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Robot Motion Command Simplification and Scaling

Kuu-Young Young and Shi-Huei Liu

Abstract—it has been observed that human limb motions are control studies such as the speed-accuracy tradeoff in human
not very accurate, leading to the hypothesis that the human motor movements, the simplification hypothesis that the mechanism
control system may have simplified motion commands at the ex- ¢,;,5nrting a skill becomes progressively simpler with practice,
pense of motion accuracy. Inspired by this hypothesis, we propose etc. [3], [18]. In daily life, the process of how humans lear to
learning schemes that trade motion accuracy for motion command s 2h S y e, p .
simplification. When the original complex motion commands generate signatures demonstrates the tradeoff between motion
capable of tracking motion accurately are reduced to simple accuracy and command simplification. Signature generation in-
forms, the simplified motion commands can then be stored and yolves fast handwriting with little demand for motion accuracy,
manipulated by using learning mechanisms with simple structures yet handwriting is a skilled human action acquired via practice

and scanty memory resources, and they can be executed quickly . .
and smoothly. This paper also proposes learning schemes that[lﬁ]' Because humans learn how to sign their names after

can perform motion command scaling, so that simplified motion they learn how to write, in the second learning process, they
commands can be provided for a number of similar motions of somehow learn to trade motion accuracy for motion speed and

different movement o!istanc_es and velocities without re_calculating command simplicity, given that signatures are simplified forms
system dynamics. Simulations based on human motions are re- 4t o rging| handwriting. Likewise, an orchestra conductor using
ported that demonstrate the effectiveness of the proposed learning the same gestures with different sizes and speeds to control the
schemes in implementing this accuracy-simplification tradeoff. X . > .
tempo is a good example of motion command scaling execution

in the human motor control system.

Motivated by this accuracy—simplification hypothesis, this
study concentrates on how the tradeoff can be realized by using
|. INTRODUCTION learning mechanisms and what benefits it may bring for robot

HEN bringing robots from factories into the humaAeaming control. This paper proposes learning schemes for
world and letting them perform tasks invoIvinngtion command simplification based on the equilibrium-point

human—robot interactions, it is quite natural to introduce hquprOtheS'S' dlsc_:ussed n Sect|or_1 Il [5], [18]. B_y applying the
motor control strategies into robot control. The human mot&roposed Iearmng scheme;, adJUSted. according to th? .degree
control system has demonstrated several appealing features%(nﬁccuracy given up, mougn governing can be t_ran3|t|qned
has stimulated research into human limb motions and contH)cfm agcurate motion 'tracklng toyvgrd pomt-to-pomt. motion
strategies [4], [5], [7], [9], [18], [22]. Among the features Oiregulatlon. Correspondln'gly, the prlgmal complex mot!on com-
human motor control, effectiveness in accommodating a wi ands capable of tracking motion accurately are simplified.

variety of motions is of great research interest; by contra ’|th motion commands in simple forms, learning controllers

robot learning schemes usually have difficulties in facing togf then be deS|gned.t.hat d_o no_t_consume Eexcessive memory
gsources [24]. In addition, simplified motion commands also

large a learning space for many practical applications [17], [2 3 .
[23], [26]. Because human beings are not very accurate in th(? ?d to faster gnd simpler c?om.mand execution and smooth'mo—
N control with fewer oscillations. We also propose learning

movements, one hypothesis posits that the human motor conH%

system may have the learning space simplified at the expensg%'i’egqeti tf[) trade rtnotlor:. accuraqu/ f(ir ?mehﬂgd Totlc;_n coLn -t
accuracy in movement [24]. Meanwhile, when dealing with ands that generate motions simiiar o the original motion, bu

group of similar motions, the human motor control system m ifferent in .movem(_ant distance anq vello.cny._ In other words,
also have executed motion command scaling, by which moti performing motion command simplification and scaling

commands can be generated by scaling commands derivedsff)'r?]yltaneout_sw’ the progoseoll_ Iear_Thng tscherlnels t_are ablte o
some motions selected from a group rather than by repeategi Ieve motion command scaling without recaiculating system

performing the learning process for each individual motion. namics [8]' Thg rest of this paper is organized as follows. In
Even though there is still some doubt as to whether t ction Il, biological backgrounds related to the human motor
ontrol system and equilibrium-point hypothesis are described.

human motor control system actually performs this tradeo . . .
ction Ill proposes a learning scheme for accurate motion

the hypothesis is supported by evidence in human mo . : :
yp PP y tracking. The proposed learning schemes for motion command
simplification and scaling are introduced in Section 1V, dis-
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pemang | G0 oo Peripheral || o fuseular | Moemes | 9OVEMNANCE can be simplified into series of equilibrium points
— TZI&‘LS > Neg‘“s’t‘:;“’r »  Siceletal » in the form of square pulses of various heights and widths [12],
((Y:NS) (Localséontroller) System [22], [24]. With the controlled parameters in the motion com-
A A mand being the heights and widths of the square pulses, the
: learning space for dealing with variations exhibited by different
Sensory feedback . . .
motions is greatly reduced. In the authors’ previous paper [24],
: : we demonstrated how to implement a fuzzy system with a rea-
SRR Performance feedback ..., ; sonable number of rules to store and manage the heights and
widths of the square pulses of the simplified equilbrium point
Fig. 1. Simplified block diagram of the human motor control system. trajectories, derived for governing a group of robot motions.

This motion command simplification is, however, achieved by
sacrificing motion accuracy, because continuous control signals
suitable for accurate tracking are approximated by signals con-
sisting of square pulses. Note that the controlled parameter in
Fig. 1 shows a simplified block diagram of the human motdhe equilibrium-point hypothesis is muscle compliance instead
control system that governs limb motion. In Fig. 1, we ca#f the equilibrium point used in the proposed schemes. Our pur-
see that human motion is governed by a hierarchical structi@@se is not to propose a new biological hypothesis, but rather to
[9], [10], [18]. In response to various demands, the centrévelop control strategies for robot motion control inspired by
nervous system (CNS) makes motion plans. Appropriate motbe human motor control system.
commands are then generated and sent to the peripheral neu-

romotor system, which may then modify the motor commandsjj, | aRNING SCHEME FORACCURATE MOTION TRACKING
according to sensory feedback. The peripheral neuromotor

system behaves as a local controller that adapts to differenBefore the proposed learning schemes for motion command
motions, loads, and environments, in addition to acceptié@“p“f'cat'on and scaling can be used to derive simplified
commands from the CNS. Finally, the modified commandgotion commands for robot motions, motion commands ca-
are sent to the muscular—skeletal system for motion executi@@ple of accurate motion tracking must be provided. Therefore,
With this hierarchical structure, the difficulty of performingV® Propose a learning scheme for accurate motion tracking
complex motions can be shared by the CNS at the higher lep@sed on using robot manipulators, as shown in Fig. 2 [25].
and the local controller at the lower. This scheme basically emulates the simplified structure of the
Among those hypotheses for human motion control, the eq@igman motor control system shown in Fig. 1: the fuzzy neural
librium-point hypothesis suggests that the CNS specifies eqlfWork (FNN) acting as the CNS of the human motor control

librium points between agonist and antagonist muscle group$teém and the local controller as the peripheral neuromotor
:system. The scheme is used to derive the accurate robot motion

that correctly position limbs in relation to the target by indi®= g ! X
cating new sets of length—tension curves for the muscle grodffctory and the corresponding continuous complex motion

[4], [9], [18]. In other words, motions are treated as transitiori@mmands for tracking the human motions studied in this
between postures. The CNS needs only to select new levelsRBPe": The derived motion trajectory and commands are then
the motor commands. The subsequent result, mediated by atg£d for the study on the tradeoff between motion accuracy and
genetic reflexes and the mechanical properties of the musclgdnmand simplification. _ .

should be a smooth transition from one posture to another. Thd" Fig- 2, input desired motions, such as human signature
simple control-signal format makes the equilibrium-point hylrajectories, are first transformed into Cartesian trajectories
pothesis very attractive for robot motion control, although thefd «(t); Ve(#)) in the robot workspace via a trajectory mapping
are still some debates about this hypothesis. However, since dii§cess: The Cartesian trajectoqy.(t), V.(?)) is further

one equilibrium pointis selected, a control strategy based on tRi&PPed into a joint trajectorty;.(#), ¢.(t)) via an inverse-kine-
hypothesis would not let one even vary the motion speed BB&UC .transformatlon. According to the joint trajectory
tween two given postures. To exploit the simplicity of the equi?-(t), d-(¥)), the FNN generates motion commaril®.(¢)
librium-point hypothesis and let it deal with different velocitied0r trajectory tracking. Note that motion commands generated
and loads in reaching various positions, motor commands the FNN consist of equilibrium points in con'qnuous forms.
consist of a number of equilibrium points. Thus, slow motion'é? turn, the local controller modulates the motion commands
can be produced by progressive shifts of equilibrium point4i@ sensory feedback and uses the resultant torgt)do move
Motions can be speeded up by assigning an initial shift thatt&€ roPot manipulator. According to some biological evidence,
larger than necessary, followed by a return to a proper static lefdf CNS may provide only the desired equilibrium points for
[9]. In light of both physiological and engineering considerdhotion control [18]. Therefore, to simplify the design of the

tions, the number of equilibrium points in the motor commangfne€me, only the desired equilibrium points and no desired
should be kept fairly small [7], [12], [22]. velocities are specified in the motion commands. A simple

ppsition control law with linear damping is then used for the

Il. HUMAN MOTOR CONTROL SYSTEM AND
EQUILIBRIUM -POINT HYPOTHESIS

The proposed learning schemes for motion command si
plification and scaling were developed according to the equfc@! controller [21]:
librium-point hypothesis. By applying the proposed learning
schemes, the original complex motion commands for motion 7= K,(EP, — q) — Ky Q)
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Fig. 2. Learning scheme for accurate motion tracking.

as a command generator can be simplified according to motion
trajectory and command simplification. The simplification in a
fuzzy system can be easily analyzed from its rule number and
- distribution [2], [13], [27]. In the proposed scheme, we chose
an FNN with a structure similar to that in [1]; of course, other
Defuzzification types of FNN can also be used. As Fig. 3 shows, the inputs to the
(Weighted g . . . . .
average) FNN are the joint position and velocity trajectories of the input
motions(q.(t), .(t)), and the outputs are the equilibrium point
- trajectoriesEP .(¢).
It was assumed that stability and convergence of the FNN
Local mean-of max 1N l€@rning to track continuous trajectories are guaranteed, and
operation these issues are well dealt with in previous studies [1], [14]. Our
previous results have demonstrated that the FNN is capable of
governing continuous robot trajectories [26], and the results in
this paper also show that the motions generated by the proposed
scheme approximated the originals quite well. For the motions
of signature generation and orchestra conducting studied in this
paper, the FNN with a simple structure, described in Section V,
- is capable of motion governing. Thus, we did not apply sophis-
m ticated techniques to design the FNN. Nevertheless, for more
complicated human motions, we suggest using FNNs with vari-
able structures and applying the structure-parameter learning
technique, for instance, that in [14], so that the FNNs can learn
to govern human motions in a more flexible and effective way.
Detailed discussions of the structure and learning process of this
FNN are in Appendix A.

Layer 4
(Output
membership
layer)

Softmin operation

(Input
membership
layer)

Fuzzification

Fig. 3. Structure of the FNN. IV. LEARNING SCHEMES FORMOTION COMMAND
SIMPLIFICATION AND SCALING

whereEP,. stands for the equilibrium point vectay; and ¢; Fig. 4 shows the block diagram of the proposed learning
are the actual position and velocity vectors obtained via sensagheme for motion command simplification and Fig. 5 that
feedback, and{, and K4 are symmetric positive definite ma-for motion command scaling. A progressive simplification
trices for stability considerations [19]. process based on system performance is employed for motion
The FNN for motion command generation is basically a fuzazyommand simplification, discussed in Section 1V-A. Motion
system implemented in the form of a neural network, as showommand scaling is used to generate motion commands for mo-
in Fig. 3 [1], [14]. The representation of a fuzzy system usinigons similar to the original motion, but different in movement
a fuzzy neural network lets one take advantage of the learnidigtance and velocity, discussed in Section I1V-B. The proposed
ability of the neural network for automatic tuning of the paramearning schemes will simplify the continuous equilibrium
eters in the fuzzy system. The fuzzy reasoning parameters point trajectories derived by the learning scheme for accurate
thus expressed in the connection weights or node functionsneftion tracking in Section Il into trajectories consisting of a
the neural network. One major reason for adopting the FNNsgsries of square pulses of various heights and widths. During
that we also intended to investigate how the learning mechanigims simplification process, the proposed learning schemes
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robot learning control can then be enhanced in both controller
design and motion command execution. Finally, Section IV-C
discusses how the FNN structure may be simplified according
to motion trajectory and command simplification.

A. Motion Command Simplification

In the proposed learning scheme for motion command
simplification, the tradeoff between motion accuracy and com-
mand simplification is achieved via a simplification process
involving the error accumulator, the decision maker, and the
updating gate, as shown in the blocks surrounded by the dotted
lines in Fig. 4. The FNN used in this scheme is the same as
that used in the learning scheme for accurate motion tracking
in Section Ill with the learning process for accurate motion
tracking completed. Therefore, before the simplification
process is executed, the input joint trajectoyy(t), g.(¢)) will
elicit from the FNN continuous equilibrium point trajectories
EP.(¢) able to track the motion accurately. In the simplification
process, an error bound (EB) is first set in the decision maker.
This error bound indicates the amount of accuracy to be traded
for command simplification for a portion of the motion. When
the cumulative error, i.e., the errors accumulated in tracking
a portion of the motion, does not exceed the error bound, the
updating gate is closed, letting the motion command remain at
a fixed value during that period; otherwise, the updating gate is
opened, and the motion command becomes the current value
of EP.(¢). Consequently, the resulting simplified equilibrium
point trajectorie& P, (¢) will be in the form of a series of square
pulses. This design causes the tradeoff to be performed in each
local portion, leading to a more homogeneous tradeoff over the
@htire trajectory. The design can find its analogy in nonuniform
sampling for image compression, in which fine sampling is
applied to the neighborhood of sharp gray-level transitions in

gradually give up accuracy in approximating the motion trajeen image, and coarse sampling utilized in relatively smooth
tory, and the fundamental feature of the motion becomes meggjions [6], [11], [15].

and more evident in the resulting trajectory. With motion com- The number of square pulseskP, (t) after command sim-
mands in simple forms and motion trajectories in basic shapgfication depends on the value of the error bound: when the
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error bound is large (smallEP.(¢) will have a small (large)  Step 4) Perform motion command simplification and eval-

number of square pulses. The Cartesian position error was used uate the Cartesian position error between the current
for the error bound because it relates to the Cartesian motion tra- Cartesian position and the reference Cartesian posi-
jectory directly. The error bound was set to a small value at the tion corresponding td.(t) at each sampling time.
beginning of the simplification process and increased gradually. When the cumulative error exceeds the error bound,
Intuition suggests that the final value of the error bound can be open the updating gate and take the current value of
determined according to the preset similarity criterion between EP.(t) as the new motion command.
the original and the simplified motion trajectories. However, the Step 5) Compute the total Cartesian erkbbetweenl.(t)
resemblance between these two is quite subjective and qualita- and P;(t) after motion command simplification for
tive. In order to quantitatively describe the similarity between the entire motion has been completed.
them, the concept of similarity bounding is proposed. The sim-Step 6) Check whethdt is smaller thar,; if yes, increase
ilarity bound £, is defined as several times the total Cartesian error bound and go t8tep 4 otherwise, the simpli-
error E. between the input motion after trajectory mapping in fication process is completed and output the simpli-
the learning scheme for accurate maotion tracking (see Fig. 2), fied equilibrium point trajectonfiP;(¢) as a series
P.(t), and the motion after learning (¢): of square pulses.

E, =hE, (2) B. Motion Command Scaling

) . ) The proposed learning scheme for motion command scaling
whereZ > 1 is an empirical value, standing for the degree q§ ysed to generate motions that are different from the orig-
similarity and referred to as a similarity index. A proper seleGna| motion in movement distance and velocity. Fig. 5 shows
tion qfh s.h.ould mgke the original motio'n still recognizable fromne plock diagram for the proposed scheme, including the size
the simplified motion. The total Cartesian ergr can be com- scaling and speed scaling. This scheme is basically the same as
puted using that for motion command simplification in Section IV-A, ex-
cept that, for motion command scaling, error evaluation exe-
cuted by the error accumulator and decision maker is based on
scaled reference trajectories. In other words, in the new error
evaluation process, the trajectories generated by the scheme are
compared with the reference trajectories after scaling, simpli-

. fying and scalindgP.(¢) simultaneously. The error bound may
where(ze, e, z.) and(z:, v, 2 ) are the coordinates of the sam-,. . 1 e increased (decreased) according to different size and
ples of P.(t) and P,(t), respectively, and: is the number of

. . speed requirements. In Fig. 5(a), to generate motions of different
samples. Equation (3) can be applied to both two- and three'ﬁfbvement distances with the same movement velocity, the joint
mensional trajectories by ignoring or including the errors in the

. . osition trajectory;.(¢) corresponding to the input position tra-
Z direction. P J Yie(t) p g put p

jectory P.(t) is scaled to bg.(r) corresponding to the scaled

Based on the discussions above, the command simplificatf . ! . . = i
process in the proposed learning scheme will begin with a smS S|t-|on trajectory.(r) by varying the sampling time, as fol

initial error bound. The Cartesian position error will be eval-

uated at each sampling time. Only when the cumulative error i
exceeds the error bound, the updating gate is opened and the !
current value oEP . (¢) inputted as the new motion command. qe(r)
After motion command simplification for the entire motion has

been completed, the total Cartesian eobetween?,(t) and wherec; is a scaling constant ang, the initial joint position

the simplified motionP,(¢) is computed. WheiE is smaller Of a.(t). Whenc; > 1, it is amplification, and vice versa. In
than the similarity bounds,, the error bound will be increasedFig9. 5(b), to generate motions of the same movement distance
and the command simplification process resumes. The simplMith different velocities, the joint velocity trajectory.(¢) cor-
cation process will proceed untl is greater thar&,. To sum- responding to the input velocity trajecto¥(t) is scaled to be
marize, the algorithm for motion command simplification is ag.(r) by varying the sampling time, as follows:

follows.

E.= ;[(wc(i) — 24(8))? + (ye(3) — y:(4))?

+(ze(D) = (D)7 (3)

ut @
(1—c1)-qeo+c1-qe(t) (5)

1) Algorithm for Motion Command  Simplifica- T = cat (6)
tion: Simplify continuous equilibrium point trajectories s Ge(t) 7
EP.(#) into trajectories consisting of a series of square pulses 4e(r) = co )
EP.(t) using prespecified degrees of similarity between o .
originals and derived trajectories. Whenc, <1, itis a speedup, and vice versa.

Step 1) InputP.(¢) and P.(¢). S
Step 2) Compute the total Cartesian etEbrbetween?,(t) - FNN Structure Simplification
and P;(t). Determine the similarity bound’; by When motion trajectories and commands are transformed
selecting an empirical similarity index into simple forms by applying the proposed learning schemes,
Step 3) Initialize the error bound with a small value. it is of interest whether the corresponding FNN structures may
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Fig. 6. Block diagram for FNN rule similarity measurement and combination.

also be simplified. Thus, after the simplified motion trajecto-
ries were obtained, we trained another FNN to govern thes
simplified trajectories, and examined whether the rules in th
FNNs would become similar. If so, the similar fuzzy rules can
then be combined, leading to simplified FNN structures. Fig. ¢
shows the block diagram for FNN rule similarity measuremen
and combination for the two FNNs governing the original
and simplified motion trajectories. In Fig. 6, an FNN, FNN1,
is first trained to govern an input motiofy.(¢), ¢.(t)) with 4
motion command&P.(t). The motion commandBP.(¢) are
simplified to beEP,(¢) by applying the algorithm for motion
command simplification in Section IV-A, ariilP, (¢) will gen- ~J
erate a simplified motionig, (%), ¢-(¢)). Another FNN, FNN2,
is then trained to gover(y(t), ¢s(¢t)) with motion commands
EP;(t). Note that, although motion commant®;(t) are ob-
tained through the learning for governifg (), ¢;()), EP,(t) Fi9- 7- Two-joint planar robot manipulator.
will generate a new simplified motiofig;(¢), ¢:(t)) instead
of (g.(t),4.(t)). This is because motion commanH#®,(¢) Using the digital tablet. The subjects were told to move quickly
are in the form of a series of square pulses, whil(t) are 0 generate more natural motions, and to select satisfactory
in continuous forms. Finally, we evaluated the similarity ofamples from what they generated, according to their own
the fuzzy rule sets in these two FNNs that govern motiorgéandards. The selected samples were then mapped into Carte-
(g:(),4e(t)), and (q(t), @u(t)), performed rule combination Sian trajectories F.(t), V.(t)) in the robot workspace using
when the similarity between rules was above a given threshol@@ learning scheme for accurate motion tracking described
and analyzed whether simplified motion trajectories wouli@ Section Ill. Via a learning process, the equilibrium point
correspond to simplified FNN structures. Detailed discussiotigjectoriesEP.(t) were derived, which in turn generated
on how to perform the FNN rule similarity measurement an#ajectories (P (t), Vi(¢)) approximating (Pe.(t), V.(¢)). The
combination can be found in Appendix B [2], [13], [27]. two-joint planar robot manipulator was used to simulate the

Another issue of interest is whether, when the fundamenté@nd and pen system, and its dynamic equations are expressed
feature of the motion becomes evident in the resulting trajecto§
via simplification_, the correspon(_jin_g Fl\_lN rulg distribution will ’ Hy, Hi»|[6 _cé§ — 2¢6,6,
also possess a similar characteristic. Simulations have been per-[ } = [H H } [é } [ 02 } (8)

. . . . . . pe 21 22 2 1

formed to investigate the relationship between simplified mo-
tion trajectories, motion commands, and FNN rule distributionghere
as described in the next section.

>
X

H{ = mllfl =+ mgﬁ =+ mgl?ﬁ + 2malil .o COS(QQ)

V. SIMULATION RESULTS AND ANALYSES +1+ 1> 9)

_ 2
To demonstrate the effectiveness of the proposed motion Hiz = maley + maliles c0s(62) + Iz (10)
command simplification and scaling schemes, they were Ho = Hi (11)
applied to generate human signatures and imitate orchestra Hay = mal% + Io (12)
conducting for the two-joint planar robot manipulator, shown ¢ = malyles sin(6s) (13)

in Fig. 7. Three adult subjects were asked to provide motion
samples. They practiced writing on the digital tablet for a whilayith 7; andr, standing for the torque$; andé. the joint vari-
and their samples were recorded after they were confident withles;n; = 2.815 kg, ms = 1.64kg,l; = 0.5 m,lo = 0.6 m,
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Fig. 8. Motion command simplification for the characyeCartesian position trajectories: (a) accurate motion tracking, (b) motion command simplification with
h = 2.5, (c) motion command simplification with = 5, and (d) motion command simplification with= 7.5.

lg = 0.25m,l = 0.3m,andl; = I, = 0.0234kgm?. The ef- solid line. In Fig. 8(e)—(h), the continuod&P.(¢) for accurate
fects of load and gravity were ignored in the formulation, and threotion tracking were simplified to b&P(t), consisting of
sampling time in the simulation was 2 ms. For all schemes, eaglseries of square pulses, and the number of square pulses
joint of the robot manipulator was equipped with an FNN andecreases along with the increase of the similarity intlex
a local controller. In each FNN, there were two nodes in Lay&orrespondingly, motion trajectories in Fig. 8(b)—(d) devi-
1, eight nodes in Layer 2, 16 nodes each in Layers 3 and 4, axtdd from the original one gradually, while they were still
one node in Layer 5. The local controller gains were selectedrerognizable. We then applied the procedure for FNN rule
ensure system stability and performance, and they varied alaigilarity measurement and combination, shown in Fig. 6,
with different motions. to find whether the corresponding FNN structure might be
Fig. 8(a)—(d) shows the resulting position trajectories faimplified for the simplified motion trajectory. As an example,
an input handwritten character by applying the learning Fig. 9 shows the output membership functions in Layer 4 of
scheme for Fig. 8(a), accurate motion tracking; Fig. 8(b)—(dhe FNN for governing the learned trajectory and the simplified
motion command simplification with the empirical similaritytrajectory with2 = 5 in Fig. 8(c). The fuzzy rule numbers
indexh = 2.5,5, and7.5, respectively; and Fig. 8(e)—(h), thereduced from eleven to five, and from 22 to five for joints
corresponding motion commands. In Fig. 8(a), the originahe and two, respectively, as the trajectory was simplified.
input handwrittery trajectory used for reference is marked byA more complicated sample, the nariel, was also studied.
the solid line and the learned trajectory by the dashed line, aRid). 10(a)—(d) shows the resulting position trajectoriesLfior
in Fig. 8(b)—(d), the simplified trajectories are marked by thiey applying the learning scheme for Fig. 10(a), accurate motion
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tracking; Fig. 10(b)—(d), motion command simplification withcommand simplification can simplify motion commands to a
the empirical similarity indexh = 2,4, and6, respectively; prespecified degree of similarity between originals and derived
and Fig. 10(e)-(h), the corresponding motion commands. Ttiajectories, and the corresponding FNN structures can also be
tracking errors folLiu were larger than those for the charactesimplified.

y and the shapes of the simplified square-pulse motion com-In the second set of case studies, we applied the proposed
mands varied more abruptly, as expected, while the simplifiégghrning schemes for imitating orchestra conducting. First, we
trajectories foLiu were still recognizable. In this case, the FNNused this orchestra conducting imitation to study motion com-
structure corresponding to the simplified trajectories were alstand scaling. Fig. 11 shows the generation of three-beat con-
simplified. From the results, the learning scheme for motiattucting gestures under different size and velocity requirements
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and the corresponding motion commands. In Fig. 11(a), thelocity, the similarity indices were increased accordingly. In
original conducting motion used for reference is marked Hig. 11(b) and (c), the continuod&P.(¢) in Fig. 11(a) were

the solid line and the learned motion by the dashed lingimplified and scaled into series of square-pulse trajectories. In
Fig. 11(b) and (c) show both a larger gesture and a nornféf. 11(b), the simplified motion command trajectory is longer
gesture conducted more rapidly, marked by the solid line. Thean the original one for generating a larger movement with
reference motions for error evaluation during motion commarie same movement velocity, while in Fig. 11(c), it is shorter
scaling were generated using (4)—(7), with the scaling constafids generating the same movement with a larger movement
ci = 1.5 andc; = 0.5 for the larger and faster gesturesyelocity. Both the larger and faster gestures were generated
respectively. Due to the increases in size and movemaenith errors within the similarity bounds, demonstrating the
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feasibility of the proposed motion command scaling schemeommands, and FNN rule distributions was then studied by ap-
The relationship between simplified motion trajectories, motigulying the fuzzy rule similarity measurement and combination
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on the governing FNNs for the original and simplifigd = 6) in Layer 4 of the FNN after rule similarity measurement and
conducting motion trajectories. Fig. 12(a) shows the learnedmbination. In Fig. 12, the fundamental feature of the motion
accurate and learned simplified trajectories of the three-beajectory is its three-beats, which is more evidently reflected
conducting gesture, marked by the dashed and solid lingsthe motion commands for the learned simplified trajectory,
respectively, Fig. 12(b), the corresponding motion commands)d its corresponding FNN rule distribution also shows three
and Fig. 12(c), the corresponding output membership functioegident groupings (marked by dotted circles). The results
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implicate that simple, basic motion commands that captungotion becomes evident in the resulting simplified trajectory,
fundamental motion features may correspond to simple FNNe corresponding FNN rules may also be similarly distributed.
structure and rule distribution, while further investigation it our future work, we will perform further investigation on this

demanded for solid conclusions. issue. Both two- and three-dimensional human motions will be
studied. In addition, we will also apply the proposed schemes
VI. CONCLUSION to analyze fundamental motion features from the standpoint of

%f_;lrning, such that motions can be properly simplified, classi-

This paper has developed learning schemes for robot n); ) i . L
pap P g ed, and managed with learning mechanisms in simple struc-

tion command simplification and scaling. The proposed m
tion command simplification and scaling is taken as a seco :

learning process after accurate motion tracking has been accom-

plished. Thus, the proposed learning schemes provide effective APPENDIX A

frameworks for_ achieving fast, simple conFr_oI when a task dqes DESCRIPTION OF THEENN

not demand high accuracy, and to transition between motion

tracking and regulation according to the degree of motion accu-The structure of the FNN used in the proposed schemes con-
racy given up. Simulation results based on using robot manigists of five layers of nodes, all of which are of the same types
lators to generate human signatures and imitate orchestra agithin the same layer, as shown in Fig. 3. Each of the five layers
ducting demonstrate the effectiveness of the proposed scherpesforms one stage of the fuzzy inference process, as described
The results also show that, when the fundamental feature of thedow.
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@ (b)

Fig. 14. Combination of two fuzzy setd,; and A ;, with a high degree of similarity. (a}; C A;. (b) A; andA; have one intersection point. (¢); and A ;
have two intersection points. (d); andA; have three intersection points.

Layer I The input layer transmits inputs directly to the next Layer 4 This is the output membership function layer. Each
layer without performing any computation. As Fig. 3 shows)odes: in this layer performs an inversion ¢f; to locate the
there are two nodes for two inputg, andq., for motions with X coordinate of the centroid of the membership functior,

a single degree of freedom. using the local mean-of-maximum method (LMOM) [1]
Layer 2 The input membership function layer transforms Ot — ufl(Og). (A.5)
input data into fuzzy data. Each nodia this layer has the node Lo

Layer 5 The output layer has as many nodes as there are

function output action variables. Fig. 3 shows only one node is needed for
0? = pu(x) (A.1) the single motion commarnidP.. The defuzzification approach
adopted is the weighted averaging method:
wherep : X — [0,1] is a membership function andis the . Y0308
input to nodei. The triangular membership function adopted is 0° = ZZ:;ZO;»,Z (A.6)
1-88 0 efbbtd Because the number of rules in Layer 3 is prespecified and
) =9 14500 peb—a,i] (A.2)  weights for the input and output layers (Layers 1 and 5) are
0, otherwise. fixed, the parameters to be learned in this FNN are the modifi-
Different membership grades at the same crisp point can be able weights present at the input links to Layers 2 and 4, which
tained by adjusting the parameter &etb, c). correspond to the input and output membership functions. When

Layer 3 The rule layer implements fuzzy rules. Each node ithe FNN learns the input and output membership function pa-
this layer corresponds to a rule, defined as a fuzzy conditiorfaimeters required to generate the motion comnisigcorre-
statement of the form sponding to a sampled motion, an error rate, related to the mo-

Rule IF X is A andY is B THEN Z is C (A.3) t?on F:ommancEPc and the resultgnt motion, .is initially speci-

] i fied in the last layer (Layer 5). This error rate is then back-prop-
whereX andY are fuzzy sets representing the inpusiep-  5gated to adjust the parameters from layer to layer sequentially.
resents the output, and, B, and C represent linguistic vari- gecayse a concise form of the inverse dynamic model of the
ables, such as small, medium, and large. The number of rygg st manipulator is not available, the error rate cannot be ob-
involved in the input-output relationship is prespecified. In thigjineq directly by differentiating the error between the desired
layer, each node also outputs the firing strength of the @fe, 4tion and the actual motion relative to the motion command.

by performing the differentiable softmin operation [1] Instead, we use the combined feedback error of posjtipand
0 — Ej 0]2 exp (—7‘0]2) A4 velocity (é) between the desired and actual motions, denoted as
N >, exp (_7,0]2,) (A-4) E = Gpe + Gyé, to derive the error rat@@ £/0EP .. ) [10]:
WhereO]? is the output of thgth node in Layer 2 connected to oF = ﬁ
JEP. 00°

theith node in Layer 3, andis a constant. Whenapproaches )
infinity, the softmin operator becomes a min operator, for fi- = n(Gpe + Gac) (A7)
niter, O} is differentiable, which is required during the learningvherer, is a learning rate an&,, andG,; are gains. The error
process. rate (OE/JFP.) in (A.7) is estimated, but not exact, for de-
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scribing the differential relationship between the motion com{12]
mandEP,. and the resultant motion. Nevertheless, the results
in [10] and this study show that the use of this error rate is ap 13]
propriate for the learning. Using the error réte~ /0EP..) and
some straightforward manipulation, we were able to derive upl4]
dates for the parameters in Layers 2 and 4.
[15]
APPENDIX B
RULE SIMILARITY MEASUREMENT AND COMBINATION
FOR THEFNN

[16]

Basically, the concepts described in [2], [13], and [27] wereg[17]
used to perform FNN rule similarity measurement and combi-
nation. After the FNN is trained to govern an input motion suc-;g,
cessfully, the similarities between the membership functions in
the FNN are evaluated pair by pair. When there are similar meni1®l
bership functions, these indicate that some of the rules are upy,
necessary and can be eliminated. Similarities between fuzzy sets
can be evaluated by comparing the areas covered by fuzzy sé#dl
according to geometric points. The similarity measure between
two fuzzy setsA; andA;, is thus defined as [22]
M(A;NA;)
M(Az U AJ)
where E(A;, A;) is the degree of similarity betweed, and
A;;nandu denote the intersection and union operators, resped24]
tively; andM ( - ) is the size of afuzzy set, i.e., the area it covers.
For the six cases of membership function overlapping betweeps)
A; and A; shown in Fig. 13, (B.1) is used for similarity mea-
surement [27]. Then, with a given threshd@detween 0 and 1
and whenE(A;, A;) > T, the two fuzzy setsi; and A, were
combined into a new fuzzy set,.,, by computing their geo-
metrical average. Fig. 14 shows the four cases of combinatiofd’!
of two fuzzy sets wheml; and A; are highly similar.

E(A; A)) = (B.1)

(23]

(26]
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