
Module placement with boundary constraints
using B*-trees

- J.-M. Lin, H.-E. Yi and Y.-W. Chang

Abstract: The module placement problem is to dcterniine the co-ordinates of logic modules in a
chip such that no two modules overlap and some cost (e.g. silicon area. interconncction length, etc.)
is optimised. To shorten connections between inputs and outputs and/or make related modules
adfacent. it is desired to place some modules along the specific boundiries of a chip. To deal with
such boundary constraints, we explore the feasibility conditions of a B*-tree with boundary
constraints and develop a simulated annealing-based algorithm using B*-trees. Unlike most
previous work, the proposed algorithm guarantees a feasible B*-tree with boundary constraints for
e'dch perturbation. Experimental results show that the algorithm can obtain a smaller silicon area
than the most recent work based on sequence pairs.

1 Introduction

As circuit complexity increases dramatically, hierarchical
design and IP modules are widely used in modern VLSl
design. This trend makes floorplanning/placement much
more critical than ever. Floorplanning/placenient is used to
detennine shapes and positions of modules to optiniise
circuit performance. Since geometric relations among
modulcs are determined during floo~lanniiigjplacenient,
the results have a great impact on the quality and flexibility
of it design. such BS layout area. global routing structure:
power consumption, ctc. To facilitate Hoorplan design. we
need a representation that can record the geometric
relationship among modules. which can be manipulated
efficiently. and call handle various constraints. Among the
Roorplnnning/~lacelnent constraints, boundary constimints,
which require some modules to be placed along thc chip
boundaries. are often concerned in the real design. There
are at lettsr two situations that motivate the consideration of
boundary constraints:

To shorten connections between inputs and outputs, it is
desirable to place some modules along the specific
boundaria of a chip.

To deal with kirge circuits hierilrchically, modules are
grouped into units and module placement is performed
independently for each unit. It is helpful if some modules
are constrained to be placed along boundaries in each unit
such that they can be ad.jacent to some other modules in the
neighbouring units.

Thcrefore, it is desired to develop an efficient and effective
approach to the Hoorphnning/placement problem with
boundary constraints.

1. I Previous work
Floorplans are often handled based on their structures, the
slicing structure [I- 21 and the non-slicing structure 13-81. A
slicing structure can be obtained by recursively cutting
rectangles horizontally or vertically into smaller rectangles;
othenvise. it is a non-slicing structure. For the slicing
structure. Otten in [I] first used a binary tree to represent the
slicing floorplan. Wong and Liu later in [2] proposed a
normalised Polish expression to improve the binary tree-
based representation. The slicing structure has smaller
solution space. resulting in ?Aster running t i i e . However,
the non-slicing Structure is more general and often leads to a
more area-efficient placement than the slicing one.

There are a few new non-slicing floorplan representations
in the literature, e.g. sequence pair (SP) 17. bounded-
sliceline grid (BSG) [XI, 0-tree 141, B*-tree 131; comer block
list (CBL) 151 and transitive closure graph (TCG) [6].
Murata ef ut. in [7] used two sequences of module names.
called SP, to represent the geometric relations among
modules. Another representation, called BSG, wis later
proposed by Nakatake er N/ . [8]. Guo rf u/. 141 first proposed
a tree-based representation, 0-tree. for non-slidng floor-
plans. Chang et d. in 13) presented ii binary tree-based
representation. called B*-tree. and showed its superior
properties for operations. Hong er a/. in [5] proposed the
CBL representation for non-slicing floorplans. Recently,
Lin and Chang in [6] proposed a new representation, called
TCG, by using a pair of transitive closure graphs.

The flooiylm design with boundary constraints was first
studied by Young and Wong 191. They applied the
normalised polished cxpression to handle the problem with
a slicing floorplan. Recently. several approaches to the
problem of non-slicing Hoorplans have been presented.
Tang and Wong in [IO] handled the constraint by adding
dummy edges into the constraint graphs of SP: however,
they just presented their idea without implementing their
approach. Based on CBL, Ma f f <I/. in [I l l assigned ii

penalty to a misplaced boundary module and perturbed
CBL to reduce the penalty. All the previous works in 19-1 I]
cannot guarantee a feasible solutioii after solution perturba-
[ion and their final placements. Unlike the prcvious works.
Lai et a/. in [I21 explored the feasibility conditions for SP
with boundary constrailits and transfonned an infeasible
soltition into a feasible one to guarantee a feasible solution

251

in each perturbation. However, the method is very complex,
and many rules are needed to cope with the constraints.

1.2 Our contribution
In this paper. we deal with the tlooiq~lan design with
boundary constraints using the B*-tree representation
because it lids been proved to be a superior representation
due to its simple, yet cffective. binary tree structure. We first
explore the feasibility conditions of a B"-tree with boundary
constraints and develop a simulated annealing based
algorithm using B*-trees. Unlike the previous works
proposed by Young and Wong [9]. Tang and Wong [IO],
and Ma er a/. [I 11: our algorithm guarantees a feasible B*-
tree with boundary constraints for each perturbation.
Unlike the cotnplicated rules using SP proposed by Lai
et nl. [I21 to guarantee a feasible solution for each
perturbation, our method is very simple and easy to
implement. Experimental results show that our algorithm
can obtain a smaller silicon area than the most recent work
by Lai et ul. [12].

2 Problem formulation

Given a sct of modules M = {n i l , in?. in,r}, where each
module in;; I 5 i 5 11, has a fixed area, and its width, height
and area are denoted by II'. / I ; and A;_ respectively. Each
module in, is free to rotate. Let F denote those modules
without any boundary constraints (Le. modules i n Fare free
to be placed anywhere in the final placemcnl). Let T' (L; B
or R) denote a set of modules that are demanded to be
placed along the top (left, bottom or right) boundary in the
final placement. Therefore. we can divide M into five
disjoint subsets F. T. E, L and R (i.e. M = F u T u B u
L u R). T, B, L or R may be an empty set if there exists no
module with such a boundary constraint in placement.

Fig. 1 gives an example of a placement with boundary-
constrained modules. Module nil (in2) denotes a left (top)
boundary module. Fig. la shows an infeasible placement
since in1 is not placed along the left boundary while Fig. I h
gives a feasible placement since i n l and in2 are placed at the
iesignated boundaries.

Let (.vi. ?;;) denote the co-ordinate of the bottom-left
corner of mi. I 5 i < I , . on a chip. A placement P with
boundary-constrained modules is an assignment of (.Y;, ,vi)
for each ini such that no two modules overlap and the
modules in Tu B u L u R satisfy designated boundary
constraints. The goal of a placement with boundary
constraints is to minimise the total area (i.e. the minimum
bounding rectangle of P). We do not consider the
optimisation of interconnect wirelength in this paper.

a b

Fig. 1
Module nil (ml) dcnales a left (top) boundary module
LI Infeasible placement because there elisls :I module at thc left-hand
side or m ,
b Feasible placemeiit

2 2

Pkiwiiem nit/, horm'lnr7.-mrntnrrned inod~rlcs

However, it can be done easily by adding it into the cost
function of our algorithm.

3 6'-tree representation

Before introducing our method. we shall first review the E*-
free rqrweurtiiiuii. Chang ef ul. in [3] presented a binary
tree-based representation for a left and bottom compacted
placement, called B*-tree, and showed its superior proper-
ties for operations. Given a placement P, we can construct :I
unique (horizontal) B*-tree in linear time by using ii
recursive procedure similar to the depth first search (DFS)
algorithm. (See Fig. 2h for the corresponding B*-tree of the
placement shown in Fig. 20.) Each node i i ; in a B*-tree
denotes a module. The root of ii B*-tiee corresponds to the
module on the bottom-left corncr. The left child 15 of a node
i i ; denotes the module ini that is the lowest adjacent module
on the right-hand side of ni; (i.e. si= x,+ w;). The right child
i ik of a node 11, denotes module n i p that is the lowest visible
module above i n , and with the Same .v co-ordinate as in;
(i.e. xk = s;).

Figs. 20 and b show a placement and its corresponding
B*-tree. respectivcly. The root no of the B*-tree in Fig. 2h
dcnotes that i i io is the module on the bottom-left comer of
the placement. For node n3 i n the B*-tree, n3 has a left child
n4, which means that module in4 is the lowest adjacent
module in the right-hand side of module niz (Le.
x4 = xi + w3). ii7 is the right child of 17; since module 1ii7 is
the visible module over module in3 and the two modules
have the same .\. co-ordinate (17 = x3).

a b

Fig. 2 Pbrcerneril (n) oiid cor,n-espondiiig B*-free (h)

We now show the procedure to get the placement from a
B*-tree. We first introduce a contour structure] which is
used by Guo et ul. in 141. The contour structure is a doubly
linkcd list of modules. which describes the contour line in
the current compaction direction. Without the contour
 structure^ the runtime for placing a new module is linear to
the number of modules. By maintaining the contour
structure2 the y Co-ordinate for a newly inserted module
can be computed in O(I) time. Fig. 3 illustrates how to
update the contour when we add a new module nix to the
placement. The old contour is composed of modules in7, ni3.

n743 ni6 and i n j . After nix is placed, the new contour becomes
in7, n i x , in4> in0 and in j . Note that we only need to search
modules i n ; and in4 to get its y co-ordinate yx with the
contour Structure.

4 B*-tree for boundary-constrained modules

In this Section, we first explore the properties of a B*-tree
with boundary constraints. We then present the feasibility
conditioiis of a B*-tree with the constraint.

I€€ Pro:Cirarin Delkl,s Sy.~i.. 1'01. 149, rV0. $. Aigt i r i 2002

newly added

Fig. 3 Adding (i neiv rr iui l~ik on fop
We s c m h the contour from lcfi to fight and update it with the top
boundary of the new module

4.1 Properties of B*-tree
The boundary-constrained modules arc those modules that
must be placed along boundaries in the final placement. A
module can be placed along the bottom (left) boundary if
there exists no module below (left to) the module in the final
placement. Similarly, a module can be placed along the top
(right) boundary if there exists 110 module above (right to)
the module in the final placement. By the definition of a B*-
tree_ the left child iti of a node 11; represents the lowest
adjacent module h, to the right of h; (i.e. \;=si+ w;). The
right child nk of n; represents the lowest visible module hk
above h; and with the same x co-ordinate as hi (i.e. sk = s;).
Therefore, we have the following four properties to
guarantee that there exists no module below, left to, right
to and above the inodule along the bottom, left, right and
top boundaries, respectively.

Property 1: In a B*-tree, we have the properties for
boundary constraints.

(i) The node corresponding to a bottom boundary module
cannot be the right child of othcrs.
(ii) The node corresponding to a left boundary module
cannot be the left child of others.
(iii) The node corresponding to a right boundary module
cannot have a left child.
(iv) The node corresponding to a top boundary module
cannot have a right child.

4.2 Feasibility conditions of a B*-tree
The properties mentioned in the preceding Section must be
satisfied to guarantee a feasible B*-tree with boundary-
constrained inodules. However. they only describe the
necessary conditions for a B*-tree with the boundary
constraints, that is, a module may not be placed along the
designated boundary if the corresponding property is
satisfied (see Fig. 2 for an example). Although node nq in
Fig. 26 does not have a left (right) child, module ni4 is not
placed at the right (top) boundary in Fig. Zrr. To guarantee
that modules are placed at desipated boundaries. we
propose sufficient conditions for a B*-tree with boundary
constraints.

Let the leftmost branch (rightmost branch) of a B*-tree
denote the path foimed by the root and its leftmost
(rightmost) descendants. See Fig. 46 (Fig. 5h) for the
leftinost (rightmost) branch in a B*-tree. A11 nodes in the
leftmost (rightmost) branch are not right (left) children of

I.% I",--Cirmifs Daicer Si.,.. V d 149, ,Vir 4, Augzm XXIz

others; therefore, the nodes in the leftmost (rightmost)
branch satisfy property 1 @roperty 2), which means that
there exists no module below (left to) the corresponding
module. By the definition of a B*-tree, module nii should be
ad-iacent and right to in; if nj is left child of the node II~ The
modules corresponding to the nodes in the leflmost branch
should be placed at the bottom-left corner or right to the
module placed at the bottom-left comer. Therefore, these
modules must be placed along the bottom boundary.
Similarly, ing is the lowest visible module above 171, and with
the same I co-ordinate as in; if nA. is the right child of n;. The
modules corresponding to the nodes in the rightmost
branch should be placed at the bottom-lelt comer or above
and with the same .I- co-ordinate as the module placed at the
bottom-left corner. Therefore. these modules must be
placed along the left boundary. We thus have the following
theorem for the feasibility conditions of a B*-tree with the
bottom and the left constraints.

Theorem I: Feasibility conditions

* Bottom-boundary condition: The nodes corresponding to
the bottom boundary modules must be in the leftmost
branch of a B*-tree.
0 Left-boundary condition: The nodes corresponding to the
left boundary modules must be in the rightmost branch of a
B*-tree.

Figs. 4u and h show a placement and its correspond-
ing B*-tree. Modules nio, nil and ni2 in Fig. 4u are
bottom boundary modules and the corresponding
nodes nu. n, and n2 are in the leftmost branch of a B*-
tree of Fig. 4h. Similarly, Figs. 50 and h show a placement
with left boundary modules ino, nn3 and in7 and the
corresponding B*-tree with nodes no, ii3 and n, in the
rightmost branch.

253

bottom-left branch a L

I - I

P ...

Let the bottom-left branch (bottom-right branch) of a
B*-tree denote the path formed by the end of the lcftmost
(rightmost) branch and its rightmost (leftmost) descendants.
See Fig. 66 (Fig. 76) for the bottom-lcft (bottom-right)
branch of a B*-tree. However, there may exist left (right)
children for the nodes in the bottom-left (bottom-right)
branch therefore. the nodes in the branch may not satisfy
property 3 (property 4). To guarantee that modules can be
placed along the light (top) boundary, their left (right)
children are deleted. By the definition of a B*-tree. the
modules corresponding to the nodes in the bottoni-left
branch are placed at the bottom-right corner or above and
with the same x co-ordinate as thc module placed at the
bottom-right corner. Further, no module is placed right to
these modules since the left children for the nodes in the
bottom-left branch are deleted. Similarly, the modules
corresponding to the nodes in the bottom-right branch arc
placed at the top-left corner or right to the module at the
top-left comer. Further. no module is placed above these
modules since the right children of the nodes in the bottoin-
right branch are deleted. We thus have the following
theorem for the feasibility conditions of a B*-tree with the
right and the top boundary constraints.

Theorem 2: Feasibility conditions

Right-boundary condition: For the right boundary
modules, their corresponding nodes are in the bottom-left
branch of a B*-tree with the left child for each node in the
path being deleted.

Top-boundary condition: For the top boundary modules,
their corresponding nodes are in the bottom-right branch of
a B*-tree with the right child for each node in the path being
deleted.

254

Figs. 611 and 6 show a placement and the corresponding
B*-tree. Modules 1n2: i n s and iti6 in Fig. 60 denote the right
boundary modules and the corresponding nodes n2, nj and
1% are in the bottom-left branch of the B*-tree in Fig. 66.
Besides, it2, its and nb have no left child. Similarly. Figs. 70
and h show a placement with top boundary modules i i i , , iiig
and i n g and the corresponding B*-tree with nodes ii7. nR and
np in the hottom-right bi-anch. It should be noted that i l l q is
also a module along thc right boundary, which cannot be
identified by the right-boundary condition. To identify it,
we shall find the last node in the bottom-right brunch,
which corresponds to the module at the top right corner.

5 The placement algorithm

Based on B*-trees. we develop a simulated annealing based
algorithm [I31 for handling the placemelit with boundary
constraints. Given an initial B*-tree. the algorithm perturbs
the B*-ti-ee to get a new one. Then, the four feasibility
conditions of B*-trees are checked. We transfomi an
infeasible B*-tree into a feasible one if any condition is
viokdtcd. The perturbation process repeats until predefined
termination conditions are met. See Fig. 8 for the flow
diagram of our algorithm.

initialise a W-tree

transform into a
feasible B'-tree

I
yes

meet termination Conditions?

5.1 Solution oerturbation
We apply the following three operations to perturb a
B*-tree:

0 Opl: rotate a module
0 Op2: swap two modules
0 Op3: move a module to another place

Opl only exchanges the width and height of a module
without changing a B*-tree while Op2 and Op3 do. Only
two nodes in a B*-tree are exchanged for Op2. The time
complexities of Opl and Op2 both take O(I) time.
However_ the topology of a B*-tree is changed for Op3
since we need to delete and insert nodes into the B*-tree.
The operations for deleting and inserting nodes are
described in the following.

For node deletion, three types of nodes must be
considered: leaf nodes? nodes with one child and nodcs
with two children. For a leaf node. it can be removed from
a B*-tree directly without affecting other nodes. For a node
with one child, it is replaced by its child. The suhtree rooted
by the child remains unchanged after the deletion. This tree

IEE P m ~ C i r c u i ! ~ D e r i w S J . ~ ~ . , Vui. 14Y. N o 4, Rigini ZW2

a b

E,wmple qfhmdlimj (I bartom / ~ O l ! l l < h J ~ riioduk Fig. 10
(I infeasible B*-tree i f nodc n, denotcs a botlom boundary module but
T I , is not iii the leftmost branch
b Feasible R*-tree where n, is inserled into the leftmost branch

a

update can he performed in O(1) time. The process to delete
a node with two children is a bit more complex. One of its
two children is chosen to replace the target node. Then we
move a child of the node to the position of the nodc. The
procedure coiitinucs until the corresponding leaf node is
processed. This operation takes O(h) time. where / I is the
height of the B*-tree. See Fig. Y for an example. The node
113 in Fig. Yrr is to be deleted from the B*-tree. Since n3 has
two children n, and 1 1 ~ . we randomly choose node n7 to
replace n3, and then use the child ng of n7 to replace n7, and
so on. The resulting B*-tree is shown in Fig. 9h.

When we insert a node ni into a B*-tree. we randomly
choose a node nj as its new parent. Then, ni is inserted as the
left (or right) child of ni aiid the original left (or right) child
of nj becomes the left (or right) child of 11,. The operation
takes O(1) time. According to the above analysis, Op3 takes
O(n) time, where n is the tiuniber of modules.

5.2 Maintaining a feasible B*-tree
The feasibility condition of a B*-trce may bc destroyed after
perturbation. Therefore, we transfoiin an infeasible B*-tree
into it feasiblc one after perturbation.

The procedures to transform an infeasible B*-tree into a
feasible one are described as follows. For bottom (left)
boundary modules. let S , (SJ denote the set of the nodes in
the leftmost (rightmost) branch in a given B*-tree. Those
nodes corresponding to the bottom (left) boundary
modules, not in S,] (SI)> are recorded in the set X , (,Yl). If
X, # fl (XI # II). each node I I E & (neX,) will be deleted
from the current position and randomly inserted into the
leftmost (rightmost) branch. which takes linear time. For
example? Fig. IOU shows an infeasible B*-tree if node n1
represents a bottom boundary module hut ill #SIP To get a
feasible B*-tree, we delete nl from the B*-tree and insert i t
into the leftmost branch. The resulting B*-tree is shown in
Fig. lob.

For right (top) boundary modules, the procedure to
transform an infeasible B*-tree is a hit more complex than
the two procedures described above. Let S, (S,) denote the
set of the nodes in the bottorn-left (bottom-right) branch of
a B*-tree. Let X,. (X ,) denote the set of nodes corresponding
to right (top) boundary modules hut are not in S,. (SJ. I f
X,. # I (X, #I), we delete each node n ~ x ; . EX,) from a
B*-tree and insert it into the bottom-left (bottom-right)
branch, which takes linear time. Further, to guarantee a
kasible B*-tree during perturbation, we do not move nodes
to the left (right) children of the nodes in the bottom-left
(bottorn-nght) branch.

IEE Pro.-Cirm;r.~ Derk<,.s .~,:sl.. VX 14Y. No. 4, Atwiilrri 2GiB

6 Experimental results

We implemented our algorithm in the C + + programming
language on a 200MHz SUN Ultra I workstation with
256MB memory. We compared our algorithm with the
sequence-pair-based algorithm used in [12] based on the
MCNC benchmark circuits listed in Table 1. Columns I , 2,
3, 4 and 5 in the Table give the respective names of circuits,
numbers of modules, numbers of top-boundary modules
(denoted by T); numbers of bottom-boundary modules
(denoted by B), numbers of left-boundary modules
(denoted by L) and numbers of right-boundary modules
(denoted by R). Note that the constrained modules in each
circuit are the Same as that used in [I21 for the purpose of
fair comparison.

Table 1: Information on test circuits

Circuit No. of No. of T No. of B No. of L No. of R
modules modules modules modules modules

apte 9 1 1 1 1
Xerox 10 1 1 1 1

hp 11 1 1 1 1

ami33 33 2 2 2 2

ami49 49 3 3 2 3

The area and runtime comparisons between the
sequence-pair-based algorithm [I?] and ours are listed in
Table 2. (Note that the sequence-pair-based algorithm was
implemented on a Pentium-11 350 processor with 128MB
RAM.) As shown in Table 2, our algorithm results in an
average dead space of 15.37%, compared to 18.24%
reported by the sequence-pair-based algorithm. Also, our
algorithm is quite efficient. Figs. 1 1 and 12 show the
resulting placements for Xerox and ami33 with the
boundary-constrained modules shaded.

7 Conclusions

We have explored the feasibility conditions of a B*-tree with
boundary constraints and developed a simulated annealing
based algorithm using B*-trees. Also. we have proposed an
efficient procedure to transform an infeasible solution into
feasible one if the feasibility constraints are violated. Unlike
most previous works. our algorithm guarantees a feasible
B*-tree with boundary constraints in each perturbation.

255

Table 2 Area and runtime comparisons between the sequence-pair-based algorithm Ion a Pentium-11350 PC with 128MB
RAM) and our algorithm (on a 200MHz SUN Ultra I workstation with 256MB)

Circuit Total area of modules Sequence-pair

Resulting Dead
area mmz space %

apte 46.56 46.92 0.77

Xerox 19.32 20.96 5.59

hp 8.92 9.24 3.59
ami33 1.16 1.21 4.31

ami49 35.43 36.84 3.98

Total 18.24

E*-tree

Runtime Resulting
s area mm2

15 46.92

19 19.91

23 9.27

287 1.20

584 36.91

Dead Runtime
space % 5

0.77 19

3.05 22

3.92 38

3.45 144

4.18 324

15.37

Fig. 11 Plrrcmait result o/ .w~,Y, where T= {2}. B= (6).
L= {8) und R = {Y)
A m is 19.91 mm2. and the dead space is 3.05%

6 13 21
T

19
L

Fig. 12
28). L= (18. 19) mid R = (0, 5)
Area is 1.2 mm2 and the dead smce is 3.45%

P/r,crrnent m u / / of~11~;33, nlrn.r T= (13, 21). B= (25,

Further, our algorithm is very simple and can be
implemented easily. In particular, the operations and
packing of a B*-tree take only linear time. Experimental
results have shown that our algorithm can obtain sinaller

silicon area than the most recent work based on sequence
pairs and consumes less running time.

8 Acknowledgment

This research was partially supported by the National
Science Council of Taiwan ROC under grant NSC-89-2215-
E-009 I 17.

9

I

2

3

4

5

6

7

8

9

10

I I

I 2

13

References

OlTEN, R.H.J.M.: 'Automatic flooiplan design'. Proceedings of 19th
Design Automstion Confcrcnce, DACR2. USA. Junc 1982.
pp. 261-267
WONG. D.F., and LIU. C.L.: 'A new algorithm for floorplan dcsip'.
Praceedings of 23rd Desisi Automation Conference, DAC86. USA,
June 1986. pp. 101-107
CHANG. Y.-C., CHANG. Y.-W., WU. G.-M., and WU, S.-W.:
' WTrees: A new repremiation far non-slicing floorphm'. Piacced-
ings of 37th Design Automation Conference. DAC'OO. CA. USA.
June 2000. pp. 458463
GUO. P.-N.. CHENG. C.-K.. and YOSHIMURA. T.: 'An 0-tree
representation of non-slicing floorplm and its applications'. Proceed-
ings of 36th Design Automation Cunference. DAC99.
LA. CA. USA. June 19YY. pp. 268-273
HONG. X.. HUANG. G.. CAI, T.. GU. J . . DONG, S.. CHENG.
C.-K.. and GU. J.: 'Corner block list: An ell'ectictive and efficient
topological represenlillion of non-slicing floorplan'. Praceedings of
Intema1inn;d Conference on Computer aided design. ICCADW . C.4.
USA. Nov. 2000. pp. 8-12
LIN. J.-M.. and CHANG. Y.-W.: 'TCG: A traniitive cimurr graph-
based representation for non-slicing Hoorplans'. Pruceedings of 38th
Design Autonulion Conference. DACOI. NV. USA. June 2001. pp.
KG769
MURATA. H.. FUSIYOSHI. K.. NAKATAKE. S.. and KAJIT,4-

YOUNG.'F.Y.. and WONG. D.F.: 'Slicing flaorpl&s wcth boundaly
constrainl'. Procecdines of Asia and South Pacific Desim Automation

Pacific Desigr Automaiion CGnfcrcnce. ASP-bAC.01 I~Yokohamal

MA, Y.. DONG. S.. HONG. X.. CAI. Y.. CHENG. C.-K.. and
Japan. sa". 2001. pp. 821-526

GU. 1.: 'VLSI floorpiarming with boundary constraints based an
coiner block list'. Praccedings of Asia and South Pacific Design
Automation Conference. ASP-DACOI. Yokohama. Jaran. S m
2001. pp. 509-514
LAI. 1.. LIN. M.-S.. WANG. T.-C.. and WANG. LI.-C.: 'Module
placrmcnt with boundary constraints using the sequence-pair
rewscntatioii'. Procccdings of Asia and South I'acific Design
Automation Conference. ASP-DAC'OI, Yokohama. Japan. Pan.
2001. pp. 515-520
KIRKPATRICK. S.. GELATT. C.D.. and VECCHI. M.P.:
'Optimimion by simulated aimealing'. Scimw. 1983. 220. (4558).
pp. 671480

256

