. The proposed
learning schemes will simplify the continuous equilibrium
point trajectories derived by the learning scheme for accurate
motion tracking in Section III into trajectories consisting of a
series of square pulses of various heights and widths. During
this simplification process, the proposed learning schemes
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Fig. 4. Learning scheme for motion command simplification.

(a)

(b)

Fig. 5. Learning scheme for motion command scaling. (a) Size scaling. (b)
Speed scaling.

gradually give up accuracy in approximating the motion trajec-
tory, and the fundamental feature of the motion becomes more
and more evident in the resulting trajectory. With motion com-
mands in simple forms and motion trajectories in basic shapes,

robot learning control can then be enhanced in both controller
design and motion command execution. Finally, Section IV-C
discusses how the FNN structure may be simplified according
to motion trajectory and command simplification.

A. Motion Command Simplification

In the proposed learning scheme for motion command
simplification, the tradeoff between motion accuracy and com-
mand simplification is achieved via a simplification process
involving the error accumulator, the decision maker, and the
updating gate, as shown in the blocks surrounded by the dotted
lines in Fig. 4. The FNN used in this scheme is the same as
that used in the learning scheme for accurate motion tracking
in Section III with the learning process for accurate motion
tracking completed. Therefore, before the simplification
process is executed, the input joint trajectory will
elicit from the FNN continuous equilibrium point trajectories

able to track the motion accurately. In the simplification
process, an error bound (EB) is first set in the decision maker.
This error bound indicates the amount of accuracy to be traded
for command simplification for a portion of the motion. When
the cumulative error, i.e., the errors accumulated in tracking
a portion of the motion, does not exceed the error bound, the
updating gate is closed, letting the motion command remain at
a fixed value during that period; otherwise, the updating gate is
opened, and the motion command becomes the current value
of . Consequently, the resulting simplified equilibrium
point trajectories will be in the form of a series of square
pulses. This design causes the tradeoff to be performed in each
local portion, leading to a more homogeneous tradeoff over the
entire trajectory. The design can find its analogy in nonuniform
sampling for image compression, in which fine sampling is
applied to the neighborhood of sharp gray-level transitions in
an image, and coarse sampling utilized in relatively smooth
regions [6], [11], [15].

The number of square pulses in after command sim-
plification depends on the value of the error bound: when the
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error bound is large (small), will have a small (large)
number of square pulses. The Cartesian position error was used
for the error bound because it relates to the Cartesian motion tra-
jectory directly. The error bound was set to a small value at the
beginning of the simplification process and increased gradually.
Intuition suggests that the final value of the error bound can be
determined according to the preset similarity criterion between
the original and the simplified motion trajectories. However, the
resemblance between these two is quite subjective and qualita-
tive. In order to quantitatively describe the similarity between
them, the concept of similarity bounding is proposed. The sim-
ilarity bound is defined as several times the total Cartesian
error between the input motion after trajectory mapping in
the learning scheme for accurate motion tracking (see Fig. 2),

, and the motion after learning, :

(2)

where is an empirical value, standing for the degree of
similarity and referred to as a similarity index. A proper selec-
tion of should make the original motion still recognizable from
the simplified motion. The total Cartesian error can be com-
puted using

(3)

where and are the coordinates of the sam-
ples of and , respectively, and is the number of
samples. Equation (3) can be applied to both two- and three-di-
mensional trajectories by ignoring or including the errors in the

direction.
Based on the discussions above, the command simplification

process in the proposed learning scheme will begin with a small
initial error bound. The Cartesian position error will be eval-
uated at each sampling time. Only when the cumulative error
exceeds the error bound, the updating gate is opened and the
current value of inputted as the new motion command.
After motion command simplification for the entire motion has
been completed, the total Cartesian errorbetween and
the simplified motion is computed. When is smaller
than the similarity bound , the error bound will be increased
and the command simplification process resumes. The simplifi-
cation process will proceed until is greater than . To sum-
marize, the algorithm for motion command simplification is as
follows.

1) Algorithm for Motion Command Simplifica-
tion: Simplify continuous equilibrium point trajectories

into trajectories consisting of a series of square pulses
using prespecified degrees of similarity between

originals and derived trajectories.

Step 1) Input and .
Step 2) Compute the total Cartesian errorbetween

and . Determine the similarity bound by
selecting an empirical similarity index.

Step 3) Initialize the error bound with a small value.

Step 4) Perform motion command simplification and eval-
uate the Cartesian position error between the current
Cartesian position and the reference Cartesian posi-
tion corresponding to at each sampling time.
When the cumulative error exceeds the error bound,
open the updating gate and take the current value of

as the new motion command.
Step 5) Compute the total Cartesian errorbetween

and after motion command simplification for
the entire motion has been completed.

Step 6) Check whether is smaller than ; if yes, increase
error bound and go toStep 4; otherwise, the simpli-
fication process is completed and output the simpli-
fied equilibrium point trajectory as a series
of square pulses.

B. Motion Command Scaling

The proposed learning scheme for motion command scaling
is used to generate motions that are different from the orig-
inal motion in movement distance and velocity. Fig. 5 shows
the block diagram for the proposed scheme, including the size
scaling and speed scaling. This scheme is basically the same as
that for motion command simplification in Section IV-A, ex-
cept that, for motion command scaling, error evaluation exe-
cuted by the error accumulator and decision maker is based on
scaled reference trajectories. In other words, in the new error
evaluation process, the trajectories generated by the scheme are
compared with the reference trajectories after scaling, simpli-
fying and scaling simultaneously. The error bound may
need to be increased (decreased) according to different size and
speed requirements. In Fig. 5(a), to generate motions of different
movement distances with the same movement velocity, the joint
position trajectory corresponding to the input position tra-
jectory is scaled to be corresponding to the scaled
position trajectory by varying the sampling time, as fol-
lows:

(4)

(5)

where is a scaling constant and the initial joint position
of . When , it is amplification, and vice versa. In
Fig. 5(b), to generate motions of the same movement distance
with different velocities, the joint velocity trajectory cor-
responding to the input velocity trajectory is scaled to be

by varying the sampling time, as follows:

(6)

(7)

When , it is a speedup, and vice versa.

C. FNN Structure Simplification

When motion trajectories and commands are transformed
into simple forms by applying the proposed learning schemes,
it is of interest whether the corresponding FNN structures may
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Fig. 6. Block diagram for FNN rule similarity measurement and combination.

also be simplified. Thus, after the simplified motion trajecto-
ries were obtained, we trained another FNN to govern these
simplified trajectories, and examined whether the rules in the
FNNs would become similar. If so, the similar fuzzy rules can
then be combined, leading to simplified FNN structures. Fig. 6
shows the block diagram for FNN rule similarity measurement
and combination for the two FNNs governing the original
and simplified motion trajectories. In Fig. 6, an FNN, FNN1,
is first trained to govern an input motion with
motion commands . The motion commands are
simplified to be by applying the algorithm for motion
command simplification in Section IV-A, and will gen-
erate a simplified motion . Another FNN, FNN2,
is then trained to govern with motion commands

. Note that, although motion commands are ob-
tained through the learning for governing
will generate a new simplified motion instead
of . This is because motion commands
are in the form of a series of square pulses, while are
in continuous forms. Finally, we evaluated the similarity of
the fuzzy rule sets in these two FNNs that govern motions

and performed rule combination
when the similarity between rules was above a given threshold,
and analyzed whether simplified motion trajectories would
correspond to simplified FNN structures. Detailed discussions
on how to perform the FNN rule similarity measurement and
combination can be found in Appendix B [2], [13], [27].

Another issue of interest is whether, when the fundamental
feature of the motion becomes evident in the resulting trajectory
via simplification, the corresponding FNN rule distribution will
also possess a similar characteristic. Simulations have been per-
formed to investigate the relationship between simplified mo-
tion trajectories, motion commands, and FNN rule distributions,
as described in the next section.

V. SIMULATION RESULTS AND ANALYSES

To demonstrate the effectiveness of the proposed motion
command simplification and scaling schemes, they were
applied to generate human signatures and imitate orchestra
conducting for the two-joint planar robot manipulator, shown
in Fig. 7. Three adult subjects were asked to provide motion
samples. They practiced writing on the digital tablet for a while,
and their samples were recorded after they were confident with

Fig. 7. Two-joint planar robot manipulator.

using the digital tablet. The subjects were told to move quickly
to generate more natural motions, and to select satisfactory
samples from what they generated, according to their own
standards. The selected samples were then mapped into Carte-
sian trajectories in the robot workspace using
the learning scheme for accurate motion tracking described
in Section III. Via a learning process, the equilibrium point
trajectories were derived, which in turn generated
trajectories approximating . The
two-joint planar robot manipulator was used to simulate the
hand and pen system, and its dynamic equations are expressed
as

(8)

where

(9)

(10)

(11)

(12)

(13)

with and standing for the torques, and the joint vari-
ables, kg, kg, m, m,
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(a) (b)

(c) (d)

Fig. 8. Motion command simplification for the charactery. Cartesian position trajectories: (a) accurate motion tracking, (b) motion command simplification with
h = 2:5, (c) motion command simplification withh = 5, and (d) motion command simplification withh = 7:5.

m, m, and kgm . The ef-
fects of load and gravity were ignored in the formulation, and the
sampling time in the simulation was 2 ms. For all schemes, each
joint of the robot manipulator was equipped with an FNN and
a local controller. In each FNN, there were two nodes in Layer
1, eight nodes in Layer 2, 16 nodes each in Layers 3 and 4, and
one node in Layer 5. The local controller gains were selected to
ensure system stability and performance, and they varied along
with different motions.

Fig. 8(a)–(d) shows the resulting position trajectories for
an input handwritten charactery by applying the learning
scheme for Fig. 8(a), accurate motion tracking; Fig. 8(b)–(d),
motion command simplification with the empirical similarity
index and , respectively; and Fig. 8(e)–(h), the
corresponding motion commands. In Fig. 8(a), the original
input handwritteny trajectory used for reference is marked by
the solid line and the learned trajectory by the dashed line, and
in Fig. 8(b)–(d), the simplified trajectories are marked by the

solid line. In Fig. 8(e)–(h), the continuous for accurate
motion tracking were simplified to be , consisting of
a series of square pulses, and the number of square pulses
decreases along with the increase of the similarity index.
Correspondingly, motion trajectories in Fig. 8(b)–(d) devi-
ated from the original one gradually, while they were still
recognizable. We then applied the procedure for FNN rule
similarity measurement and combination, shown in Fig. 6,
to find whether the corresponding FNN structure might be
simplified for the simplified motion trajectory. As an example,
Fig. 9 shows the output membership functions in Layer 4 of
the FNN for governing the learned trajectory and the simplified
trajectory with in Fig. 8(c). The fuzzy rule numbers
reduced from eleven to five, and from 22 to five for joints
one and two, respectively, as the trajectory was simplified.
A more complicated sample, the nameLiu, was also studied.
Fig. 10(a)–(d) shows the resulting position trajectories forLiu
by applying the learning scheme for Fig. 10(a), accurate motion



462 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 32, NO. 4, AUGUST 2002

(e) (f)

(g) (h)

Fig. 8. (Continued.) Corresponding motion commands: (e) accurate motion tracking, (f) motion command simplification withh = 2:5, (g) motion command
simplification withh = 5, and (h) motion command simplification withh = 7:5.

tracking; Fig. 10(b)–(d), motion command simplification with
the empirical similarity index , and , respectively;
and Fig. 10(e)–(h), the corresponding motion commands. The
tracking errors forLiu were larger than those for the character
y and the shapes of the simplified square-pulse motion com-
mands varied more abruptly, as expected, while the simplified
trajectories forLiu were still recognizable. In this case, the FNN
structure corresponding to the simplified trajectories were also
simplified. From the results, the learning scheme for motion

command simplification can simplify motion commands to a
prespecified degree of similarity between originals and derived
trajectories, and the corresponding FNN structures can also be
simplified.

In the second set of case studies, we applied the proposed
learning schemes for imitating orchestra conducting. First, we
used this orchestra conducting imitation to study motion com-
mand scaling. Fig. 11 shows the generation of three-beat con-
ducting gestures under different size and velocity requirements
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(a) (b)

Fig. 9. Output membership functions in Layer 4 of the FNN for governing the learned and simplified trajectories ofy: (a) accurate motion tracking and (b) motion
command simplification withh = 5.

(a) (b)

(c) (d)

Fig. 10. Motion command simplification for the nameLiu. Cartesian position trajectories: (a) accurate motion tracking, (b) motion command simplification with
h = 2, (c) motion command simplification withh = 4, and (d) motion command simplification withh = 6.
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(e) (f)

(g) (h)

Fig. 10. (Continued.) Corresponding motion commands: (e) accurate motion tracking, (f) motion command simplification withh = 2, (g) motion command
simplification withh = 4, and (h) motion command simplification withh = 6.

and the corresponding motion commands. In Fig. 11(a), the
original conducting motion used for reference is marked by
the solid line and the learned motion by the dashed line.
Fig. 11(b) and (c) show both a larger gesture and a normal
gesture conducted more rapidly, marked by the solid line. The
reference motions for error evaluation during motion command
scaling were generated using (4)–(7), with the scaling constants

and for the larger and faster gestures,
respectively. Due to the increases in size and movement

velocity, the similarity indices were increased accordingly. In
Fig. 11(b) and (c), the continuous in Fig. 11(a) were
simplified and scaled into series of square-pulse trajectories. In
Fig. 11(b), the simplified motion command trajectory is longer
than the original one for generating a larger movement with
the same movement velocity, while in Fig. 11(c), it is shorter
for generating the same movement with a larger movement
velocity. Both the larger and faster gestures were generated
with errors within the similarity bounds, demonstrating the
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(a)

(b)

(c)

Fig. 11. Generation of three-beat conducting gestures under different size and velocity requirements and the corresponding motion commands. (a) Reference
gesture. (b) Larger gesture. (c) Faster gesture.

feasibility of the proposed motion command scaling scheme.
The relationship between simplified motion trajectories, motion

commands, and FNN rule distributions was then studied by ap-
plying the fuzzy rule similarity measurement and combination
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(a) (b)

(c)

Fig. 12. (a) Learned accurate and simplified trajectories of the three-beat conducting gesture(h = 6). (b) Corresponding motion commands. (c) Corresponding
output membership functions in Layer 4 of the FNN.

on the governing FNNs for the original and simplified
conducting motion trajectories. Fig. 12(a) shows the learned
accurate and learned simplified trajectories of the three-beat
conducting gesture, marked by the dashed and solid lines,
respectively, Fig. 12(b), the corresponding motion commands,
and Fig. 12(c), the corresponding output membership functions

in Layer 4 of the FNN after rule similarity measurement and
combination. In Fig. 12, the fundamental feature of the motion
trajectory is its three-beats, which is more evidently reflected
in the motion commands for the learned simplified trajectory,
and its corresponding FNN rule distribution also shows three
evident groupings (marked by dotted circles). The results
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(a) (b)

(c)

(d) (e)

Fig. 13. Similarity measure of two fuzzy sets,A andA . (a)A � A . (b)A andA have one intersection point. (c)A andA have two intersection points.
(d)A andA have three intersection points. (e)A \ A = ;.

implicate that simple, basic motion commands that capture
fundamental motion features may correspond to simple FNN
structure and rule distribution, while further investigation is
demanded for solid conclusions.

VI. CONCLUSION

This paper has developed learning schemes for robot mo-
tion command simplification and scaling. The proposed mo-
tion command simplification and scaling is taken as a second
learning process after accurate motion tracking has been accom-
plished. Thus, the proposed learning schemes provide effective
frameworks for achieving fast, simple control when a task does
not demand high accuracy, and to transition between motion
tracking and regulation according to the degree of motion accu-
racy given up. Simulation results based on using robot manipu-
lators to generate human signatures and imitate orchestra con-
ducting demonstrate the effectiveness of the proposed schemes.
The results also show that, when the fundamental feature of the

motion becomes evident in the resulting simplified trajectory,
the corresponding FNN rules may also be similarly distributed.
In our future work, we will perform further investigation on this
issue. Both two- and three-dimensional human motions will be
studied. In addition, we will also apply the proposed schemes
to analyze fundamental motion features from the standpoint of
learning, such that motions can be properly simplified, classi-
fied, and managed with learning mechanisms in simple struc-
tures.

APPENDIX A
DESCRIPTION OF THEFNN

The structure of the FNN used in the proposed schemes con-
sists of five layers of nodes, all of which are of the same types
within the same layer, as shown in Fig. 3. Each of the five layers
performs one stage of the fuzzy inference process, as described
below.
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(a) (b)

(c) (d)

Fig. 14. Combination of two fuzzy sets,A andA , with a high degree of similarity. (a)A � A . (b)A andA have one intersection point. (c)A andA
have two intersection points. (d)A andA have three intersection points.

Layer 1: The input layer transmits inputs directly to the next
layer without performing any computation. As Fig. 3 shows,
there are two nodes for two inputs,and , for motions with
a single degree of freedom.

Layer 2: The input membership function layer transforms
input data into fuzzy data. Each nodein this layer has the node
function

(A.1)

where is a membership function andis the
input to node . The triangular membership function adopted is

otherwise.

(A.2)

Different membership grades at the same crisp point can be ob-
tained by adjusting the parameter set .

Layer 3: The rule layer implements fuzzy rules. Each node in
this layer corresponds to a rule, defined as a fuzzy conditional
statement of the form

Rule IF is and is THEN is (A.3)

where and are fuzzy sets representing the inputs,rep-
resents the output, and and represent linguistic vari-
ables, such as small, medium, and large. The number of rules
involved in the input–output relationship is prespecified. In this
layer, each node also outputs the firing strength of the rule,,
by performing the differentiable softmin operation [1]

(A.4)

where is the output of the th node in Layer 2 connected to
the th node in Layer 3, and is a constant. Whenapproaches
infinity, the softmin operator becomes a min operator, for fi-
nite is differentiable, which is required during the learning
process.

Layer 4: This is the output membership function layer. Each
node in this layer performs an inversion of to locate the

coordinate of the centroid of the membership function,,
using the local mean-of-maximum method (LMOM) [1]

(A.5)

Layer 5: The output layer has as many nodes as there are
output action variables. Fig. 3 shows only one node is needed for
the single motion command . The defuzzification approach
adopted is the weighted averaging method:

(A.6)

Because the number of rules in Layer 3 is prespecified and
weights for the input and output layers (Layers 1 and 5) are
fixed, the parameters to be learned in this FNN are the modifi-
able weights present at the input links to Layers 2 and 4, which
correspond to the input and output membership functions. When
the FNN learns the input and output membership function pa-
rameters required to generate the motion commandcorre-
sponding to a sampled motion, an error rate, related to the mo-
tion command and the resultant motion, is initially speci-
fied in the last layer (Layer 5). This error rate is then back-prop-
agated to adjust the parameters from layer to layer sequentially.
Because a concise form of the inverse dynamic model of the
robot manipulator is not available, the error rate cannot be ob-
tained directly by differentiating the error between the desired
motion and the actual motion relative to the motion command.
Instead, we use the combined feedback error of positionand
velocity between the desired and actual motions, denoted as

, to derive the error rate [10]:

(A.7)

where is a learning rate and and are gains. The error
rate in (A.7) is estimated, but not exact, for de-
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scribing the differential relationship between the motion com-
mand and the resultant motion. Nevertheless, the results
in [10] and this study show that the use of this error rate is ap-
propriate for the learning. Using the error rate and
some straightforward manipulation, we were able to derive up-
dates for the parameters in Layers 2 and 4.

APPENDIX B
RULE SIMILARITY MEASUREMENT AND COMBINATION

FOR THEFNN

Basically, the concepts described in [2], [13], and [27] were
used to perform FNN rule similarity measurement and combi-
nation. After the FNN is trained to govern an input motion suc-
cessfully, the similarities between the membership functions in
the FNN are evaluated pair by pair. When there are similar mem-
bership functions, these indicate that some of the rules are un-
necessary and can be eliminated. Similarities between fuzzy sets
can be evaluated by comparing the areas covered by fuzzy sets
according to geometric points. The similarity measure between
two fuzzy sets, and , is thus defined as

(B.1)

where is the degree of similarity between and
and denote the intersection and union operators, respec-

tively; and is the size of a fuzzy set, i.e., the area it covers.
For the six cases of membership function overlapping between

and shown in Fig. 13, (B.1) is used for similarity mea-
surement [27]. Then, with a given thresholdbetween 0 and 1
and when , the two fuzzy sets and were
combined into a new fuzzy set by computing their geo-
metrical average. Fig. 14 shows the four cases of combination
of two fuzzy sets when and are highly similar.
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