Module placement with boundary constraints

using B*-trees

J.-M. Lin, H.-E. Yi and Y.-W. Chang

Abstract: The module placement problem is to determine the co-ordinates of logic modules in a
chip such that no two modules overlap and some cost (e.g. silicon area, interconnection length, etc.)
is optimised. To shorten connections between inputs and outputs andfor make related modules
adjacent, it 1s desired to place some modules along the specific boundaries of a chip. To deal with
such boundary constraints, we explore the feasibility conditions of a B*-tree with boundary
constraints and develop a simulated annealing-based algorithtn using B*-trees. Unlike most
previous work, the proposed algorithm guarantees a feasible B*-tree with boundary constraints for
each perturbation. Experimental results show that the algorithim can obtain a simaller silicon area
than the most recent work based on sequence pairs.

1 Introduction

As circuit complexity increases dramatically, hierarchical
design and IP modules are widely used in modern VLSI
design. This trend makes floorplanning/placement much
more critical than ever. Floorplanning/placement is used to
determine shapes and positions of modules to optimise
circuit performance. Since geometric relations among
modules are determined during floorplanning/placement,
the results have a great impact on the quality and flexibility
ol a design, such as layout area, global routing structure,
power consumption, ete. To facilitate floorplan design, we
need a representaiion thai can record the geometric
relationship among modules, which can be manipulated
efficiently, and can handle various constraints. Among the
floorplanning/placement constraints, boundary constraints,
which require some modules to be placed along the chip
boundaries, are often concerned in the real design. There
are at least two situations that motivate the consideration of
boundary constraints:

e To shorten connections between inputs and outputs, it is
desirable to place some modules along the specific
boundaries of a chip.

® To deal with large circuits hierarchically, modules are
grouped into units and module placement is performed
independently for each unit. It is helpful if some modules
are constrained to be placed along boundaries in each unit
such that they can be adjacent to some other modules in the
neighbouring units.

Therefore, it is desired to develop an efficient and effective
approach to the floorplanning/placement problem with
boundary constraints.

i 1IEE. 2002

TEL Proceedings online no. 20020433

DO 10.1049/ip-eds 20020433

Paper first received 19th November 2001 and in revised lorm 25th March 2002

J.-M. Lin and H-E. Yiare with the Departiment of Computer and Information
Science, National Chiao Tung University, Hsinchu 300. Taiwan, Republic of
China

Y.-W. Chang is with the Deparument of Electrical Engineering & CGraduate
[nstitute of Electramcs Engineering, National Taiwan University, Taipet 106,
Taiwan, Republic of China

IEE Proe.-Cireuits Devices Syst., Vol 149, No. 4, August 2002

1.1 Previous work

Floorplans are often handled based on thelr structures, the
slicing structure [1, 2] and the non-slicing structure [3-8]. A
slicing structure can be obtained by recursively cutting
rectangles horizontally or vertically info smaller rectangles;
otherwise, it is a non-slicing structure. For the slicing
structure, Otten in [1] first used a binary tree to represent the
slicing floorplan. Wong and Liu later in [2] proposed a
normalised Polish expression to improve the binary tree-
based representation. The slicing structure has smaller
solution space. resulting in faster running time. However,
the non-shicing structure is more general and often leads to a
more area-efficient placement than the shicing one.

There are a few new non-slicing floorplan representations
in the literature, e.g. sequence pair (SP) [7], bounded-
sliceline grid (BSG) [8], O-tree [4], B*-tree [3], corner block
list (CBL) [3] and transitive closure graph (TCG) [6].
Murata ef of. in [7] used two sequences of module names.
called SP, to represent the geometric relations among
modules. Another representation, called BSG, was later
proposed by Nakartake er o/ [8]. Guo ey af. [4] first proposed
a tree-based representation, O-tree, for non-shcing floor-
plans. Chang er ¢l in [3] presented a binary tree-based
representaticn, called B*-tree, and showed its superior
propertics for operations. Hong ef «f. in [5] proposed the
CBL representation for non-slicing floorplans. Recently,
Lin and Chang in [6] proposed a new representation, called
TCG, by using a pair of transitive closure graphs.

The floorplan design with boundary constraints was first
studied by Young and Wong [9] They applied the
normalised polished cxpression to handie the problem with
a slicing floorplan. Recently, several approaches to the
problem of non-slicing floorplans have been presented.
Tang and Wong in [10] handled the constraint by adding
dummy edges into the constraint graphs of SP; however,
they just presented their idea without implementing their
approach. Based on CBL, Ma er «/ in [11] assigned a
penalty to a misplaced boundary module and perturbed
CBL 1o reduce the penalty. All the previous works in [9-11]
cannot guaraniee a feasible solution after solution perturba-
tion and their final placements. Unlike the previous works,
Lai e al. in [12] explored the teasibility conditions for SP
with boundary constraints and transformed an infeasible
solution into a feasible one to guarantee a feasible solution

251

in each perturbation. However, the method is very complex,
and many rules are needed to cope with the constraints.

1.2 Our contribution

In this paper, we deal with the floorplan design with
boundary constraints using the B*-tree representation
because it has been proved to be a superior representation
due to its simple, vet effective, binary tree structure. We first
explore the feasibility conditions of a B*-tree with boundary
constraints and develop a simulated annealing based
algorithm using B*-trees. Unlike the previous works
proposed by Young and Wong (9], Tang and Wong [10],
and Ma er al. [11]. our algorithm guarantees a feasible B*-
tree with boundary constraints for each perturbation.
Unlike the complicated rules using SP proposed by Lai
et ul. [12] to guarantee a feasible solution for each
perturbation, our method is very simple and easy to
implement. Experimental results show that our algorithm
can obtain a smaller silicon area than the most recent work
by Lai et al. [12].

2 - Problem formulation

Given a sct of modules M= {m, ma, ..., m,}, where each
module n;, | < i < n, has a fixed area, and its width, height
and area are denoted by wy, fi; and 4, respectively. Fach
module m; is free to rotate. Let F denote those modules
without any boundary constraints (i.e. modules in £ are free
to be placed anywhere in the finai placement). Let T (L, B
or R) denote a set of modules that are demanded to be
placed along the top (left, bottom or right) boundary in the
final placement. Therefore, we can divide M into five
disjoint subsets F, 7. B, L and R (ie. M=FuTuBu
LUR). T, B, L or R may be an empty set 1If there exists no
module with such a boundary constraint in placement.

Fig. 1 gives an example of a placement with boundary-
constrained modules. Module 2y (mm17) denotes a left (top)
boundary module. Fig. 1¢# shows an infeasible placement
since iy 1s not placed along the left boundary while Fig. 15
gives a feasible placement since 1, and m- are placed at the
designated boundaries.

Let (x;,) denote the co-ordinate of the bottom-left
corner of m, 1 < i < n, on a chip. A placement P with
boundary-constrained modules is an assignment of (x; 1)
for each m; such that no two modules overlap and the
modules in TUBULUR satisfy designated boundary
constraints. The goal of a placement with boundary
constraints is to minimise the total area (i.e. the minimum
bounding rectangle of P} We do not consider the
optimisation of interconnect wirelength in this paper.

Mo Mg

a b

Fig. 1 Plucenient with boundary-constrained modides

Module ni; (n15) denotes a left (top) boundary module

a Infeasible placement because there eXists a module at the lefi-hand
side of ni,

b Feasible placement

232

However, it can be done easily by adding it into the cost
function of our algorithm.

3 B*-tree representation

Before introducing our method, we shall first review the B*-
tree representation. Chang et al. in 3] presented a binary
tree-based representation for a left and bottom compacted
placement, called B*-tree, and showed its superior proper-
ties for operations. Given a placement P, we can construct a
unigue (hotizontal) B*-tree in linear time by using a
recursive procedure similar to the depth first search (DFS)
algorithm. (See Fig. 2b for the corresponding B*-tree of the
placement shown in Fig. 24) Each node »; in a B*-tree
denotes a module. The root of a B¥-tree corresponds to the
madule on the bottom-left corner. The left child »; of a node
1; denotes the module n7; that is the lowest adjacent module
on the right-hand side of mi; (i.e. x;= x;+1v)). The right child
1y of & node #; denotes module my, that is the lowest visible
module above m1; and with the same x co-ordinate as m;
(i.e. xp=x)).

Figs. 2a and b show a placement and its corresponding
B*-tree, respectively. The root iy of the B*-tree in Fig. 2b
denotes that sy is the module on the bottom-left corner of
the placement. For node #; in the B*-tree, 7 has a lefi child
g, which means that module sz, is the lowest adjacent
module in the right-hand side of module m; (e
Xg=x3+w3). 1715 the right child of n, since module m1; is
the wvisible module over module 73 and the two modules
have the same x co-ordinate (xy= x3).

m
my 1 mg

. O OENG
ms%—vﬁu \\ @ @

C®

msg
— 1
me 4+ ™ 1
o ms l

a

Fig. 2 Plucement (a) and corresponding B*-tree (h)

We now show the procedure to get the placement from a
B*.tree. We first introduce a contour structure, which is
used by Guo et al. in [4]. The contour structure is a doubly
linked list of modules, which describes the contour line in
the current compaction direction. Without the contour
structure, the runtime for placing a new module is linear to
the number of modules. By maintaining the contour
structure, the y co-ordinate for a newly mserted module
can be computed in O(1) tme. Fig. 3 illustrates how to
update the contour when we add a new module my to the
placement. The old contour is composed of modules niy, 3,
n1y, ing and pes. After myg is placed, the new contour becornes
g, Mg, g, Mg and nis. Note that we only need to search
modules m; and my to get its ¥ co-ordinate g with the
contour structure,

4 B*-tree for boundary-constrained modules

In this Section, we first explore the properties of a B*-tree
with boundary constraints. We then present the feasibility
conditions of a B*-tree with the constraint.

IEE Proc.-Circuits Devices Syst., Vol 149, No. 4, August 2002

newly added

module
————— old contour
- new contour

j 4
me g

mg

Mg

Mo my
my

Fig. 3 Adding a rew module on top
We search the contour from left to right and update it with the iop
boundary of the new module)

4.1 Properties of B*-tree

The boundary-constrained modules are those modules that
must be placed along boundaries in the final placement. A
module can be placed along the bottom (left) boundary if
there exists no module below (left to) the module in the final
placement. Similarly, a module can be placed along the top
(right) boundary if there exists no module above (right to}
the module in the final placement. By the definition of a B*-
tree, the left child n; of a node #; represents the lowest
adjacent module #; to the right of b; (ie. x;=x;+w;). The
right child n; of #; represents the lowest visible module 5,
above b; and with the same x co-ordinate as b; (i.e. xp = x;).
Therefore, we have the following four properties to
guarantee that there exists no module below, left to, right
to and above the module along the bottom, left, right and
top boundaries, respectively.

Property 1: In a B*-tree, we have the properties for
boundary constraints.

(i) The node corresponding to a bottom boundary module
cannot be the right child of others.

(it} The node corresponding to a left boundary module
cannot be the left child of others.

(ili) The node corresponding to a right boundary module
cannot have a left child.

(iv) The node corresponding to a top boundary module
cannot have a right child.

4.2 Feasibility conditions of a B*-tree

The properties mentioned in the preceding Section must be
satisfied to guarantee a feasible B*-tree with boundary-
constrained modules. However, they only describe the
necessary conditions for a B*-tree with the boundary
constraints, that is, a module may not be placed along the
designated boundary if the corresponding property is
satisfied (see Fig. 2 for an example). Although node rny in
Fig. 2b does not have a left (nght) child, module 7, is not
placed at the right (top) boundary in Fig. 2¢. To guarantec
that modules are placed at designated boundaries, we
propose sufficient conditions for a B*-tree with boundary
constraints.

Let the leftmost branch (rightmost branch) of a B*-tree
dencte the path formed by the root and its leftmost
(rightmost) descendants. See Fig. 46 (Fig. 5b) for the
leftmost (rightmest) branch in a B*-tree. All nodes in the
leftmost (rightmost) branch are not right (left) children of

IEE Proc.-Circuits Devices Syst.. Vol 149, No. 4, Augnse 2062

my 1= mg

>"3 |

_.-lvm1\

a b

Fig. 4 Botton boundary modiles (a) and corresponding nodes in
the lefmost branch (b)

F-_

mz [P My

\ .

My -

T
g

T rlnzl

a b

Fig. 5 Left boundary modules («) and corresponding nodes in the
rightmost branch ()

others; thercfore, the nodes in the leftmost (rightmost)
branch satisfy property 1 (property 2), which means that
there exists no module below (left t0) the corresponding
module. By the definition of a B*-tree, module n; should be
adjacent and right to s, if #; is left child of the node n,. The
modules corresponding to the nodes in the leftmost branch
should be placed at the bottom-left corner or nght to the
module placed at the bottom-left corner. Therefore, these
modules must be placed along the bottom boundary.
Similarly, i, is the lowest visible module above ; and with
the same x co-ordinate as nz; if a1, is the right child of i, The
modules corresponding to the podes in the rightmost
branch should be placed at the bottom-left corner or above
and with the same x co-ordinate as the module placed at the
bottom-left corner. Therefore, these modules must be
placed along the left boundary. We thus have the following
theorem for the feasibility conditions of a B*-tree with the
bottom and the left constraints.

Theorem 1: Feasibility conditions

® Bottom-boundary condition: The nodes corresponding to
the bottom boundary modules must be in the leftmost
branch of a B*-tree.

@ Left-boundary condition: The nedes corresponding to the
left boundary modules must be in the rightmost branch of a
B*-tree.

Figs. 4¢ and b show a placement and its correspond-
ing B*-tree. Modules my, m; and my in Fig 4¢ are
bottom boundary modules and the corresponding
nodes ng, n, and #, are in the leftmost branch of a B*-
tree of Fig. 45, Similarly, Figs. 5a and b show a placement
with left boundary modules mg, m; and m; and the
corresponding B*-tree with nodes ny, ny and »; in the
rightmost branch.

bottom-left branch @
m7]| emg g o
mg
\ om0
3
4 ‘g
4 {
My I n'12 I
a b

Fig. 6 Right boundary modules (a) and corvesponding nodes in
the bottom-left branch (b)

My o= Mg —

\ |- My ¥

_——'mT-.__ T

a b

Fig. 7 Top bounduary modules (a) and corresponding nodes in the
bottom-right branch (b)

Let the bottom-left branch (bottom-right branch) of a
B*-tree denote the path formed by the end of the leftmost
(rightmost) branch and its rightmost (leftmost) descendants.
See Fig. 6b (Fig. 7h) for the bottom-lefi (bottom-right)
branch of a B*-tree. However, there may exist left (right)
children for the nodes in the bottom-left (bottom-right}
branch; therefore, the nodes in the branch may not satisfy
property 3 (property 4). To guarantee that modules can be
placed along the right (top) boundary, their left (right)
children are deleted. By the definition of a B*-tree, the
modules corresponding to the nodes in the bottom-left
branch are placed at the bottom-right corner or above and
with the same x co-ordinate as the module placed at the
bottom-right corner. Further, no module is placed right to
these modules since the left children for the nodes in the
bottom-left branch are deleted. Similarly, the modules
corresponding to the nodes in the bottom-right branch are
placed at the top-left corner or right to the module at the
top-left corner. Further, no module is placed above these
modules since the right children of the nodes in the bottom-
right branch are deleted. We thus have the following
theorem for the feasibility conditions of a4 B*-tree with the
right and the top boundary constraints.

Theorem 2: Feasibility conditions

¢ Right-boundary condition: For the right boundary
modules, their corresponding nodes are in the bottom-left
branch of a B*-tree with the left child for cach node in the
path being deleted.

® Top-boundary condition: For the top boundary modules,
their corresponding nodes are in the bottom-right branch of
a B*-tree with the right child for each node in the path being
dcleted.

254

Figs. 6 and b show a placement and the corresponding
B*-tree. Modules i,, ms and mg in Fig. 6a denote the right
boundary medules and the corresponding nodes ns, 15 and
g are in the bottom-left branch of the B*-tree in Fig. 6b.
Besides, 1, 115 and 76 have no left child. Similarly, Figs. 7u
and b show a placement with top boundary modules niy, mig
and iy and the corresponding B*-tree with nodes #, ng and
ny in the bottom-right branch. It should be noted that ng is
also a module along the right boundary, which cannot be
identified by the right-boundary condition. To identify i1,
we shall find the last node in the botlom-right branch,
which corresponds to the module at the top right corner.

5 The placement algorithm

Based on B*-trees. we develop a simulated annealing based
algorithm [13] for handling the placement with boundary
constraints. Given an initial B*-tree, the algorithm perturbs
the B*-tree to get a new one. Then, the four feasibility
conditions of B*-trees are checked. We transform an
infeasible B*-tree into a feasible one if any condition is
violated. The perturbation process repeats until predefined
termination conditions are met. See Fig. § for the flow
diagram of our algorithm.

‘7 initialise a2 B*-tree J
| perturb the B*-tree 4"_

transform into a2

check feasibllity
feasible B*-tree

conditions

yes

yes

“| meet termination conditions?

J yes

stop!

Fig. 8 Flow diagram of the algorithin

5.1 Solution perturbation
We apply the following three operations to perturb a
B*-tree:

e Opl: rotate a module
° Op2: swap two modules
© Op3: move a module to another place.

Opl only exchanges the width and height of a module
without changing a B*-tree while Op2 and Op3 do. Only
two nodes in a B*-tree are exchanged for Op2. The time
complexities of Opl and Op2 both take O(1) time.
However, the topology of a B*-tree is changed for Op3
since we need to delete and insert nodes into the B*-tree.
The operations for deleting and inserting nodes are
described in the following.

For node deletion, three types of nodes must be
considered: leaf nodes, nodes with one child and nodes
with two children. For a leaf node, it can be removed from
a B*-tree directly without affecting other nedes. For a node
with one child, it is replaced by its child. The subtree rooted
by the child remains unchanged after the deletion, This tree

IEE Proc-Circuits Devices Syst, Vol 149, No. 4, August 2002

QRO . 9
O CENOBNOENONRO

(°s) © (23 @
() . (9 (0

a b

Fig. 9 Example of deleiing a node with bvo children
« WNode 13 has two children
b B*-tree after deleting i3

update can be performed in ¢X1) time. The process to delete
a node with two children is a bit more complex. One of its
two children is chosen to replace the target node. Then we
move a child of the node to the position of the node. The
procedure continues until the corresponding leaf node is
processed. This operation takes O(/r) time, where /1 is the
height of the B*-tree. See Fig. 9 for an example. The nade
15 in Fig. 9¢ is to be deleted from the B*-tree. Since #13 has
two children nq and #5, we randomly choose node #; to
replace »,, and then use the child #g of 17 to replace ny, and
so on. The resulting B*-tree is shown in Fig. 95.

When we insert a node n; into a B¥-tree, we randomiy
choose a node #; as its new parent. Then, n; is inserted as the
left (or right) child of x; and the original left (or right) child
of n; becomes the left (or right) child of ;. The operation
takes O(1) time. According to the above analysis, Op3 takes
O(n) time, where 7 is the number of modules.

5.2 Maintaining a feasible B*-tree

The feasibility condition of a B*-trece may be destroyed after
perturbation. Therefore, we transform an infeasible B*-tree
into a feasible one after perturbation.

The procedures to transform an infeasible B*-tree into a
feasible one are described as follows. For bottom (left}
boundary modules, let Sy, (5)) denote the set of the nodes in
the leftmost (rightmost) branch in a given B*-tree. Those
nodes corresponding to the bottom (left) boundary
modules, not in S, (8)), are recorded in the set X, (X)). If
Xy £ 0 (X; #8). each node ne X, (neX) will be deleted
from the current position and randomly inserted into the
leftmost (rightmost) branch, which takes linear time. For
example, Fig. 10z shows an infeasible B*-tree if node
represents a bottom boundary module but 2, ¢ 8. To get a
feasible B*-tree, we delete ny from the B*-tree and insert it
into the leftmost branch. The resulting B*-tree is shown in
Fig. 10b.

For right (top) boundary modules, the procedure to
transform an infeasible B*-tree is a bit more complex than
the two procedures described above. Let S, (S,) denote the
set of the nodes in the bottom-left (bottom-right) branch of
a B*-tree. Let X, (X, } denote the set of nodes corresponding
to right (top) boundary modules but are not in S, (5,). If
X, £ 0 (X, # 0), we delete each node ne X, (ne X)) from a
B*-tree and insert it into the bottom-left (bottom-right)
branch, which takes linear time. Further, to guaranfee 4
feasible B*-tree during perturbation, we do not move nodes
to the left (right) children of the nodes in the bottom-left
(bottom-right} branch,

{EE Proc.-Circufts Decices Syst, Vol 149, Ne. 4, August 2002

———

- A leftmost branch
- ! @

Fig. 10 Example of handling a bottom bowndary module

a Infeasible B*-tree if node n, denotes a bottom boundary module but
ny is not in the leftmost branch

b Feasible B*-tree where », is inserted into the leftmost branch

6 Experimental results

We implemented our algorithm in the C++ programming
language on a 200MHz SUN Ultra 1 workstation with
256 MB memory. We compared our aigorithm with the
sequence-pair-based algorithm used in [12] based on the
MCNC benchmark circuits listed in Table [. Columns 1, 2,
3, 4 and 5 in the Table give the respective names of circuits,
numbers of modules, numbers of top-boundary modules
{denoted by T), numbers of bottom-boundary modules
(denoted by B), numbers of left-boundary modules
{denoted by L} and numbers of right-boundary modules
(denoted by R). Note that the constrained modules in each
circuit are the same as that used in [12] for the purpose of
fair comparison.

Table 1: Information on test circuits

Circuit No. of No.of T No.ofB No.ofL No.ofR
medules modules modules modules modules

apte 9 1 1 1 1
Xerox 10 1 1 1 1
hp " 1 1 1 1
ami33 33 2 2 2 2
amid49 49 3 3 2 3

The area and runtime comparisons between the
sequence-pair-based algorithm [12] and ours are listed in
Table 2. (Note that the sequence-pair-based algorithm was
implemented on a Pentium-1I 350 processor with 128 MB
RAM.) As shown in Table 2, our algorithm results in an
average dead space of 15.37%, compared to 18.24%
reported by the sequence-pair-based algorithm. Also, our
algorithm is quite efficient. Figs. 11 and 12 show the
resulting placements for xerox and ami33 with the
boundary-constrained modules shaded.

7 Conclusions

We have explored the feasibility conditions of a B*-tree with
boundary constraints and developed a simulated annealing
based algorithm using B*-trees. Also, we have proposed an
efficient procedure to transform an infeasible solution into
feasible one if the feasibility constraints are violated. Unlike
most previous works, our algorithm guarantees. a feasible
B*-tree with boundary constraints in each perturbation.

255

Table 2: Area and runtime comparisons between the sequence-pair-based algorithm (on a Pentium-Il 350 PC with 128 MB
RAM) and our algorithm {on a 200 MHz SUN Ultra | workstation with 256 MB}

Circuit Total area of modules Sequence-pair B*-tree
Resulting Dead Runtime Resulting Dead Runtime
area mm? space % s area mm? space % s
apte 46.56 46.92 0.77 15 4692 0.77 19
Xerox 19.32 20.96 5.59 19 19.91 3.05 22
hp 892 9.24 3.5% 23 9.27 392 38
ami33 1.16 1.21 4.31 287 1.20 3.45 144
amid9 35.43 36.84 398 584 36.91 4.18 324
Total 18.24 15.37
: > silicon arca than the most recent work based on sequence
T pairs and consumes less running time.
3
8 Acknowledgment
7 5
This research was partially supported by the National
Science Council of Taiwan ROC under grant NSC-89-2215-
0 E-0009117.
4
8 9 References
8
I OTTEN, RH.ILM.: "Automatic floorplan design’. Proceedings of 19th
L B =] Design Automation Conference, DACE2, USA, June 1982,
pp. 361-267
2 WONG, D.F,, and LIU, C.L.: ‘A new algorithm for floorplan design’.
Proceedings of 23rd Design Automation Conference, DAC'86. USA,

Fig. 1t Placesent result of xerox, where T= {2}, B—={6}.
L=1{8} und R=1{9} ’
Area is 19.91 mm?, and the dead space is 3.05%

19 21 13
L T ®
18 185 26 |14 T
L R
s |10 23 20
11 30
7 29] PN
28
31 1
27 25
22 B
B
2
1 9

Fig. 12 Placement result of ami33, where T=1{13, 21}, B= {25,
28%, L={18 19} and R= {0, 6}
Area is 1.2mm’ and the dead space is 3.45%

Further, our algorithm is very simple and can be
implemented easily. In particular, the operations and
packing of a B*-tree take only linear time. Experimental
results have shown that our algorithm can obtain smaller

256

June 1986, pp. 101-107

3 CHANG. Y.-C, CHANG, Y-W, WU. G-M,, and WU, S-W.
‘B*-Trees: A new represeniation for non-slicing fleorplans’. Proceed-
ings of 37th Design Automation Conference, DACO0, CA, USA,
June 2000, pp. 458463

4 GUQ, P.-N., CHENG. C.-K., and YOSHIMURA. T.: ‘An O-tree
representation of non-shcing floorplan and its applications’. Proceed-
ings of 36th Design Awomation Conference. DAC'99,
LA CA. USA. June 1999, pp. 268-273

5 HONG. X.. HUANG. G.. CAL, T., GU. J.. DONG. S.. CHENG.
C-K.. and GU, }: *Corner block list: An effective and efficient
topological representation of non-shicing floorplan’. Proceedings of
Internationul Conference on Computer aided design, ICCAD00 , CA.
USA, Nov. 2000, pp. 812

6 LIN, J-M.. and CHANG. Y -W.: 'TCG: A {ransitive closure graph-
based representation for non-slicing floorplans’. Proceedings of 38th
Design Automation Conference. DAC01. NV, USA, June 200}, pp.
764769

7 MURATA, H.. FUWIYOSHI, K., NAKATAKE., 5., and KAJITA-
NI Y.: *Rectangle-packing based module placement’. Procecdings of
International Conference on Computer aided design, ICCAD™95. CA,
USA, Nov. 1995, pp. 472-479

8 NAKATAKE, S.. FUBYOSHL K., MURATA, H., and KAJHTA-
NI, Y. ‘Module placement on BSG-structure and IC layout
applications”. Proceedings of International Conference on Computer
aided design, ICCAD 96, CA, USA, Nov. 1996, pp. 484-491

9 YOUNG, F.Y.. and WONG, D.F.: ‘Shcing floorplans with boundary
constraint’. Proceedings of Asia and South Pacific Design Automation
Conference, ASP-DAC'Y9, Yokohama, Japan, Feb. 1999, pp. 17-20

10 TANG, X., and WONG, D.F.; ‘FAST-SP: A fast algorithm for block
placement based on sequence pair’. Proceedings of Asia and South
Pacific Design Automation Conference. ASP-DAC0]. Yokohama,
Japan, Jan. 2001, pp. 521-526

tl MA, Y. DONG. 8., HONG, X.. CAL Y. CHENG, C.-K.. and
GU. L: *"VLSI floorplanning with boundary constraints based on
corner block list”. Proceedings of Asia and South Pacific Design
Automation Conference, ASP-DAC0L. Yokohama, Japan, Jun,
2001, pp. 509-514

12 LAL J, LIN, M.-5. WANG. T-C., and WANG, LI.-C.: "Module
placement with boundary constraints using the sequence-pair
represeniation’. Proccedings of Asia and Scuth Pacific Design
Automation Conference, ASP-DAC0), Yokohama. Japan. Jan,
2001, pp. 515-520

13 KIRKPATRICK., S. GELATT. CD. and VECCHIL M.P:
*Optimization by simulated annealing’, Science, 1983, 220, (4598),
Pp. 671680

IEE Proc-Cireuits Devices Syst., Vol 149, No. 4, August 2002

