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Abstract: The module placement problem is to dcterniine the co-ordinates of logic modules in a 
chip such that no two modules overlap and some cost (e.g. silicon area. interconncction length, etc.) 
is optimised. To shorten connections between inputs and outputs and/or make related modules 
adfacent. it is desired to place some modules along the specific boundiries of a chip. To deal with 
such boundary constraints, we explore the feasibility conditions of a B*-tree with boundary 
constraints and develop a simulated annealing-based algorithm using B*-trees. Unlike most 
previous work, the proposed algorithm guarantees a feasible B*-tree with boundary constraints for 
e'dch perturbation. Experimental results show that the algorithm can obtain a smaller silicon area 
than the most recent work based on sequence pairs. 

1 Introduction 

As circuit complexity increases dramatically, hierarchical 
design and IP modules are widely used in modern VLSl 
design. This trend makes floorplanning/placement much 
more critical than ever. Floorplanning/placenient is used to 
detennine shapes and positions of modules to optiniise 
circuit performance. Since geometric relations among 
modulcs are determined during floo~lanniiigjplacenient, 
the results have a great impact on the quality and flexibility 
of it design. such BS layout area. global routing structure: 
power consumption, ctc. To facilitate Hoorplan design. we 
need a representation that can record the geometric 
relationship among modules. which can be manipulated 
efficiently. and call handle various constraints. Among the 
Roorplnnning/~lacelnent constraints, boundary constimints, 
which require some modules to be placed along thc chip 
boundaries. are often concerned in the real design. There 
are at lettsr two situations that motivate the consideration of 
boundary constraints: 

To shorten connections between inputs and outputs, it is 
desirable to place some modules along the specific 
boundaria of a chip. 

To deal with kirge circuits hierilrchically, modules are 
grouped into units and module placement is performed 
independently for each unit. It is helpful if some modules 
are constrained to be placed along boundaries in each unit 
such that they can be ad.jacent to some other modules in the 
neighbouring units. 

Thcrefore, it is desired to develop an efficient and effective 
approach to the Hoorphnning/placement problem with 
boundary constraints. 

1. I Previous work 
Floorplans are often handled based on their structures, the 
slicing structure [I- 21 and the non-slicing structure 13-81. A 
slicing structure can be obtained by recursively cutting 
rectangles horizontally or vertically into smaller rectangles; 
othenvise. it  is a non-slicing structure. For the slicing 
structure. Otten in [ I ]  first used a binary tree to represent the 
slicing floorplan. Wong and Liu later in [2] proposed a 
normalised Polish expression to improve the binary tree- 
based representation. The slicing structure has smaller 
solution space. resulting in ?Aster running t i i e .  However, 
the non-slicing Structure is more general and often leads to a 
more area-efficient placement than the slicing one. 

There are a few new non-slicing floorplan representations 
in the literature, e.g. sequence pair (SP) 17. bounded- 
sliceline grid (BSG) [XI, 0-tree 141, B*-tree 131; comer block 
list (CBL) 151 and transitive closure graph (TCG) [6]. 
Murata ef ut. in [7] used two sequences of module names. 
called SP, to represent the geometric relations among 
modules. Another representation, called BSG, wis later 
proposed by Nakatake er N/ .  [8]. Guo rf u/. 141 first proposed 
a tree-based representation, 0-tree. for non-slidng floor- 
plans. Chang et d. in 13) presented ii binary tree-based 
representation. called B*-tree. and showed its superior 
properties for operations. Hong er a/. in [5] proposed the 
CBL representation for non-slicing floorplans. Recently, 
Lin and Chang in [6] proposed a new representation, called 
TCG, by using a pair of transitive closure graphs. 

The flooiylm design with boundary constraints was first 
studied by Young and Wong 191. They applied the 
normalised polished cxpression to handle the problem with 
a slicing floorplan. Recently. several approaches to the 
problem of non-slicing Hoorplans have been presented. 
Tang and Wong in [ IO] handled the constraint by adding 
dummy edges into the constraint graphs of SP: however, 
they just presented their idea without implementing their 
approach. Based on CBL, Ma f f  <I/. in [ I l l  assigned ii 

penalty to a misplaced boundary module and perturbed 
CBL to reduce the penalty. All the previous works in 19-1 I ]  
cannot guarantee a feasible solutioii after solution perturba- 
[ion and their final placements. Unlike the prcvious works. 
Lai et a/. in [I21 explored the feasibility conditions for SP 
with boundary constrailits and transfonned an infeasible 
soltition into a feasible one to guarantee a feasible solution 
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in each perturbation. However, the method is very complex, 
and many rules are needed to cope with the constraints. 

1.2 Our contribution 
In this paper. we deal with the tlooiq~lan design with 
boundary constraints using the B*-tree representation 
because it lids been proved to be a superior representation 
due to its simple, yet cffective. binary tree structure. We first 
explore the feasibility conditions of a B"-tree with boundary 
constraints and develop a simulated annealing based 
algorithm using B*-trees. Unlike the previous works 
proposed by Young and Wong [9]. Tang and Wong [IO], 
and Ma er a/. [I 11: our algorithm guarantees a feasible B*- 
tree with boundary constraints for each perturbation. 
Unlike the cotnplicated rules using SP proposed by Lai 
et nl. [I21 to guarantee a feasible solution for each 
perturbation, our method is very simple and easy to 
implement. Experimental results show that our algorithm 
can obtain a smaller silicon area than the most recent work 
by Lai et ul. [12]. 

2 Problem formulation 

Given a sct of modules M =  {n i l ,  in?. .... in,r}, where each 
module in;; I 5 i 5 11, has a fixed area, and its width, height 
and area are denoted by II'. / I ;  and A;_ respectively. Each 
module in, is free to rotate. Let F denote those modules 
without any boundary constraints (Le. modules i n  Fare  free 
to be placed anywhere in the final placemcnl). Let T' (L;  B 
or R) denote a set of modules that are demanded to be 
placed along the top (left, bottom or right) boundary in the 
final placement. Therefore. we can divide M into five 
disjoint subsets F. T. E,  L and R (i.e. M =  F u T u B u  
L u  R). T, B, L or R may be an empty set if there exists no 
module with such a boundary constraint in placement. 

Fig. 1 gives an example of a placement with boundary- 
constrained modules. Module nil ( in2 )  denotes a left (top) 
boundary module. Fig. la shows an infeasible placement 
since in1 is not placed along the left boundary while Fig. I h  
gives a feasible placement since i n l  and in2  are placed at the 
iesignated boundaries. 

Let (.vi. ?;;) denote the co-ordinate of the bottom-left 
corner of mi. I 5 i < I , .  on a chip. A placement P with 
boundary-constrained modules is an assignment of (.Y;, ,vi) 
for each ini  such that no two modules overlap and the 
modules in Tu B u  L u R satisfy designated boundary 
constraints. The goal of a placement with boundary 
constraints is to minimise the total area (i.e. the minimum 
bounding rectangle of P). We do not consider the 
optimisation of interconnect wirelength in this paper. 

a b 

Fig. 1 
Module nil (ml) dcnales a left (top) boundary module 
LI Infeasible placement because there elisls :I module at thc left-hand 
side or m ,  
b Feasible placemeiit 

2 2  

Pkiwiiem nit/, horm'lnr7.-mrntnrrned inod~rlcs 

However, it can be done easily by adding it into the cost 
function of our algorithm. 

3 6'-tree representation 

Before introducing our method. we shall first review the E*- 
free rqrweurtiiiuii. Chang ef ul. in [3] presented a binary 
tree-based representation for a left and bottom compacted 
placement, called B*-tree, and showed its superior proper- 
ties for operations. Given a placement P, we can construct :I 
unique (horizontal) B*-tree in linear time by using ii  
recursive procedure similar to the depth first search (DFS) 
algorithm. (See Fig. 2h for the corresponding B*-tree of the 
placement shown in Fig. 20.) Each node i i ;  in a B*-tree 
denotes a module. The root of ii B*-tiee corresponds to the 
module on the bottom-left corncr. The left child 15 of a node 
i i ;  denotes the module ini that is the lowest adjacent module 
on the right-hand side of ni; (i.e. si= x,+ w;). The right child 
i ik of a node 11, denotes module n i p  that is the lowest visible 
module above i n ,  and with the Same .v co-ordinate as in; 
(i.e. xk = s;). 

Figs. 20 and b show a placement and its corresponding 
B*-tree. respectivcly. The root no of the B*-tree in Fig. 2h 
dcnotes that i i io is the module on the bottom-left comer of 
the placement. For node n3 i n  the B*-tree, n3 has a left child 
n4, which means that module in4 is the lowest adjacent 
module in the right-hand side of module niz (Le. 
x4 = xi + w3). ii7 is the right child of 17; since module 1ii7 is 
the visible module over module in3 and the two modules 
have the same .\. co-ordinate (17 = x3). 

a b 

Fig. 2 Pbrcerneril (n) oiid cor,n-espondiiig B*-free (h)  

We now show the procedure to get the placement from a 
B*-tree. We first introduce a contour structure] which is 
used by Guo et ul. in 141. The contour structure is a doubly 
linkcd list of modules. which describes the contour line in 
the current compaction direction. Without the contour 
 structure^ the runtime for placing a new module is linear to 
the number of modules. By maintaining the contour 
structure2 the y Co-ordinate for a newly inserted module 
can be computed in O(I) time. Fig. 3 illustrates how to 
update the contour when we add a new module nix to the 
placement. The old contour is composed of modules in7, ni3. 

n743 ni6 and i n j .  After nix  is placed, the new contour becomes 
in7, n i x ,  in4> in0 and in j .  Note that we only need to search 
modules i n ;  and in4 to get its y co-ordinate yx with the 
contour Structure. 

4 B*-tree for boundary-constrained modules 

In this Section, we first explore the properties of a B*-tree 
with boundary constraints. We then present the feasibility 
conditioiis of a B*-tree with the constraint. 
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newly added 

Fig. 3 Adding ( i  neiv rr iui l~ik on fop 
We s c m h  the contour from lcfi to fight and update it with the top 
boundary of the new module 

4.1 Properties of B*-tree 
The boundary-constrained modules arc those modules that 
must be placed along boundaries in the final placement. A 
module can be placed along the bottom (left) boundary if 
there exists no module below (left to) the module in the final 
placement. Similarly, a module can be placed along the top 
(right) boundary if there exists 110 module above (right to) 
the module in the final placement. By the definition of a B*- 
tree_ the left child iti of a node 11; represents the lowest 
adjacent module h, to the right of h; (i.e. \;=si+ w;). The 
right child nk of n; represents the lowest visible module hk 
above h; and with the same x co-ordinate as hi (i.e. sk = s;). 
Therefore, we have the following four properties to 
guarantee that there exists no module below, left to, right 
to and above the inodule along the bottom, left, right and 
top boundaries, respectively. 

Property 1: In a B*-tree, we have the properties for 
boundary constraints. 

(i) The node corresponding to a bottom boundary module 
cannot be the right child of othcrs. 
(ii) The node corresponding to a left boundary module 
cannot be the left child of others. 
(iii) The node corresponding to a right boundary module 
cannot have a left child. 
(iv) The node corresponding to a top boundary module 
cannot have a right child. 

4.2 Feasibility conditions of a B*-tree 
The properties mentioned in the preceding Section must be 
satisfied to guarantee a feasible B*-tree with boundary- 
constrained inodules. However. they only describe the 
necessary conditions for a B*-tree with the boundary 
constraints, that is, a module may not be placed along the 
designated boundary if the corresponding property is 
satisfied (see Fig. 2 for an example). Although node nq in  
Fig. 26 does not have a left (right) child, module ni4 is not 
placed at the right (top) boundary in Fig. Zrr. To guarantee 
that modules are placed at desipated boundaries. we 
propose sufficient conditions for a B*-tree with boundary 
constraints. 

Let the leftmost branch (rightmost branch) of a B*-tree 
denote the path foimed by the root and its leftmost 
(rightmost) descendants. See Fig. 46 (Fig. 5h) for the 
leftinost (rightmost) branch in a B*-tree. A11 nodes in the 
leftmost (rightmost) branch are not right (left) children of 
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others; therefore, the nodes in the leftmost (rightmost) 
branch satisfy property 1 @roperty 2), which means that 
there exists no module below (left to) the corresponding 
module. By the definition of a B*-tree, module nii should be 
ad-iacent and right to in; if nj is left child of the node II~ The 
modules corresponding to the nodes in the leflmost branch 
should be placed at the bottom-left corner or right to the 
module placed at the bottom-left comer. Therefore, these 
modules must be placed along the bottom boundary. 
Similarly, ing is the lowest visible module above 171, and with 
the same I co-ordinate as in; if nA. is the right child of n;. The 
modules corresponding to the nodes in the rightmost 
branch should be placed at  the bottom-lelt comer or above 
and with the same .I- co-ordinate as the module placed at the 
bottom-left corner. Therefore. these modules must be 
placed along the left boundary. We thus have the following 
theorem for the feasibility conditions of a B*-tree with the 
bottom and the left constraints. 

Theorem I: Feasibility conditions 

* Bottom-boundary condition: The nodes corresponding to 
the bottom boundary modules must be in the leftmost 
branch of a B*-tree. 
0 Left-boundary condition: The nodes corresponding to the 
left boundary modules must be in the rightmost branch of a 
B*-tree. 

Figs. 4u and h show a placement and its correspond- 
ing B*-tree. Modules nio, nil and ni2 in Fig. 4u are 
bottom boundary modules and the corresponding 
nodes nu. n,  and n2 are in the leftmost branch of a B*- 
tree of Fig. 4h. Similarly, Figs. 50 and h show a placement 
with left boundary modules ino, nn3 and in7 and the 
corresponding B*-tree with nodes no, ii3 and n, in the 
rightmost branch. 
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Let the bottom-left branch (bottom-right branch) of a 
B*-tree denote the path formed by the end of the lcftmost 
(rightmost) branch and its rightmost (leftmost) descendants. 
See Fig. 66 (Fig. 76)  for the bottom-lcft (bottom-right) 
branch of a B*-tree. However, there may exist left (right) 
children for the nodes in the bottom-left (bottom-right) 
branch therefore. the nodes in the branch may not satisfy 
property 3 (property 4). To guarantee that modules can be 
placed along the light (top) boundary, their left (right) 
children are deleted. By the definition of a B*-tree. the 
modules corresponding to the nodes in the bottoni-left 
branch are placed at the bottom-right corner or above and 
with the same x co-ordinate as thc module placed at the 
bottom-right corner. Further, no module is placed right to 
these modules since the left children for the nodes in the 
bottom-left branch are deleted. Similarly, the modules 
corresponding to the nodes in the bottom-right branch arc 
placed at the top-left corner or right to the module at the 
top-left comer. Further. no module is placed above these 
modules since the right children of the nodes in the bottoin- 
right branch are deleted. We thus have the following 
theorem for the feasibility conditions of a B*-tree with the 
right and the top boundary constraints. 

Theorem 2: Feasibility conditions 

Right-boundary condition: For the right boundary 
modules, their corresponding nodes are in the bottom-left 
branch of a B*-tree with the left child for each node in the 
path being deleted. 

Top-boundary condition: For the top boundary modules, 
their corresponding nodes are in the bottom-right branch of 
a B*-tree with the right child for each node in the path being 
deleted. 
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Figs. 611 and 6 show a placement and the corresponding 
B*-tree. Modules 1n2: i n s  and iti6 in Fig. 60 denote the right 
boundary modules and the corresponding nodes n2, nj and 
1% are in the bottom-left branch of the B*-tree in Fig. 66. 
Besides, it2, its and nb have no left child. Similarly. Figs. 70 
and h show a placement with top boundary modules i i i , ,  iiig 
and i n g  and the corresponding B*-tree with nodes ii7. nR and 
np in  the hottom-right bi-anch. It should be noted that i l l q  is 
also a module along thc right boundary, which cannot be 
identified by the right-boundary condition. To identify it, 
we shall find the last node in the bottom-right brunch, 
which corresponds to the module at the top right corner. 

5 The placement algorithm 

Based on B*-trees. we develop a simulated annealing based 
algorithm [I31 for handling the placemelit with boundary 
constraints. Given an initial B*-tree. the algorithm perturbs 
the B*-ti-ee to get a new one. Then, the four feasibility 
conditions of B*-trees are checked. We transfomi an 
infeasible B*-tree into a feasible one if any condition is 
viokdtcd. The perturbation process repeats until predefined 
termination conditions are met. See Fig. 8 for the flow 
diagram of our algorithm. 

initialise a W-tree 

transform into a 
feasible B'-tree 

I 
yes 

meet termination Conditions? 

5.1 Solution oerturbation 
We apply the following three operations to perturb a 
B*-tree: 

0 Opl: rotate a module 
0 Op2: swap two modules 
0 Op3: move a module to another place 

Opl only exchanges the width and height of a module 
without changing a B*-tree while Op2 and Op3 do. Only 
two nodes in a B*-tree are exchanged for Op2. The time 
complexities of Opl and Op2 both take O(I) time. 
However_ the topology of a B*-tree is changed for Op3 
since we need to delete and insert nodes into the B*-tree. 
The operations for deleting and inserting nodes are 
described in the following. 

For node deletion, three types of nodes must be 
considered: leaf nodes? nodes with one child and nodcs 
with two children. For a leaf node. it can be removed from 
a B*-tree directly without affecting other nodes. For a node 
with one child, it is replaced by its child. The suhtree rooted 
by the child remains unchanged after the deletion. This tree 
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E,wmple qfhmdlimj (I bartom / ~ O l ! l l < h J ~  riioduk Fig. 10 
( I  infeasible B*-tree i f  nodc n, denotcs a botlom boundary module but 
T I ,  is not iii the leftmost branch 
b Feasible R*-tree where n, is inserled into the leftmost branch 

a 

update can he performed in O( 1) time. The process to delete 
a node with two children is a bit more complex. One of its 
two children is chosen to replace the target node. Then we 
move a child of the node to the position of the nodc. The 
procedure coiitinucs until the corresponding leaf node is 
processed. This operation takes O(h) time. where / I  is the 
height of the B*-tree. See Fig. Y for an example. The node 
113 in Fig. Yrr is to be deleted from the B*-tree. Since n3 has 
two children n, and 1 1 ~ .  we randomly choose node n7 to 
replace n3, and then use the child ng of n7 to replace n7, and 
so on. The resulting B*-tree is shown in Fig. 9h. 

When we insert a node ni into a B*-tree. we randomly 
choose a node nj as its new parent. Then, ni is inserted as the 
left (or right) child of ni aiid the original left (or right) child 
of nj becomes the left (or right) child of 11,. The operation 
takes O(1) time. According to the above analysis, Op3 takes 
O(n) time, where n is the tiuniber of modules. 

5.2 Maintaining a feasible B*-tree 
The feasibility condition of a B*-trce may bc destroyed after 
perturbation. Therefore, we transfoiin an infeasible B*-tree 
into it feasiblc one after perturbation. 

The procedures to transform an infeasible B*-tree into a 
feasible one are described as follows. For bottom (left) 
boundary modules. let S ,  (SJ denote the set of the nodes in 
the leftmost (rightmost) branch in a given B*-tree. Those 
nodes corresponding to the bottom (left) boundary 
modules, not in S,] (SI)> are recorded in the set X ,  (,Yl). If 
X, # fl (XI # II). each node I I E &  (neX,) will be deleted 
from the current position and randomly inserted into the 
leftmost (rightmost) branch. which takes linear time. For 
example? Fig. IOU shows an infeasible B*-tree if node n1 
represents a bottom boundary module hut ill #SIP To get a 
feasible B*-tree, we delete nl from the B*-tree and insert i t  
into the leftmost branch. The resulting B*-tree is shown in 
Fig. lob. 

For right (top) boundary modules, the procedure to 
transform an infeasible B*-tree is a hit more complex than 
the two procedures described above. Let S, (S,) denote the 
set of the nodes in the bottorn-left (bottom-right) branch of 
a B*-tree. Let X,. ( X ,  ) denote the set of nodes corresponding 
to right (top) boundary modules hut are not in S,. (SJ. I f  
X,. # I (X, #I), we delete each node n ~ x ; .   EX,) from a 
B*-tree and insert it into the bottom-left (bottom-right) 
branch, which takes linear time. Further, to guarantee a 
kasible B*-tree during perturbation, we do not move nodes 
to the left (right) children of the nodes in the bottom-left 
(bottorn-nght) branch. 
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6 Experimental results 

We implemented our algorithm in the C + +  programming 
language on a 200MHz SUN Ultra I workstation with 
256MB memory. We compared our algorithm with the 
sequence-pair-based algorithm used in [12] based on the 
MCNC benchmark circuits listed in Table 1. Columns I ,  2, 
3, 4 and 5 in the Table give the respective names of circuits, 
numbers of modules, numbers of top-boundary modules 
(denoted by T); numbers of bottom-boundary modules 
(denoted by B), numbers of left-boundary modules 
(denoted by L) and numbers of right-boundary modules 
(denoted by R). Note that the constrained modules in each 
circuit are the Same as that used in [I21 for the purpose of 
fair comparison. 

Table 1: Information on test circuits 

Circuit No. of No. of T No. of B No. of L No. of R 
modules modules modules modules modules 

apte 9 1 1 1 1 
Xerox 10 1 1 1 1 

hp 11 1 1 1 1 

ami33 33 2 2 2 2 

ami49 49 3 3 2 3 

The area and runtime comparisons between the 
sequence-pair-based algorithm [I?] and ours are listed in 
Table 2. (Note that the sequence-pair-based algorithm was 
implemented on a Pentium-11 350 processor with 128MB 
RAM.) As shown in Table 2, our algorithm results in an 
average dead space of 15.37%, compared to 18.24% 
reported by the sequence-pair-based algorithm. Also, our 
algorithm is quite efficient. Figs. 1 1  and 12 show the 
resulting placements for Xerox and ami33 with the 
boundary-constrained modules shaded. 

7 Conclusions 

We have explored the feasibility conditions of a B*-tree with 
boundary constraints and developed a simulated annealing 
based algorithm using B*-trees. Also. we have proposed an 
efficient procedure to transform an infeasible solution into 
feasible one if the feasibility constraints are violated. Unlike 
most previous works. our algorithm guarantees a feasible 
B*-tree with boundary constraints in each perturbation. 
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Table 2 Area and runtime comparisons between the sequence-pair-based algorithm Ion a Pentium-11350 PC with 128MB 
RAM) and our algorithm (on a 200MHz SUN Ultra I workstation with 256MB) 

Circuit Total area of modules Sequence-pair 

Resulting Dead 
area mmz space % 

apte 46.56 46.92 0.77 

Xerox 19.32 20.96 5.59 

hp 8.92 9.24 3.59 
ami33 1.16 1.21 4.31 

ami49 35.43 36.84 3.98 

Total 18.24 

E*-tree 

Runtime Resulting 
s area mm2 

15 46.92 

19 19.91 

23 9.27 

287 1.20 

584 36.91 

Dead Runtime 
space % 5 

0.77 19 

3.05 22 

3.92 38 

3.45 144 

4.18 324 

15.37 

Fig. 11 Plrrcmait result o/ .w~,Y, where T= {2}. B= (6). 
L= {8 )  und R =  {Y) 
A m  is 19.91 mm2. and the dead space is 3.05% 

6 13 21 
T 

19 
L 

Fig. 12 
28). L= (18. 19) mid R =  (0, 5 )  
Area is 1.2 mm2 and the dead smce is 3.45% 

P/r,crrnent m u / /  of~11~;33, nlrn.r T= (13, 21). B= (25, 

Further, our algorithm is very simple and can be 
implemented easily. In particular, the operations and 
packing of a B*-tree take only linear time. Experimental 
results have shown that our algorithm can obtain sinaller 

silicon area than the most recent work based on sequence 
pairs and consumes less running time. 
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