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Abstract: The BerlekampMassey algorithm is revisited and proven again by using the matrix 
representation. This approach makes the derivation and proof of the algorithm straightforward, 
simple and easily understood. It further enables the presentation of a generalised Berlekamp 
Massey algorithm, including the conventional algorithm and the inversion-free algorithm as two 
special cases. -, 

1 Introduction 

The Berlekamp-Massey algorithm (BMA) [ I .  21 is an 
efficient method for determining the error-locator poly- 
nomial in decoding the Reed-Solomon and BCH codes. 
Massey 121 formulated the problem of finding the error- 
locator polynomial from a sequence of syndromes a s  the 
problem of finding a linear feedback shift register (LFSR) 
for generating the sequence. The prnperties of LFSR are 
then employed for developing the Rinous BMA. The 
algorithm, however, needs to evaluate a sequence of 
inversion operations which usually require high realisation 
complexity, and therefore, the inversion-free BMA [3. 41 is 
proposed to overcome this drawback. In this paper we 
revisit the derivation of the BMA in [2], and formulate the 
problem of obtaining an LFSR for generating the syndrome 
sequence using the matrix representation. This approach 
makes the derivation of the UMA straightforward and 
easily understood, and the proof much more concise; we 
further obtain, from the proof, a generalised BMA which 
includes the conventional UMA [2] and the inversion-free 
BMA [3, 41 as two special cases. Note that previously the 
matrix approach [SI has been taken for describing the 
BMA, but it focuses merely on the conventional BMA and 
does not fully explore the benefits of this representation. 

2 LFSR 

Consider a general linear feedback shift register (LFSR) of 
length L with co#O shown in Fig. 1, which generates an 
infinite data sequence so, sI . . .  i sL_I, sL: .... The first L 

-data, so,  SI,... ,sL-l ,  of the scquence arc the 
initial data stored in each of the L cascaded registers; the 
data sequence after S’-l should satisfy the following 
relation: 

Therefore, to design an LFSR of length L for generating a 
sequence with the first N data equal to so, SI:. ’ .  , . s N - I ,  If 

N I L ,  using initial data setting can readily realise the 
function. If N > L ,  however, in addition to initial data 
setting, realising the function further requires the LFSR 

tion below, in a matrix form: 
with coefficients eo: el:. . . .  cL,  co # 0, satisfying the equa- 

....................................... 

................. 9 
Fig. 1 Linmr fe&uck .s/# r @ t w  

One simple, important and useful property of an LFSR 
for developing the BMA is shown and presented in theorem 
I of [2], restated here and proven again using the matrix 
representation. The proof below, in essence, is identical to 
that in [2]; this proof, in my opinion, is much more concise, 
straightforward and clear, and thus more easily grasped. 
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so, SI,...,S,V-I, sN. then any LFSR that generates the 
latter sequence has length L', satisfying 

L' 2 N i- I - L 

Proof' For L>N,  the theorem is trivially true. Hence, 
assume that L I N .  Let the former and the latter 
LFSRs be with coefficients c ~ ,  e l , .  . . , CL, en + 0, and 
e' n: c; , . . , cis, e; # 0, respectively. The first LFSR will 
satisfy the equation 

(3) 
SI ' . .  0 -  

0 
Sn 

91 s> ' . .  Sl..+I [!,) 
CL,-I - 

$1 - .&. 

. .  j 
n S n 1 - L .  S,-L. " '  s.-1 

.S"-l," S,,-L.tI " '  s. . 

Note that rl is nonzero, because otherwise the LFSR 
generates so, S I :  . .  . .s,". Since the second LFSR generates 
SO,SI, . . .  ,s,v, i t  satisfies the following relation, 

(9) 

IR1 

Assume first that L'<N+ 1-L. or equivalently N-L'zL. 
When N-L'>L, the matrix in (5)  has its number of rows 
larger then L; hence we can multiply both sides of (5 )  on the 
left by the following row vector: 

[ O ; . - . : O :  C L ,  CL-I:...;CO] - 
,\,-L'-L 

Ths yields 0 on the right-hand side and, using the result of 
(4) de; on the left side. However, dcb is not equal to zero, 
and the assumption L'<N+ I -L, is therefore not valid. so 
the result L '>N+ I -L  is proven. 

Let L,, be the minimum of the lengths of all the LFSRs 
that can generate SO,  S I , .  . . r ~ ~ n - l .  Obviously, L,, is mono- 
tonically nondecreasing with increasing n. With this 
property and the result of theorem I ,  it is obtained in [2] 
that if some LFSR of length L, generates SO, S I ,  . . . , sn-1 
b u t n o t s o ~ s ~ , . . . , s " - ~ ~ . ~ ~ ,  then 

L,+I 2 max[L,, n + I - L,,]  (6) 

3 BerlekampMassey algorithm 

The conventional BMA is presented in [2] not only to 
provide a way for computing an LFSR of the minimum 
length Lk for generating S O ,  s i  ' .  . sli-l for any k>O, but 
also to show that the inequality in (6) is in Fact an equality, 
i.e. 

Lk+l = max[Ln: k + 1 - Lk] (7) 
The proof presented here follows the procedure used in [2] 
but uses the matrix representation. The resulting algorithm 
is more general to include the conventional BMA and the 
inversion-free BMA as two special cases. 

The proof of (7) is achieved by induction. Assume that Lk 
and its corresponding LFSR have been found and satisfy 
(7) for k = I ~ 2: . . . ~ n. Then we shall prove that L,,+ also 
satisfies (7) by showing that the corresponding LFSR can be 
computed. Let an LFSR of the minimum length L,, with 
coefficients e t ' ,  cy';. . . ~ et! be denoted by a row vector 

= jc!4 0 1  I .  . . . , &")I L. (8) 
This LFSR generates so, SI ~. . . > s , - ~ ;  it also generates so; 
si  ~. . . ~ s,,-I, s,, if d,, in the following equation is equal to 
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('3) 

We then show in thc following that for either Ln+ = L,, or 
L,+, =n+  the corresponding LFSR c('ltl) can be 
computed. 

(i) L,,+, =L,; When L,,+, =L,, by (7) it means that Ln? 
n t l -L , , .  SinceL,,=m+I-L,,,. asshown in (12),!n-L,,,t 
iz-L,,. Hence, we Can writc down the following equation: 

S I  " '  

s> . . .  SL"+I 
sL" 1 

o } L n  - L,, + ni - n 

0 

a i n - -  0 



which is obtained by extracting n+ I-L,, equations in the 
lower part of (13), enlarging the resulting matrix to make it 
identical to the matrix in (9), and concatenating zero vectors 

formcd to include cauations in the lower part of (13) 
- - under and over the column vector. Note that (14) can he 

, ,  

because m-L,,,>n-L,. Since the matrix in (9) and the 
matrix in (14) are identical. multiplying (9) by ~ k ,  and 
multiplying(14) by k,,,, and [henadding them together yield Also extracting 1 +n-L,,+i equations in the lower Part of 

(Y), enlargng the resulting matrix to make it identical to the 
matrix in (IS), and concatenating zeros in the column 

t krn 

SL,,+I . . .  

. .  

si,- I 

S,? 

. . .  

. . .  

when the scalars k,,, k,,, satisfy the relation, 

k,d, = -k,d, 

Therefore, an LFSR with length L,,+ I = L, for generating 
S O ,  SI.. . . ,sn can be obtained. 

Note that since d,, and d!,, are all non-zero, the only 
requirement for choosing k, and kj,z is that the condition 
(16) be met. Therefore, any choice of k,,, k,,, satisfying 
k,/k?,,= -d,?,/dn results in a method for computing the 
LFSR; this flexibility, discussed later, makes the developed 
algorithm more generalised. 

(ii) L,,, I = I ?  + I - L,; Since L,, = nz + I -Lnr> we thus have 
n-L,,+,=in-L,,,. Note that the LFSR in this case is of 
length L,,+ (13) is then modified by enlarging the matrix of 
size from (1 +m-L,,,) x (1 +LJ to (1 tin-L,,,) 
x (I+L,,+J and concatenating the zeros in the column 

vectors, yielding thc equation: 

veCtor, we have: 
J 

1 

Note again that (19) can be formed to include equations in 
the lower part of (9) because in this case n-L,,>n-L,,+I. 
Similarly. choosing scalars k,, and k,,, that satisfy (16), 
multiplying (19) by k,,, multiplying (18) by k,,,, and adding 
them together, we have: 

Therefore, an LFSR with length L,,+ I for generating 
SO, st, .  . , .sa ,  in this case, can be computed as follows. 

I-..+, -L. n-"? 

The result (7) is thus proven and a generalised algorithm Cor 
computing an LFSR for generating the syndrome sequence 
is provided. 
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Table 1: Illustrative example 

Iteration Conventional BMA Inversefree BMA New amroach 

3. I Generalised algorithm 
The detailed flow of the generalised algorithm is not listed 
here because i t  is mainly identical to that in [2], except that 
in computing the LFSR using (17) or (21), the flexibility for 
choosing k,, and k,,, is provided. Therefore, the algorithm is 
turned into the conventional BMA [2] if we select k,, = 1 and 
k!,<= -d,Jd,,,; this choice, of course, should satisfy (16). 
Note that the inversion operation required in the conven- 
tional BMA is in evaluating the scalar k,,,. Also, the 
algorithm becomes the inversion-Cree BMA [3, 41 when 
k,, = d,,, and k,,, = 4,; this algorithm avoids the inversion 
operation, but requires, however, a larger number of 
multiplications in evaluating (17) or (21). Note that in each 
of the above two special cases, k,, and k,,, are chosen from d,, 
and d8, at each iteration according to only one k e d  
relation. The generalised algorithm, however, allows at each 
iteration a varying choice of k,, and k,,, only if their values 
satisfy (16). We give an example below to illustrate that this 
flexibility may enable further simplification for realisation 
or implementation of'the algorithm. 

3.2 An example 
Consider a (7; 3) Reed-Solomon code over GF(2') using 
p ( s ) =  l+.x+x3 as the primitive polynomial. and a as its 
primitive field element. The error polynomial in this 
example is given by 

Hence, the syndromes can be obtained: 
e(.) = a0x + u6 (22) 

S" = e(.) = a3 ( 2 3 )  

S I  =.(a') = I (24) 

sz = e(a3) = .l (25)  

s3 = .(a4) = 0 (26) 
The main operations in the iteration of the conventinmi 
BMA. inverse-free BMA, and one realisation of thc 

proposed approach for the above example are listed in 
Table 1. Each of the three algorithms results in a correct 
error-locator polynomial, Note that in the new approach 
& = n 3  and d,,=a4 at iteration n = 2 ;  hcre we choose 
k,,=a4, k,,= -a' not only to satisfy (16) but also to save 
one multiplication in k,[a3, E", 01 because k,,x3=n7= 1. 
Similarly, d),, = $, d, = 3 at iteration n = 3, then k,, = a': 
k,,= -xu are chosen to save one multiplication in k,,[a", u4; 
a? because knz4= 1. Therefore,.a sensible choice of k,, and 
k,,, in the iteration may lower the realisation complexity of 
the algorithm. 

4 Conclusions 

The BMA is revisited and shown by using the matrix 
representation. This treatment is StrdightfOIWdrd, concise 
and clear, making the algorithm easily understood. The 
approach further enables us to present a generalized BMA, 
including the conventional BMA and the inversion-free 
BMA as two special cases. Thereforc, the approach of using 
the matrix representation and the developed algorithm. with 
its simplicity and generalisation. are useful for under- 
standing and implementing the BMA. 
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