
700 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 12, NO. 8, AUGUST 2002

A Novel All-Binary Motion Estimation (ABME)
With Optimized Hardware Architectures

Jeng-Hung Luo, Chung-Neng Wang, and Tihao Chiang, Senior Member, IEEE

Abstract—We present a fast motion estimation algorithm using
only binary representation, which is desirable for both embedded
system and hardware implementation with parallel architectures.
The key algorithm distinction is that only the high-frequency
spectrum is used. Our experimental results show that it provides
excellent performance at both low and high bit rates. Because
of its binary-only representation, the proposed algorithm offers
low computational complexity and low memory bandwidth
consumption. For multimedia-embedded system design, we fur-
ther investigated specific implementation techniques for several
well-known hardware platforms including Intel x86 processors,
single-instruction multiple-data processors, and systolic array
circuit design. The systolic array architecture requires only single
memory access for both the reference and current frames from the
on-chip memory. Such an implementation provides an optimized
solution with great throughput, while the quality is maintained.
Finally, we show that our binarization methods are closely coupled
to the accuracy of binary motion estimation algorithms. The
binarization and coding efficiencies can be improved using various
filters and binarization methods.

Index Terms—All-binary motion estimation (ABME), binary
motion estimation, fast motion estimation, fast motion search,
multiresolution.

I. INTRODUCTION

I N A multimedia-embedded system, the video-encoding
module contains several major components, including

discrete cosine transform (DCT), inverse DCT (IDCT), motion
estimation (ME), motion compensation, quantization, inverse
quantization, bit-rate control, and variable-length coding (VLC)
encoding, where the most computationally expensive part is the
motion estimation. Generally, motion estimation takes around
50% of the total computational powers for an optimized system.
Thus, further optimizing estimation is critical in cost reduction
for real-timevideo encoding inan embedded multimediasystem.

Many fast-search algorithms have been proposed, including
the three-step search [1], the two-dimensional (2-D) logarithmic
search [2], the conjugate directional search [3], the genetic
search [4], [5], the diamond search [6]–[8], the feature-based

Manuscript received December 2001; revised April 10, 2002. This work was
supported in part by the National Science Council, R.O.C., under Grant NSC
91-2213-E-009-55.

J.-H. Luo was with the Department and Institute of Electronics Engineering,
National Chiao Tung University (NCTU), Hsinchu 30050, Taiwan, R.O.C. He is
now with the Department of Video Imaging Development, Sunplus Technology
Company, Ltd., Hsinchu, Taiwan, R.O.C.

C.-N. Wang is with the Department and Institute of Computer Science and
Information Engineering, National Chiao Tung University (NCTU), Hsinchu
30050, Taiwan, R.O.C.

T. Chiang is with the Department and Institute of Electronics Engineering,
National Chiao Tung University (NCTU), Hsinchu 30050, Taiwan, R.O.C.
(e-mail: tchiang@cc.nctu.edu.tw).

Publisher Item Identifier 10.1109/TCSVT.2002.800859.

block ME using integral projection [9], and subsampled motion
field estimation with alternating pixel-decimation patterns [10].
These various search approaches reduce the complexity at the
expense of motion vector accuracy, which leads to a selection
of only local minimum of mean absolute difference (MAD) as
compared to the conventional full-search (FS) algorithm.

Multiresolution ME techniques [11], [12] perform the search
with a much smaller window from lower to higher resolution
layers. The motion vectors are refined gradually at each layer,
but the search area is identical to that of the FS with much lower
complexity. To further reduce the complexity, binary ME algo-
rithms [13]–[16] were also proposed to significantly decrease
both the computational complexity and bus bandwidth by re-
ducing the bit depth. Based on a binary pyramid structure, a fast
binary ME algorithm was proposed in [16], namley fast binary
pyramid motion estimation (FBPME). The pyramidal structure
of FBPME contains one integer layer at the lowest resolution
(smallest picture size) and three binary layers that contain de-
tail information. FBPME performs the tiled motion search with
exclusiveOR(XOR) Boolean block-matching criterion on binary
layers and MAD on the integer layer. The block matching uses
XOR operations that are much simpler and faster to implement
than MAD operations.

However, the FBPME has open issues that are not addressed
but are resolved in our approach. One of the issues is the use
of the integer layer, which leads to two distortion computation
modules to perform both MAD andXOR operations. It requires
larger code size and more hardware complexity. To address this
issue, we propose a new approach, all-binary motion estimation
(ABME), which uses all-binary representation for all layers.
Another issue is the significant complexity in performing the
pre-processing, including filtering, decimation,binarization,and
interpolation. To address that in ABME, we employ better filters
and integrate several steps into a unified process by removing the
redundant operations. Compared to the FBPME, the single-layer
approach provides much reduction in complexity, and thus the
power consumption for hardware implementation. A fast binary
ME algorithm presented by Natarajan et al. is based on a simple
1-bit transform with conventional search schemes [13]. This
provides single-layer motion estimation that derives the current
and reference blocks. However, the binary representation does
not use a hierarchical structure, as when a hierarchical structure
is adopted, it is more challenging to get a more accurate binary
representation at a lower resolution.

In this paper, we propose ABME based on hierarchical
motion estimation and spatial-temporal correlations between
blocks. ABME adopts a hierarchical layer structure that
captures the spatial characteristics with binary representation,

1051-8215/02$17.00 © 2002 IEEE

LUO et al.: NOVEL ABME WITH OPTIMIZED HARDWARE ARCHITECTURES 701

Fig. 1. Illustration of ABME search strategy withXOR block-matching criterion.

which is derived from simple filtering and decimation opera-
tions. The feature-extraction filters adopt linear and symmetric
characteristics, which are amenable for software processing and
hardware pipelining. For real-time acceleration, we design the
software and hardware pipelining architectures to implement
ABME for bandwidth reduction.

This paper is organized as follows. In Section II, we describe
the proposed fast motion estimation. We focus on pipelined ar-
chitectures including software implementation and hardware re-
alization to improve the speed of ABME in Section III. We also
provide the complexity and bus bandwidth analyzes of the pro-
posed architectures. Section IV shows the experimental results
using MPEG-4 video reference software, and we conclude in
Section V.

II. ABME

In this paper, we propose an ABME algorithm as shown in
Fig. 1. It features low computational complexity, reduced data
bandwidth, simple software optimization and pipelined hard-
ware architectures. The ABME is described with a flowchart, as
shown in Fig. 1, and is implemented with the following steps.

Step 1) Construct the binary pyramid structure.
Step 2) Perform the FSXOR Boolean block matching with a

3 pixel refinement window at the first level.
Step 3) Select the best of the six motion-vector candidates

from the current and previous frames and perform

theXOR Boolean block matching within neighboring
locations for refinement at the second level.

Step 4) Perform the FSXOR Boolean block matching with a
2 pixel refinement window at the last level.

In Step 1, we perform the following three substeps including
filtering, binarization and decimation to build a conventional
pyramid structure with binary levels. Each original pixel is
compared to a threshold, which is computed from an average
of the neighboring luminance pixels, to derive the binary
representation. At the decimation stage, the filtered image
is then subsampled by two in each dimension of the image
to achieve the next layer iteratively. Thus, ABME provides
all-binary edge information without an integer layer, as is
used in FBPME [16]. In this paper, we adopt a three-layer
pyramid structure to balance the computational complexity
and the motion vectors precision.

In Step 2, the FSXOR Boolean block matching with a3 pixel
refinement window is performed to locate one initial motion
vector candidate with a block size of 44. The initial motion
vector candidate is projected to the next binary level with a block
size of 8 8.

In Step 3, based on the spatio-temporal dependencies that
exist among blocks, ABME selects the best 88 motion vector
from six candidates in the current and previous frames using
the XOR matching criterion. The candidate with the minimum
distortion is used as the starting point for further refinement,
with a small window at the second level. Similarly, the resultant

702 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 12, NO. 8, AUGUST 2002

Fig. 2. Combination of binarization and subsampling.

motion vector candidate will be passed onto the next binary
level.

In Step 4, a 2 search window refined search is used to derive
the final motion vector for a block size of 1616.

A. Construction of Binary Pyramids

The precise edge information is extracted based on the spatial
variations within a small local area of an image. The spatial
variations can be extracted with various filters. Assume that an
8-bit representation of the current frameis low-pass filtered
to create a new frame . The construction of each pyramidal
level in binary format is illustrated in Fig. 2

(1)

(2)

with , where is the total number of pyramidal
levels used. The frame is a blurred version of the original
frame with the same size at theth level.

Next, the filtered frame is used to create the binary rep-
resentation of the current frame. The construction of the binary
representation is based on a threshold. The major issue is
how to define the threshold to precisely represent the edge in-
formation in binary format. The edge information can be found
by differencing the original image and its low-pass version. To
compute the binary representation, ABME adopts a novel differ-
encing operation using a specified threshold as computed from
frame , which provides the average spatial variations for the
neighboring area. Thus, the binary representation of theth level
is computed by the following 1-bit transformation:

if
otherwise.

(3)

Finally, the low-pass frame , which contains most of the
spatial information from the original image at the current level,
is used to create the input frame in the next pyramidal level.
To compute the next level, the frame is by decimating every
other pixel to yield the new frame , as described in the
following equation:

(4)

Fig. 3. Six motion vector candidates for Level 2 search of ABME.

(a) (b)

Fig. 4. Illustrations of the check points for fine-tuning at Level 2. (a) Tuning
module. (b) Zerotuning module.

To achieve a tradeoff between the motion vector precision
and the computational complexity, we select a three-level
pyramid for motion estimation. The levels are denoted as
Level 1, Level 2, and Level 3 (original picture size), respec-
tively. Using a simple decimation, the pyramidal levels has
three block sizes of 4 4, 8 8, and 16 16.

B. Block Matching

In ABME, the matching criterion is a bit-wise sum of differ-
ence (SoD)

(5)
where denotes the current binary block at theth
level and denotes the reference binary
block with offset () from the left top corner of the current
block. Since the frame data are in all-binary formats, a simple
XOR operation is used to compute the difference.

Consequently, the advantages of the proposed ME approach
can be analyzed as follows. At Level 1, we perform FS with a
search range of 3 instead of a search range of

, where is the target search range. Thus, with a
smaller window we can get a motion vector covering 16 times
the actual search area. At Level 2, the search algorithm contains
two steps, including the coarse search and fine-tune search. As
shown in Fig. 3, the six motion vector candidates, which come
from the upper right (UR), upper (U), left (L), Level 1 (Lv1),
temporally previous (P) blocks, and the center (C), are consid-
ered for the Level 2 search. The center candidate denotes the
zero motion vector. When all six candidates are equal to zero,
we use the zero motion vector as the final candidate and further
check its eight surrounding check points as shown in Fig. 4(b).
If the six motion vector candidates are different from each other,
the coarse search stage in Fig. 1 is used to choose the best mo-
tion vector based on the minimal SoDs. The best candidate is
passed onto the fine-tune search, where the four neighboring

LUO et al.: NOVEL ABME WITH OPTIMIZED HARDWARE ARCHITECTURES 703

TABLE I
LOW-PASS FILTERS ADOPTED IN THIS PAPER

positions as illustrated in Fig. 4(a) are checked. The best mo-
tion vector, derived from the fine-tune stage, is the output of
Level 2, and which is passed onto Level 3 for further refinement
within a search range of2. To further reduce the computational
complexity, an optional counter is used to register the repeat oc-
currence of motion vector for each macroblock. If the motion
vectors remain identical for the past four frames, we assume
the current macroblock is static and skip the motion search and
only do a refinement within a smaller search range of1. With
all-binary representation,XOR operation, and a smaller search
window, we can improve the speedup of the motion estimation
with only minor loss of the reconstructed image quality.

C. Binarization Efficiency

Since the average spatial variation is used to derive the edge
information, the binarization process affects the motion vector
accuracy. Thus, the issue is whether the low-pass filter can really
register the average spatial characteristics, which are used to
compute the threshold for the binarization process in (3).
To resolve this issue, we analyze how various filters affect the
motion accuracy and the reconstructed picture quality. Table I
presents the low-pass filters adopted in this paper. The first set
includes three 2-D filters: , , and

(6)

(7)

(8)

The second set consists of three one-dimensional (1-D) sep-
arable 13-tap Hamming filters with distinct cutoff frequency at
20%, 25%, and 30% of Nyquist frequency. For a further reduc-
tion of the complexity used in (2), every filter of the second set is
a linear-phase FIR filter with coefficients in the form of .
For a 1-D filter with taps, i.e., , the low-

pass frame is computed as

(9)

where

(10)

For instance, a five-tap filter with the coefficients of
can be implemented with only

SHIFT andADD operations. The typical cost of such operations
on various modern computer architectures is one cycle. Thus,
this type of filter can achieve significant speedup over the
original filters, although it is not designed with a specific filter
design methodology. The filters of the second set are as follows
in (11)–(13):

(11)

(12)

(13)

Fig. 5 shows the frequency responses of the filters compared
in this paper. Basically, the low-pass filter with a small cutoff fre-
quency removes less amount of the average spatial variation and
retains more high frequency components in the binary represen-
tation of , as shown in (3). As shown in Fig. 6(a)–(c), the
frame that is extracted with the filters or retains
more high frequency information than the frame that is extracted
with the filter . The additional high-frequency information
retained may increase the precision of the all-binary edge infor-
mation. For practical implementation, there is a need to select a
tradeoff between the filter tap number and coding efficiency. Ad-
ditionally, the complexity of the binarization processes can be re-
ducedwiththeuseof linear-phaseFIRseparablefilters,whichcan
be implemented in a pipelined fashion.

III. PIPELINED ARCHITECTURES: CASE STUDY FOR

SEVERAL HARDWARE PLATFORMS

To demonstrate that ABME is desirable for pipelined archi-
tectures, we investigate specific implementations to achieve

704 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 12, NO. 8, AUGUST 2002

(a) (b) (c)

(d) (e)

Fig. 5. (a)–(c) Frequency responses of Type 1, nonseparable 2-D filters. (d)–(e) Frequency responses of Type 2, 1-D separable, and 13-tap Hamming filters with
sampling frequencies of 20% and 25%.

Fig. 6. All-binary edge information at Level 3 of the pyramidal structure derived by the various filters and binarization process.

pipelined processing for various architectures, which include
general-purpose architectures such as x86, single instruction
multiple data (SIMD) architectures using Intel’s MMX tech-
nology [19] and systolic arrays [20]. In all implementations,
we use the filter in (6) for simplicity. To verify the ef-
fectiveness of our approach over the FS approach, we use the
x86 system and C language for simulations. Finally, we will
compare the computational complexity and bus bandwidths of
ABME to those of the FS approach. Since the initial locations
and the storage units of each level are distinct, the speedup of
the block matching is accomplished level by level with our
proposed method. The level-by-level implementation allows

low memory bandwidth consumption with frequent data access
for block matching.

A. Generic Functional Partitions and Software Implementation

Our pipelined architecture contains three major common
modules including the integrated construction, compact storage
and parallel block matching. For each module, the size and
type of the storage are constrained by the data bins/registers
defined in the individual architecture, which provides various
distinct sizes of data storage devices/registers. To implement
each generic module in an x86 system, the use of C language
provides three basic data bins including INT (32 bits), SINT

LUO et al.: NOVEL ABME WITH OPTIMIZED HARDWARE ARCHITECTURES 705

Fig. 7. Parallel processing of the binarization process. PixelF (x; y) indicates
the pixel at the coordinates (x; y) within the processing frame of thelth pyramid
level. The shadowed circle represents the current pixel to be binarized.

(16 bits), and UCHAR (8 bits). In the Intel SIMD architecture
using MMX technology, for every module, the largest data bin
is a 64-bit MMX register. Unless larger data bin is available, the
optimization processes for this kind of architecture are similar
to that of x86 architectures. For further reductions in memory
bandwidth between the processing units and reductions in
operation counts on both architectures, the use of the largest
data bin is preferable to store the binary representation of
several consecutive blocks in a packed way [21].

1) Integrated Construction:The first module, integrated
construction of the binary pyramid, consists of three processes
including filtering, binarization and subsampling processes.
This module can be enhanced in two submodules including the
boundary partitioning and parallel processing. The basic idea
of the boundary partitioning is to skip the branching decision
on whether the current data is located at the frame boundaries.
The first submodule,boundary partitioning, is achieved by
classifying the frame into the nine regions: four corners, two
boundary rows, two boundary columns, and the interior. The
second submodule,parallel processing, is achieved by loading
multiple sets of pixels that are sequentially stored in registers
with larger size. In Fig. 7, we demonstrate an example of
using the filter to construct the low-pass frame in (2).
Interestingly, the derivation of the low-pass frame using the
filter is equivalent to the computation of the average value
of the neighboring pixels surrounding the check point with a
distance of one.

Assume the frame data are stored in the data bin, named SINT,
under C/C++ environment in x86 system. Fig. 7 demonstrates
an example of processing the pair .
We first load four neighboring pairs, represented as

, , ,
and , from the reference frame into four
32-bit INT registers, which are denoted as , ,

, and . After loading, the summation and rounding
operations can be performed directly, since no overflow or
underflow occurs for the frame data because only 8-bit wide data
are stored in a 16-bit data bin. After summation and rounding, the
results are put back to a 32-bit INT register

(14)

where the value is used for the rounding purpose of
the concurrently processed pixels.

We can derive the threshold for each pixel by extracting the
pair of the values inside the register

(15)

where refers to the logicalSHIFT RIGHT operation. The de-
rived threshold is used for binarization in (3). With this opti-
mization, the construction stage has about a 30% improvement
in speed.

If a larger bin is available, the speedup can be increased by
a factor that equals to the number of the pixels that can be si-
multaneously loaded into a single bin. In the Intel SIMD archi-
tecture using MMX technology, the binary pyramid can be sim-
ilarly constructed with the boundary partitioning and parallel
processing as described previously for x86 architectures. How-
ever, the parallelism achievable based on MMX technology is
almost doubled due to the 64-bit architecture. Based on (14) and
(15), the improvement in speed is 63%.

2) Compact Data Storage: The binary representation of
frame data results in desirable compact storage for the pyramid
layers. At Level 1, each row of a 44 block occupies only 4
bits. Hence, one data bin with 4bits can store the same row
for several sequential blocks. At Level 2, the six candidates
may be located at several distinct and discontinuous spaces
in the memory. The packing of multiple blocks into a single
bin, like the blocks of Level 1, is ineffective to improve the
efficiency. Thus, for both computer architectures, we store each
block of Level 2 with separate data bins. Each block needs eight
8-bit data bins. Using the same concept of Level 1, we pack
every row of the successive 16 16 blocks at Level 3 into
a single data bin of size 16. Note that the widest data bin in
both architectures is only used for speedup of block matching.

3) Parallel Block Matching: The block diagrams for our fast
block matching using all-binary edge information are illustrated
in Fig. 1, and include loading, bit alignment, and (parallel)XOR

block matching. The loading module puts each group of sequen-
tial data into the corresponding bins of larger size for reducing
memory access. Since the frame data in binary format has been
compactly and sequentially stored, the memory access becomes
a simple fetch instruction. Thus, the loading module loads the
current data and the reference data in the search window into
the on-chip memory. As shown in Fig. 1, for each group of four
sequential 4 4 blocks at Level 1, we load the same row of the
current four blocks into a specified SINT register one by one,
and put the corresponding row of the reference blocks into an
INT register one by one in x86 architecture. Thus, the four SINT
registers can be used for following parallel block matching, and
the speedup is increased by about four times in comparison to
the block-by-block matching scheme. The same processes are
employed in the Intel SIMD architecture, except for the use of
64-bit data bins to handle each group of eight sequential 44
blocks at Level 1. Thus, the four MMX registers can be used for
a factor of 8 in parallelism as compared to the block-by-block
matching method.

706 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 12, NO. 8, AUGUST 2002

The bit alignment module synchronizes the reference data in
the search window with the current data. After bit alignment,
(parallel) XOR block matching, Table Lookup, and SoD com-
parison submodules are adopted for finding the motion vector
with the minimal SoD. TheXOR operation is applied to compute
the distortion. To derive the block SoD after theXOR module, we
use a table lookup operation in the Table Lookup submodule, by
counting the number of “1’s” in this temporary register. Finally,
comparing all SoDs, we can determine which motion vector is
the best for each of the four blocks separately in the SoD Com-
parison submodule. While going through all blocks of the cur-
rent frame, the resultant motion vector with the minimal SoD is
selected.

The optimization processes of motion vector search in ei-
ther architecture are similar, except that the 64-bit registers can
handle more successive blocks simultaneously and special in-
structions are used to operate on the registers in SIMD architec-
ture. Thus, only relevant steps in the x86 system are described
in detail to show how to achieve such parallelism. The optimiza-
tion of the (parallel) XOR block-matching modules will be ex-
plained in detail in Level 1. For the remaining levels, the relevant
descriptions are skipped.

• Level 1: Since each block of Level 1 has the initial lo-
cation assigned sequentially, we can simultaneously com-
pute SoDs for four blocks in x86 architecture and de-
rive SoDs for eight blocks with MMX technology in a
row-by-row manner.

Step 1) Loading: Since we process four neighboring
blocks of size 4 4 for the current frame simul-
taneously, 16-bit data is needed to compute the
SoDs for each row. With the search range of3,
the data of the reference frame that needs to be
loaded into a data bin should be larger than or
equal to 22 bits for parallel block matching.

Step 2) Bit Alignment:For the initially loaded data, we
align the reference block with a horizontal offset
of 3 relative to the current blocks at Level 1,
as shown in Fig. 1. To move to the next check
point, the overlapped area bits are reused by right
shifting the bits in the register by one.

Step 3) XOR: The row-wise matching is illustrated in
Fig. 1, where each square indicates a single bit.
Since the SINT contains 16 bits, only the lower
16 bits of the reference register will be compared
with the current data usingXOR. This XOR result
is temporarily stored in another SINT register and
three 4-bitSHIFT and threeAND (as a mask) op-
erations are required to get the SoDs for the four
blocks, respectively.

Step 4) Table Lookup:Diff is a SINT register that stores
the corresponding SoD of the current row of the

th block as computed by

(16)

Fig. 8. Bit alignment to the initial search position for the Level 3 search.

The overall SoD for each block equals the sum of
the SoDs for each row.

Step 5) SoD Comparison:Comparing all SoDs, we can
determine which motion vector is the best for
each of the four blocks, respectively.

• Level 2: For both architectures, we store each block in
separate data bins without packing. For each distinct
motion vector candidate and each predefined check
point, the Level 2 ME computes the block difference in
a row-by-row manner. For the current row, we need not
only load the required bits within the predefined search
range into the registers, but also align the reference data
by shifting the registers bits, which is equal to the
horizontal offset indicated by the current motion vector.
For the consecutive check points in Fig. 4, extraSHIFT

operations are necessary to align the reference data. The
bit alignment process for the Level 2 search is shown in
Fig. 1.

• Level 3: The modules including loading and bit alignment
for Level 3 blocks in x86 architecture are optimized as fol-
lows. In the loading module, one 32-bit register A stores
the same row of the reference data at the blockand the
previous block (). The other 32-bit register B stores
the same row at block (). Both registers contain
partial bits of reference data within the specified search
window, as demonstrated in Fig. 8. To align the reference
data, the horizontal predictive motion vector is initially set
to be 10 as an example. Register A is shifted left by 10,
while register B is shifted right by 6 to reach the initial
search position. We combine the contents of the two reg-
isters with a simpleXOR operation. In the last step, the ref-
erence bits are aligned to match the initial search location

2. When we move to the next location in the same row,
an extraSHIFT operation is needed to synchronize the pair
of data for matching.

LUO et al.: NOVEL ABME WITH OPTIMIZED HARDWARE ARCHITECTURES 707

Fig. 9. Spatio-temporal representation of parallel block matching for each
column of check points using systolic arrays, where each bold dot denotes a
processor element. TheS (:; :) indicates thelth level binary representation
of the current frame at timet. TheS (:; :) present the reference data at the
same pyramid level of the temporally previous frame. For block matching, the
block dimension is set asN � N and the search range is�R. The motion
vector from the current block to the corresponding reference block is indicated
by (u; v).

B. Systolic Arrays

The all-binary representation for each pyramid level reduced
the storage from bytes to bits, which can be stored as
groups of row or column vectors. Since the vectors are consec-
utively stored, we should be able to access the information effi-
ciently through pipelining the binary information and overlap-
ping the processing time for each matching process. Since the
current block is fixed in the search process, the reference data
can be accessed and propagated in the form of pipelines for an
ASIC implementation. In short, it is advantageous to employ
systolic arrays [20] to design the hardware implementation for
ABME.

In Fig. 1, theXOR block-matching module is optimized with
systolic arrays for Level 1 and 3 searches. The realization based
on systolic arrays for each column of check points is shown
in Fig. 9, where the spatio-temporal representation of theXOR

block matching is defined in (5). The binary data of both the
current block and the reference block can be transported into
the processors in an order such that the resultant SoDs can be
computed by summing theXOR block-matching criterion in a
row-by-row manner. For each block of the current or reference
frame, the binary data of each row is stored as a 1-D vector.
Each pair of vectors from the current and reference blocks is
delivered to the processing element (PE) for computing the SoD,
but the current block is further passed to the next PE through the
systolic arrays. Consequently, for each column of check points,
we will obtain () final SoDs, as shown in Fig. 9.

To cover all check points of size , we compute and
compare the SoDs with a pipelined approach, where each PE
will handle a specified row of the reference blocks at the same
column within the search window. Based on the pipelined ap-
proach, we can process each column within the search window
sequentially in time. That is, we check every check point lo-
cated at the first column of the search window and select from
these check points the best candidate with the minimal SoD.

The pipeline scans through the subsequent 2columns using
all PEs in the array, and we obtain the final candidate with the
minimal SoD among all search points, which leads to the resul-
tant motion vector for the current block. The pipelined architec-
ture requires () PEs, cycles, and

memory access to get the reference data
and memory access to load the current data from
the on-chip memory to compute SoDs of each block
with bits, where additional 2 cycles are used for pipeline
initialization and each memory access takesbits of the ref-
erence block and bits of the current block. The gate counts
for constructing () PEs are small, while memory access
efficiency poses the challenge.

To further reduce the latency for the memory access, we pro-
pose a 2-D parallel block-matching architecture using systolic
arrays. The 2-D architecture removes the overhead of loading
the overlapping bits within the successive reference blocks by
simultaneously fetching all the bits within the ref-
erence window into the on-chip memory. From each row of
() bits, we then de-multiplex each group ofserial bits
into the corresponding pipeline. The overall SoD for each pair
of block is computed in a PE, which is implemented with detail
circuits as shown in Fig. 10. The proposed PE performsXOR op-
erations of multiple bits in parallel, computes the number of 1’s
using a decoder and, finally, accumulates the total number of 1’s
as the SoD. The relationship between the PEs, the current block,
and the reference block can be represented as the block diagram
in Fig. 10. The dimension of the input blocks to each PE is re-
lated to the block dimensions of the current pyramid level. For
example, the block dimension is 4 for Level 1 and is increased
to 16 for Level 3. With the 2-D parallel architecture, we require

PEs, () cycles, and () memory access
to get the reference data andmemory access to load the cur-
rent data from the on-chip memory to derive SoD for a search
range of value and each block with bits. Each memory ac-
cess fetches () bits of the reference block and bits of
the current block from the on-chip memory. As compared to the
1-D pipelining architecture, the speedup is () times the
computation of SoDs, and each reference data is fetched from
the on-chip memory just once, which is the minimal memory
access to load the bits into the system. Since ABME requires a
small search range for each level, the increase of gate count in
realizing the 2-D pipelining architecture is still within a reason-
able range. Although we provide an implementation example, it
is possible to be more efficient in mapping ABME onto a phys-
ical hardware like ASIC or FPGA chips.

C. Complexity Analysis and Bus Bandwidth

In this section, we provide the analysis of computational
complexity of ABME on x86 architectures with and without
the alternative implementation of parallelXOR block-matching
module in Fig. 1 using the 2-D systolic arrays. The analysis is
based on how a single block computes its motion vector and
the memory access per second for a particular frame rate. The
notations of , , , and (fps) denote the frame width,
frame height, search range and frames per second, respectively.
The block size is assumed to be 1616, which is the most
commonly used in video compression standards.

708 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 12, NO. 8, AUGUST 2002

Fig. 10. Detailed implementation of parallel 2-D block matching. A “Decoder” is used to compute the number of 1’s within each input data and “D” is the delay
element. The SoD stored in the delay element of the inner loop is accumulated with all outputs from the Decoder. The overall SoD of concurrently matchedblocks
is compared by a comparator, which is not shown here. The motion vector with minimal SoD will be found after going through all of locations within the search
areas. TheS (:; :) indicates thelth level binary representation of the current frame at timet. TheS (:; :) presents the reference data within the same pyramid
level of the temporally previous framet�1. For block matching, the search range is�R. The motion vector from the current block to the corresponding reference
block is indicated by (u; v). Delay element “D” next to the decoder stores the accumulated SoD for the corresponding position within the search area.

1) Computational Complexity Analysis:For each block, the
traditional FS using sum of absolute difference (SAD) needs to
process all 4 search points within search window. Each loca-
tion takes operations, where the three operations consist
of one subtraction, one absolute value and one addition opera-
tion for each pair of data. Hence, the computational complexity
of FS to obtain a single motion vector is approximated as

(17)

operations per macroblock. Based on the theoretical best-case
scenario for FS using the 32-bit register in the x86 system, ob-
taining a single motion vector is approximated as

(18)

operations per macroblock. For the same search area, the total
operations required for the proposed architecture without the
use of 2-D systolic arrays, labeled as , to compute
a motion vector are

(19)
per macroblock, where , , , and represent the
operation counts for the pyramid construction and the motion
search at each level of the binary pyramid, respectively. The
details of derivation for these four counts in (19) are described
in Appendix A.

The use of the 2-D systolic arrays for ParallelXOR

block-matching modules at Levels 1 and 3, denoted as
, reduces the total operations per macroblock

to

(20)

Comparing the values of , , and
, we find that our algorithm outperforms the FS, which

is consistent with the computational complexities shown in
Table II for various search ranges.

2) Memory Bandwidth Analysis:In this section, we analyze
total memory bandwidth for loading the data from the current
and reference frames. For the FS, the total bandwidth consump-
tion in bytes per second is

(21)

where the and is the memory bandwidth to ac-
cess the data for the current and reference frames. Assume that
the current block is loaded simultaneously into on-chip memory
with 16 16 UCHAR bins. Thus, to access the data for the cur-
rent frame of size requires

(22)

bytes.

LUO et al.: NOVEL ABME WITH OPTIMIZED HARDWARE ARCHITECTURES 709

TABLE II
COMPUTATIONAL COMPLEXITIES AND BUS BANDWIDTHS OF FS AND ABME WITH AND WITHOUT HARDWARE ACCELERATION.

FRAME SIZE ISW �H = 352� 288 AND THE FRAME RATE F IS 30 FPS

Assume that the reference block is loaded simultaneously
into on-chip memory with UCHAR bins. When we
move to the next block, the data for overlapped area are reused
and the bandwidth required is . Thus, to com-
pletely load the data from the reference frame needs additional

(23)

bytes. The first term denotes the first search window, which
takes more operations due to the memory stall in the initializa-
tion stage of pipelining. Since the rest of the search windows are
overlapped with the previous one, fewer operations are needed.

For ABME, the total memory bandwidth consumptions in
bytes used in x86 system and in SIMD architecture are, respec-
tively

(24)

(25)

The indicates the bandwidth consumption for loading
the current frame. The remaining terms , , ,
and denote the bandwidth required for accessing the
reference frame. The memory bandwidth is derived with
specific conditions and the detailed derivation is described in
Appendix B.

Our approach can significantly reduce the bus bandwidth
as compared to the FS. As the search range is increased, the
memory bandwidth for the FS is increased dramatically, as
shown in (23), and those for the ABME are increased slightly
only due to the increased and . As opposed to the high
sensitivity with various to the memory bandwidth for the FS,
we find that ABME is insensitive to the search range variation,
since the frame size at Level 1 is the smallest and the data
from the consecutive blocks can be stored in a larger bin. Such
superior performances are consistent with the observations, as
shown in Table II.

IV. EXPERIMENTAL RESULTS

To show the performances of the proposed algorithm over the
FS, we use MPEG-4 reference video encoder and employ a mac-

roblock with size 16 16 for block matching. The performance
is analyzed based on the following factors: the video sequences,
the encoding conditions, various decimation filters, the ME ap-
proaches, and the visual quality of the reconstructed video.

The video sequences with CIF format including Coastguard,
Foreman, and Akiyo, and the sequences with QCIF format
covering Container and Mother–Daughter are used for testing.
The six sequences characterize a variety of spatial and motion
activities. We further test two CCIR601 sequences, including
Table Tennis and Stefan, which consist of fast moving objects.
The fast moving objects within a picture of larger size are
adopted to examine the performance and the computational
load of ABME approaches. Each source sequence consists of
300 frames.

As for the encoding conditions, each sequence is encoded
under the conditions recommended by MPEG committee [17].
The target frame rate is set as 10 fps and the bit rates range from
10 kbps to 2 Mbps for various sequences. For finding the precise
motion vector, the search range is16 for each sequence and
the range is increased to32 for the CCIR-601 sequences.

As for the decimation filters, the 2-D filters and 1-D sepa-
rable filters as summarized in Table I are used to understand the
impact of the individual filter on the binarization and coding ef-
ficiency of ABME.

ABME and FS are used for comparison based on the coding
efficiency and the visual quality of the reconstructed video in
PSNR values.

Based on the experimental results in Tables II and III and
Fig. 11, we found the following.

1) As compared to the FS, the proposed approach has sig-
nificantly reduced the computational complexity and the
memory bandwidth. The loss of the reconstructed video
quality for slow moving sequences like Mother–Daughter
and Akiyo is negligible, while for high motion sequences
such as Foreman and Stefan, the loss is moderate. The
experiments using the high motion sequences and large
picture sizes show that the proposed approach has out-
standing coding efficiency with a gradually increased cost
for computation.

2) As the number of taps of the low-pass filter is increased,
the accuracy of binary motion search is increased. This
is because the long tap of the low-pass filter can capture

710 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 12, NO. 8, AUGUST 2002

TABLE III
PERFORMANCECOMPARISON OFABME VERSUSFS BASED ON THEVARIOUS ENCODING CONDITIONS, FILTERS, AND VISUAL QUALITY IN PSNR

(a) (b)

Fig. 11. Comparison of the reconstructed frame from the (a) FS and (b) ABME
approaches.

more precise average spatial variation so that the 1-bit
information left in the pyramid is more meaningful for

block matching. Furthermore, for the 1-D separable fil-
ters, smaller cutoff frequency will increase the binariza-
tion efficiency by leaving more detailed information into
the pyramid levels. Finally, the large taps will increase
the computational complexity. Thus, there is a tradeoff
between the motion accuracy and the computational cost.

V. CONCLUSIONS

According to the experimental results, the proposed ABME
shows satisfactory visual quality. It not only takes the benefits
of low computational complexity and low memory bandwidth
consumption, but also insensitivity to search range increase. We

LUO et al.: NOVEL ABME WITH OPTIMIZED HARDWARE ARCHITECTURES 711

also demonstrate that with better binarization methods, the vi-
sual quality can be further improved. With this feature, our al-
gorithm can provide flexible configurations. System designers
can choose the binarization methods depending on the available
memory, computational power, display resolution, or data bus
bandwidth provided by their system. For example, the character-
istics of wireless mobile phones have less computational power,
lower display resolution, and less available memory. Thus, the
smallest filters should be used for the best execution speed,
while its visual quality is still acceptable for the low-resolu-
tion display. On the other hand, for a faster machine such as
today’s personal computers or high-end DSP systems, a filter
with better frequency response can be applied, since its compu-
tational power can afford more complexity. In addition, various
optimization methods can be developed for specific platforms
with different register sizes. Thus, ABME is more flexible than
other motion estimation algorithms.

We also demonstrated platform-specific optimizations for
several hardware architectures, including x86, SIMD using
MMX, and systolic arrays. From the operation counts, we
showed that ABME is very desirable for software imple-
mentation on a general-purpose processor system. We also
show that ABME can be realized with a parallel-pipelined
implementation for ASIC design and allows tradeoffs between
Silicon area, power consumption and visual quality during
the hardware design phase. Thus, we conclude that ABME is
versatile and effective for multimedia systems in both software
and hardware platforms.

APPENDIX

A. Complexity Analysis

With a search window of size 4 and XOR operations for
matching a macroblock of size 1616, the proposed fast mo-
tion estimation approach needsoperations in total as shown in
(19). The search range of Level 1 is reduced to and
the block sizes from Levels 1 to 3 are 4, 8 , and 16, respec-
tively. To construct the binary pyramid as defined by (14) and
(15), the binarization process requires 4.5 operations per pixel
on the average. Thus, to build the binary pyramid requires

(26)

operations per block.
As for the block-matching process, because the data storage

techniques are different from level to level, the operations
required for each level are analyzed individually. In Level 1,
each pack of four blocks stored in the four SINT bins forms
a matching unit, which contains the data in the current row
where the four blocks are sequentially stored. To complete the
derivation of the four SoDs, it takes 15 operations for every
row of the block within the search window. The 15 operations
include one register shifting forXOR, three AND operations,
and threeSHIFT operations to extract the four bit-wise SoDs,
four table lookup operations, and four addition operations
to accumulate the SoDs of the four macroblocks processed

concurrently. Hence, the total operations at Level 1 for each
macroblock are

(27)

At Level 2, we analyze the worst case, which means the six
candidates plus four tuning locations are nonoverlapped. Basi-
cally, there are ten locations that need to be checked in this case.
Note that eight UCHAR bins store each row of a Level 2 block.
To drive the final SoD, it takes four operations for each location,
where the four operations including oneSHIFToperation for one
XOR, one table lookup and one addition operation to sum the
block SoD. Thus, this level costs

(28)

operations per block.
The computational analysis of Level 3 is similar to Level 2,

but with a larger block size and a fixed search range. The number
of search locations is 25 and 16 SINT bins cover all rows of a
Level 3 block of size 16 16. Thus, the Level 3 search needs

(29)

operations per block.
Thus, the total operations required for finding a motion vector

using the proposed algorithm is

B. Bandwidth Analysis

For the proposed algorithm in x86 systems without hardware
acceleration using the 2-D systolic arrays, the memory band-
width (bytes) to load every block of the current frame is

(30)

Based on the reusability of the data already in the registers,
the memory bandwidth required for each pyramid level to load
reference data within a search window per frame is

(31)

(32)

(33)

712 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 12, NO. 8, AUGUST 2002

Thus, the total memory bandwidth consumption of the pro-
posed algorithm is

When theXOR matching modules at Levels 1 and 3 are im-
plemented with the 2-D systolic array architecture, the memory
bandwidths required for loading reference data within a search
window per frame are

(34)

(35)

respectively.

ACKNOWLEDGMENT

The authors are deeply indebted to the anonymous reviewers
for their insightful comments.

REFERENCES

[1] T. Koga et al., “Motion-compensated interframe coding for video con-
ferencing,” inProc. Nat. Telecommunications Conf., Nov./Dec. 1981,
pp. G 5.3.1–G 5.3.5.

[2] J. R. Jain and A. K. Jain, “Displacement measurement and its application
in interframe image coding,”IEEE Trans. Commun., vol. COM-29, pp.
1799–1808, Dec. 1981.

[3] R. Srinivasan and K. R. Rao, “Predictive coding based on efficient mo-
tion estimation,”IEEE Trans. Commun., vol. COM-33, pp. 1011–1014,
Sept. 1985.

[4] K. Chow and M. L. Liou, “Genetic motion search algorithm for video
compression,”IEEE Trans. Circuits Syst. Video Technol., vol. 3, pp.
440–445, Dec. 1993.

[5] C. H. Lin and J. L. Wu, “A lightweight genetic block-matching algorithm
for video coding,”IEEE Trans. Circuits Syst. Video Technol., vol. 8, pp.
386–392, Aug. 1998.

[6] J. Y. Tham, S. Ranganath, M. Ranganath, and A. Kassim, “A novel un-
restricted center-based diamond search algorithm for block motion esti-
mation,”IEEE Trans. Circuits Syst. Video Technol., vol. 8, pp. 369–377,
Aug. 1998.

[7] A. M. Tourapis, O. C. Au, M. L. Liou, G. Shen, and I. Ahmad, “Opti-
mizing the MPEG-4 encoder- advanced diamond zonal search,” inProc.
2000 Int. Symp. Circuits and Systems, vol. 3, Geneva, Switzerland, May
2000, pp. 674–677.

[8] S. Zhu and K.-K. Ma, “A new diamond search algorithm for fast block-
matching motion estimation,”IEEE Trans. Image Processing, vol. 9, pp.
287–290, Feb. 2000.

[9] J. S. Kim and R. H. Park, “A fast feature-based block matching algorithm
using integral projections,”IEEE J. Select. Areas Commun., vol. 10, pp.
968–971, June 1992.

[10] B. Liu and A. Zaccarin, “New fast algorithms for the estimation of block
motion vector,”IEEE Trans. Circuits Syst. Video Technol., vol. 3, pp.
148–157, Apr. 1993.

[11] P. J. Burt and E. H. Adelson, “The Palladian pyramid as a compact image
code,”IEEE Trans. Commun., vol. COM-31, Apr. 1983.

[12] M. Bierling, “Displacement estimation by hierarchical block matching,”
SPIE Vis. Commun. Image Processing, vol. 100, pp. 942–951, 1988.

[13] B. Natarajan, V. Bhaskaran, and K. Konstantinides, “Low-complexity
block-based motion estimation via one-bit transforms,”IEEE Trans.
Circuits Syst. Video Technol., vol. 7, pp. 702–706, Aug. 1997.

[14] P. H. W. Hong and O. C. Au, “Modified one-bit transform for motion
estimation,” IEEE Trans. Circuits Syst. Video Technol., vol. 9, pp.
1020–1024, Oct. 1999.

[15] X. Lee and Y.-Q. Zhang, “A fast hierarchical motion-compensation
scheme for video coding using block feature matching,”IEEE Trans.
Circuits Syst. Video Technol., vol. 6, pp. 627–635, Dec. 1996.

[16] X. Song, T. Chiang, X. Lee, and Y.-Q. Zhang, “New fast binary pyramid
motion estimation for MPEG2 and HDTV encoding,”IEEE Trans. Cir-
cuits Syst. Video Technol., vol. 10, pp. 1015–1028, Oct. 2000.

[17] Information Technology—Coding of Audio-Visual Objects-Part 2: Vi-
sual ISO/IEC 14 496-2: 2001, ISO/IEC JTC1/SC 29/WG 11 N4350, July
2001.

[18] Recommendation H.263 Video Coding for Low Bit Rate Communication,
ITU-T H.263, 1998.

[19] Intel Architecture Software Developer’s Manual, vol. 1–3, Intel Corpo-
ration, 1999.

[20] W. Moore, A. Mccabe, and R. Urquhart,Systolic Arrays. New York:
Adam Hilger, 1986.

[21] S. Sethuraman and R. Krishnamurthy, “Packed binary representations
for fast motion estimation on general-purpose architectures,” inProc.
IS&T/SPIE Visual Communications and Image Processing, vol. 3653,
San Jose, CA, Jan. 1999, pp. 430–438.

Jeng-Hung Luowas born in Taipei, Taiwan, R.O.C.,
in 1976. He received the B.S. degree in electronics
engineering and the M.S. degree from National Chiao
Tung University, Taiwan, R.O.C., in 1999 and 2001,
respectively.

Currently, he is with the Department of Video
Imaging Development, Sunplus Technology Com-
pany, Ltd., Hsinchu, Taiwan, R.O.C.

Chung-Neng Wangwas born in PingTung, Taiwan,
R.O.C., in 1972. He received the B.S. degree in com-
puter engineering in 1994 from National Chiao Tung
University (NCTU), Hsinchu, Taiwan, R.O.C., where
he is currently working toward the Ph.D. degree in the
Institute of Computer Science and Information Engi-
neering.

His research interests are video/image compres-
sion, motion estimation, video transcoding, and
streaming.

Tihao Chiang (SM’99) was born in Cha-Yi, Taiwan,
R.O.C., in 1965. He received the B.S. degree
in electrical engineering from National Taiwan
University, Taipei, Taiwan, R.O.C., in 1987, and the
M.S. and Ph.D. degrees in electrical engineering
from Columbia University, New York, NY, in 1991
and 1995, respectively.

In 1995, he joined David Sarnoff Research Center,
Princeton, NJ, as a Member of Technical Staff.
Later, he was promoted to Technology Leader and
Program Manager. While at Sarnoff, he led a team

of researchers and developed an optimized MPEG-2 software encoder. In
September 1999, he joined the faculty at National Chiao-Tung University,
Taiwan, R.O.C. Since 1992, he has actively participated in ISO’s Moving
Picture Experts Group (MPEG) digital video coding standardization process,
with particular focus on the scalability/compatibility issue. He is currently the
co-editor for Part 7 of the MPEG-4 committee, and has made more than 50
contributions to the MPEG committee over the past ten years. His main re-
search interests are compatible/scalable video compression, stereoscopic video
coding, and motion estimation. He has nine U.S. patents and 26 European and
worldwide patents. He has published over 30 technical journal and conference
papers in the field of video and signal processing.

Dr. Chiang was a co-recipient of the 2001 Best Paper Award from the IEEE
TRANSACTIONS ONCIRCUITS AND SYSTEMS FORVIDEO TECHNOLOGY. For his
work in the encoder and MPEG-4 areas, he received two Sarnoff Achievement
Awards and three Sarnoff Team Awards.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

