Generalised Berlekamp-Massey algorithm

M.-H. Cheng

Abstract: The Berlekamp-Massey algorithm is revisited and proven again by using the matrix
representation. This approach makes the derivation and proof of the algorithm straightforward,
simple and easily understood. It further enables the presentation of a generalised Berlekamp—
Massey algorithm, including the conventional algorithm and the inversion-free algorithm as two

special cases.

1  Introduction

The Berlekamp-Massey algorithm (BMA) [, 2] is an

efficient method for determining the error-locator poly-
nomial in decoding the Reed-Solomon and BCH codes.
Massey 2] formulated the problem of finding the error-
locator polynomial from a sequence of syndromes as the
problem of finding a linear feedback shift register (LFSR)
for generating the sequence. The properties of LFSR are
then employed for developing the famous BMA. The
algonithm, however, needs to evaluate a sequence of
inversion operations which vsually require high realisation
complexity, and therefore, the inversion-free BMA [3, 4] is
proposed to overcome this drawback. In this paper we
revisit the derivation of the BMA in [2], and formulate the
problem of obtaining an LFSR for generating the syndrome
sequence using the matrix representation. This approach
makes the derivation of the BMA straightforward and
easily understood, and the proof much more concise; we
further obtain, from the proof, a generalised BMA which
includes the conventional BMA [2] and the inversion-free
BMA (3, 4] as two special cases. Note that previously the
matrix approach [5] has been taken for describing the
BMA, but it focuses merely on the conventional BMA and
does not fully explore the benefits of this representation.

2 LFSR

Consider a general linear feedback shift register (LFSR) of
length L with ¢;#0 shown in Fig. 1, which generates an
infinite data sequence sg, §), -, 8.1, Sz, The first L
~data, g, 81, ,85.-1, of the sequence are the
initial data stored in each of the L cascaded registers; the
data sequence after S;_; should satisfy the following
relation:

L

E Cisj—i = 0,

=0

Therefore, to design an LFSR of length L for generating a
sequence with the first N data equal to so, s1,- -+, 581, if
N<L, using initial data setting can readily realise the
function. If N> L, however, in addition to initial data
setting, realising the function further requires the LESR
with coefficients cq, ¢y, -+, €1, €o # 0, satisfying the equa-
tion below, in a matrix form:

Fig. 1 Linear feedback shift register
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One simple, important and useful property of an LFSR
for developing the BMA is shewn and presented in theorem
1 of [2], restated here and proven again using the matrix
representation. The proof below, in essence, is identical to
that in [2]; this proof, in my opinion, is much mote concise,
straightforward and clear, and thus more easily grasped.

Theorem I of [2]: 1f some LFSR of length L generates the
sequence  sg, §1,--,Sv—1, but not the sequence
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S0, 1,7 ,SN~1, v, then any LFSR that generates the
latter sequence has length L', satisfying

L>N+1-L (3)

Proof: For L>=N, the theorem is trivially true. Hence,
assume that L<AN. Let the former and the latter
LFSRs be with coefficients cg, ¢y, - ,c, co# 0, and
€y €y ey, € £ 0, respectively. The first LFSR will
satisfy the equation

50 8¢ N 1) 0
Cr
R §2 A TR
Cr—1 .
CF s @
SNelwL  SN—L Tt SNl e 0 o
SN-L  Sn—p41 SN d#0
Note that ¢ is nonzero, because otherwise the LFSR
generates sq, §y, -+, Sy. since the second LFSR generates
50,51, , 8N, it satisfies the following relation,
50 M s Sp 1] 0
CLr
5| 52 T Spg ’ 0
Cpry .
=5
Sy—1-L Sa—1s o SN y 0
CU 0
SN-Lf SN-I41 SN

Assume first that I/ <N+ 1—L, or equivalently N—1/> L,
When N—L'z L, the matrix in (5} has its number of rows
larger than L; hence we can multiply both sides of (5) on the
feft by the following row vector: )

{07"‘10: Cry Cpmy, e :CU}

——

N—Li—L

This yields 0 on the right-hand side and, using the result of
(4) deyy, on the left side. However, dej, is not equal to zero,
and the assumption L' < N+ 1—L, is therefore not valid, so
the result L' > N+ 1—L is proven.

Let L, be the minimum of the lengths of all the LFSRs
that can generate sg, 1, -+, 8.—. Obviously, L, 1s mono-
tonically nondecreasing with increasing ». With this
property and the result of theorem 1, it is obtained in [2]

that if some LFSR of length L, generates sg, §1,- -, 8,-1
but not sg, $1, -, S4—1, S», then
Loy > max[L,, n+1—L,] (6)

3 Berlekamp—Massey algorithm

The conventional BMA is presented in [2] not only to
provide a way for computing an LFSR of the minimum
length L, for genecrating sq, si, -+, 5,1 for any k>0, but
also to show that the inequality in (6) is in fact an equality,
L.E.

Lyoy =max[Ly, k+ 1 — Ly (7)

The proof presented here follows the procedure used in [2]
but uses the matrix representation. The resulting algorithm
is more general to include the conventional BMA and the
inversion-free BMA as two special cases.

The proof of {7) is achieved by induction. Assume that L,
and 1ts corresponding LFSR have been found and satisty
(MDfork=1,2, -- n Then we shall prove that £, also
satisfies (7) by showing that the corresponding LESR can be
computed. Let an LFSR of the minimum length L, with

cocfficients cf)”), c(l"),- . ,c(L’;) be denoted by a row vector

¢ = fef, e )] (8)
This LFSR generates sg, 81, --,5,—1; il also generates sy,
Sy, -, Sa_1, Sx if d, in the following equation is equal to
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7ero:
50 51 SL, C‘S_") 0
$1 §2° e Syl () 0
C; .
: B =0 (9)
Sp—1-L, Sa—L, Sn—1 ('n) 0
Sn—Ln Sn—L,+1 Sy “o d,

Hence, if 4, is cqual to zero, then [,,,=1I, and
L= If d, is not equal to zero, we shall provide
below a way for computing ¢ " such that (7) is proven.
The following information is needed for computing the
LFSR. Let m be the sequence length before the last lengih
change in the minimal-length registers, i.e.

L <y (10)
Lm+l :Lu (”)
=m+1—-L, {12)

Note that the above relation is obtained by using (7) and
because the length is changed. Moreover, because a length
change is required, the LFSR of length L, with coefficients

c((,"'), c%m), v--,cg:), cém) £ 0, generates Sp, ;.- -, Sm_1, but
not sg, §1,+ 7, 8m_1. Su; thus, in matrix form:
S 5 8, o
L
51 52 MR Y A | (m}
. . Cra1
Sp—1—Lm Smi—L,, mt Sm—1 (:m)
Sl Smlpl 0" Sm 0
0
0
= : (13)
0
dn # 0

We'then show in the following that for either L, =L, or
L, 1=n+1-L,, the corresponding LFSR ¢ can be
computed.

() L+ =L, When L, ,y=L,, by (7) it means that L,>

n+1-L, Since L, =m+1-L,, as shownin (12), m—L,, >
n—L,. Hence, we can write down the following equation:

[ 30 1 Ce s,
S $2 S St
Sa—1-L,  Sn-L, cr Sael
L Su-1, Sn_t,+1 - S
0 i
Ly~Ly+m—n
0
cff:) 0
o 0
L—t )
Lm + l pr— . (14)
: 0
Am)
K dw # 0
¢
D opn—m
L 0 |
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which is obtained by extracting n+ |— L, equations in the
lower part of (13), enlarging the resulting matrix to make it
identical to the matrix in {9), and concatenating zero vectors
under and over the column vector. Note that (14) can be
formed to include equations in the lower part of (13}
because m—L,,>rn—L,. Since the matrix in (9) and the
matrix in (14) are identical, multiplying (9) by k, and
multiplying (14) by &,,,, and then adding them together yield

S0 51 v SL,,
S 52 R Y S
Sp—l—L, Spmly A PP
L Sn—t, Sp—L,+1 S
-
0
4 < | [
0
(n) ()
[ Cy
I I I =|: (15) .
C'((]”) Cg”’)
0
L o 1)
when the scalars k,, &, satisfy the relation,
kndn = 7kmdm (16)
Therefore, an LFSR with length L, = L, for generating
S, §1,...,5, can be obtained,
Ly—Lp+m—n
Y k™ 4 o [0,---,0, ¢, 0, 0] (17)
LA

Note that since 4, and 4, are all non-zero, the only
requirement for choosing &, and %, is that the condition
(16) be met. Therefore, any choice of k,, k,, satisfying
kofky, = —d/d, results in a method for computing the
LFSR; this flexibility, discussed later, makes the developed
algorithm more generalised.

(i) Lo =n+1-L,; Since L,=m+1-L,, we thus have
n—1I, 1 =m—L,. Note that the LFSR in this case is of
length 1+ ; (13) is then modified by entarging the matrix of
size from (i+m—L)«<(1+L,) to (1+m—L,)
x(1+1L,5) and concatenating the zeros in the column
vectors, yielding the equation:

r Cim) 1
L ()
So hi| SLo C
! B T2 o
5 82 Shppi+1
y
c((;:)
Sr— =Ly Sn—Lugi T Sn—1 0
St Sn—Lppe+1 e Sn : n—m
0
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S | (18)

A 0

Also extracting 1 +r—1L, 4+ equations in the lower part of
(9), enlarging the resulting matrix to make it identical to the
matrix in (18), and concatenating zeros in the column
vector, we have:

80 81 - Sl_,,+|
Sl 52 Sl—n+l+|
Sne1 =Ly Sn—Lyy e Sp—1
L Sn—Luyt SneLyp4l 7" Su
[0 1
Ln+l — Ly 0
0 0
iy =] (19)
CS:)—'I V4L 0
: " dy # 0
J(n}
L ¢ |

Note again that (19) can be formed to include equations in
the lower part of (9) because in this case n—L,2n—L, 1.
Similarly, choosing scalars &, and £, that satisfy (16),
multiplying (19) by k,,, multiplying (18} by k., and adding
them together, we have:

[ s 3 s
5| s s
Sn—1—L, Sp-Lpyy I Spe]
L Su—L,4 Sumlpp4l T Sn
- 0 ~ |— Cg:) 3
C.E_m)ll 0
0 [\
C(ﬂ) . ‘
Ly Ly + ks C(m) =|: (20)
1) 0
Cr,—1 0 0
: : 0
L L] [ o]

Therefore, an LFSR with length £,.; for generating

80, $1,+ 5., In this case, can be computed as follows,
O+ — ™0, -, 0] [0, (m)
c n[‘ gl : +km 3 :O:C ] (2])
Ly =L n—m

The result (7) is thus proven and a generalised algorithm for
computing an LFSR for generating the syndrome sequence
is provided.
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Table 1: Hlustrative example

Iteration Conventional BMA Inverse-free BMA New approach
n=0 V=11 d¥=[1] ¢ =11
=1 [, 01+ /=)0, 1] #[1,0]+2°[0, 1] (1, 0)+ «°[0, 1]

= 11"] = g™ — [mi%’ an =" — [‘13‘ “0] PR

n=2 1, =, 0]+(oc"/x )o. 0, 1] . a®o?, 2%, 0]+ 2*[0, 0, 1) 2*[+, o, 0] +2°(0, 0, 1]
=11, 4, o] = R S0, it o] = e

n=3 [1, %%, 2®] -+ (2/0)[0, 1, 2] 2, 2%, a*] + 50[0, ¥, of] 3[4, o, o®]+ £°[0, &2, 2°]
={, =e¥ = [, o, &%) = e® =[3 o, 2] =¥

3.1 Generalised algorithm

The detailed flow of the generalised algorithm is not listed
here because it is mainly identical to that in [2], except that
in computing the LFSR using (17) or (21}, the flexibility for
choosing k, and k,,, is provided. Therefore, the algorithm is
turned into the conventional BMA [2] if we select &, = 1 and
k= —d,jdy; this choice, of course, should satisfy (16).
Note that the inversion operation required in the conven-
tional BMA is in evaluating the scalar k,. Also, the
algorithm becomes the inversion-ree BMA [3, 4] when
k,=d,, and k,,= —d,; this algorithm avoids the inversion
operation, but requires, however, a larger number of
multiplications in evaluating (17) or (21). Note that in each
of the above twa special cases, k,, and k,,, are chosen from d,,
and d,, at each iteration according to only one fixed
relation. The generalised algorithm, however, allows at each
iteration a varying choice of k,, and k,, only if their values
satisfy (16). We give an example below to illustrate that this
flexibility may enable further simplification for realisation
or impiementation of the algorithm.

3.2 An example

Consider a (7, 3) Reed-Solomon code over GF(2%) using
p(x)=1+x+x* as the primitive polynomial, and o as its
primitive field element. The error polynomial in this
example is given by

efx) = o + ax® . (22)
Hence, the syndromes can be obtained:
so = e(a) = o (233
=ela?) =1 (24)
52 = e(e’) = o (29)
=e(e*)=0 (26)

The main operations in the iteration of the conventional
BMA, inverse-free BMA, and one realisation of the

proposed approach for the above example are listed in
Table 1. Each of the three algorithms results in a correct
error-locator polynomial. Note that in the new approach
a',,,urx and dn_a at iteration n=2; here we choose
ky=a", k,,= —a not only to satisfy (16) but also to save
one mulhpllcahon in k2%, o, 0] because ko' =o' =1.

Similarly, d,,=«a*, d,=« at iteration n=3, then k,,noc

k= —o are chosen to save one muitlpllcd.txon in k,[o°, 04
o”] because k,a*= 1. Therefore, a sensible choice of &, and
ky, in the iteration may lower the realisation complexity of
the algorithm.

4  Conclusions

The BMA is revisited and shown by using the matrix
representation. This treatment is straightforward, concise
and clear, making the algorithm easily understood. The
approach further enables us to present a generalized BMA,
including the conventional BMA and the inversion-free
BMA as two special cases. Therefore, the approach of using
the matrix representation and the developed algorithm, with
its simplicity and generalisation, are useful for under-
standing and implementing the BMA.
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