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Monte Carlo approach for power estimation is based on the assumption that the samples
of power are Normally distributed. However, the power distribution of a circuit is not
always Normal in the real world. In this paper, the Bootstrap method is adopted to ad-
just the confidence interval and redeem the deficiency of the conventional Monte Carlo
method. Besides, a new input sequence stratification technique for power estimation
is proposed. The proposed technique utilizes a multiple regression method to compute
the coefficient matrix of the indicator function for stratification. This new stratifica-
tion technique can adaptively update the coefficient matrix and keep the population
of input vectors in a better stratification status. The experimental results demonstrate
that the proposed Bootstrap Monte Carlo method with adaptive stratification can effec-
tively reduce the simulation time and meet the user-specified confidence level and error
level.

Keywords: Power characterization; adaptive stratification; Monte Carlo; Bootstrap.

1. Introduction

With the increasing size of design blocks, the number of input vectors required

for estimating the power consumption of a circuit is growing exponentially. In the

meantime, the time needed for simulating each input vector increases rapidly with

the growing complexity of circuits. In previous literatures, methods for shortening

the time required for power estimation can be classified into two categories. One

is to generate a shorter input sequence, and the other is to sample a small portion

of the input vectors from the original sequence. To regenerate an input sequence

that has the similar average power as that of the original input sequence, some fea-

tures of the original sequence need to be preserved while regenerating the shorter

one. These features include preserving the pattern transition probabilities,1 preserv-

ing the spatial-temporal correlations for all inputs,2 and preserving the significant

correlations between the clustered inputs.3 Regenerating a compact input sequence

sounds easy. However, the compact input sequence can only be generated according
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to a user-specified compaction ratio, which users usually do not know the proper

value.

The Monte Carlo approach for power estimation is proposed by F. Najm.4 The

method estimates the average power by sampling the input vectors with certain

length l from the original sequence and fed them into the simulator to derive a

sample value of the average power. The average power consumption can be es-

timated with the average of several sample values. From Central Limit Theorem

(CLT ), the sample values can be presumed as a Normal distribution when l ap-

proaches infinity. The probability that the estimated mean is within a certain error

range of the real mean can also be derived under the assumption. However, the

required l to preserve the normality of x is not discussed. If x is far from a Normal

distribution, the basis of the Monte Carlo method fails and the estimated power

may have a larger error level than expected.

Bootstrap theory is a resampling technique that will generate Bootstrap Samples

by picking the sample data with replacement and report a Bootstrap confidence

interval without assuming any parameter of the distribution.5 This is also known

as nonparametric Bootstrap resampling. By adopting the Bootstrap technique, this

paper develops a way to calculate a more accurate confidence level to assure that

the user specified confidence level would not be violated in Monte Carlo simulation.

Although the Monte Carlo method can achieve acceptable input sequence com-

paction ratio generally, it suffers severe degradation as dealing with power his-

tograms like bi-modal or multi-modal.4 For Monte Carlo approach, large sample

variance means large number of samples required for the estimation to converge to

the real value. The stratification method on the original input sequence is proposed

to minimize the sample variance and the probability of generating the pre-matured

samples.7 According to the method, a gate level power model is required for roughly

estimating the power consumption of the original input sequence on a zero-delay

logic simulator. The zero-delay gate-level power consumption is used as an indica-

tor of the circuit-level power consumption. With this indicator, the original input

sequence can be partitioned into strata, within which the input vectors are with

similar power consumptions such that the samples sampled from these strata can

have a smaller sample variance. However, the gate level net-list sometimes needs to

be concealed especially when they are the intellectual property (IP). In this paper,

a novel input sequence stratification technique is proposed. It utilizes the multiple

regression method on the sampled input vectors to find the weighting of each in-

put transition, which can be used in the power indicator function for stratification.

The proposed technique can restratify the original input sequence according to the

updated samples, and keep the sample variance the smallest.

The following parts of this paper are organized as follows. In Sec. 2, some essen-

tial definitions and basis for this paper are introduced. Section 3 details the concepts

of the Bootstrap Monte Carlo method and demonstrates its efficiency. In Sec. 4, the

proposed adaptive stratification technique with multiple regression method is pre-

sented. The flow of the Bootstrap Monte Carlo method combined with the adaptive
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stratification technique is shown and evaluated in Sec. 4 also. Section 5 concludes

this paper.

2. Preliminary

2.1. Normal distribution and Gaussian distribution

2.1.1. Normal random variable

A random variable (RV) x is Normally distributed with mean µx, and standard

deviation σx if its probability density function (denoted as p.d.f.) equals:

f(x) =
1

σx
√

2π
e−(x−µx)2/2σ2

x . (1)

2.1.2. Gaussian (Standard Normal) random variable

A RV y is Gaussian if its p.d.f. equals:

g(y) =
1√
2π

e−y
2/2 . (2)

2.1.3. Cumulative distribution function (c.d.f.) of Gaussian

The probability of a Gaussian RV y smaller than an arbitrary value y is defined as:

G(y) = P{y ≤ y} =

∫ y

−∞

1√
2π

e−ξ
2/2 dξ . (3)

2.1.4. α-percentile of Gaussian

The α-percentile of Gaussian is denoted as zα and expressed as:

zα = G−1(α) , 0 ≤ α ≤ 1 . (4)

Note that the p.d.f. of the Gaussian RV is an even function, therefore zα = −z1−α,

and z0.5 = 0.

2.1.5. Sample mean and sample variance

Let {xi, i = 1, 2, . . . , n} be n randomly sampled elements out of a population with

an arbitrary distribution, the sample mean is defined as the arithmetic average of

these n samples

x̄ =
1

n

n∑
i=1

xi . (5)

The sample variance s2 is defined as:

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 . (6)
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2.2. Monte Carlo method

The power consumption of a CMOS circuit is dominated by charging and discharg-

ing of the load capacitances at each gate output. The average power consumption

can thus be defined as a function in terms of successive input patterns :

µx =

N−1∑
j=0

Power(V j)

N
, (7)

where µx is the average power consumption, N is the number of input patterns,

and Power(V j) is the power measured when the primary inputs are transiting from

the the jth pattern to the (j + 1)th pattern. The definition of V j will be detailed

in Sec. 4.

Let pwr be the RV defined on a sample space containing all Power(V j). The

average of l values of pwr is called a random sample, x, whose sample mean ap-

proaches the desired average power, µx, and can be expressed as:

x =
1

l

l∑
i=1

pwri , (8)

where pwri is a value of the RV pwr. According to the Central Limit Theorem

(CLT ), the RV x has a distribution close to Normal for large l.8

To estimate the µx in Eq. (7) without simulating all input vectors, the Monte

Carlo approach for power estimation can help. Let x̄ and s2 be the sample mean

and sample variance of x, respectively. From Eqs. (4)–(6), the following results can

be derived:

P

{∣∣∣∣µx − x̄x̄

∣∣∣∣ ≤ rel err

}
= 1− 2α , 0 ≤ α ≤ 0.5 ,

where rel err =
z1−αs

x̄
√
n
.

(9)

The rel err stands for the related error level, α is the confidence level, and n is the

number of samples of x. Equation (9) means that the user can have a confidence

level of 1 – 2α about the claim that the error between the real mean µx and the

sample mean x̄ is smaller than the related error level. If the related error level rel err

is larger than the user specified error level ε, one or more samples of x should be

picked and the sample mean and rel err are evaluated again. The procedure is

iterated until the user-specified error level ε is satisfied.

2.3. Bootstrap6

2.3.1. Bootstrap Replication

Let x be the RV defined as the samples from an arbitrary distribution:

x = {xi|1 ≤ i ≤ n} . (10)
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Let x∗ be the RV defined as the random samples of x with replacement for each xi
with equal probability, 1/n:

x∗ = {x∗i |1 ≤ i ≤ n , x∗i ∈ x} . (11)

The Bootstrap Replication b of x̄ is defined as the mean of x∗:

b =

{
bk

∣∣∣∣bk =
1

n

n∑
i=1

x∗i , 1 ≤ k ≤ nb
}
, (12)

where nb is the number of Bootstrap Replications.

2.3.2. Sorted Bootstrap Replications

Let the RV B stands for the sorted Bootstrap Replications and defined as:

B = {Bk|Bk ∈ b ; Bi ≤ Bj if i < j ; 1 ≤ i, j, k ≤ nb} . (13)

2.3.3. Cumulative distribution function (c.d.f.) of B

The probability that the RV B is smaller than an arbitrary value b is defined as:

GB(b) = P{B ≤ b} =

{
kb

nb

∣∣∣∣Bi ≤ b , 1 ≤ i ≤ kb
}
. (14)

2.3.4. α-percentile of Bootstrap

The α-Bootstrap percentile is defined as:

θα = GB−1(α) , 0 ≤ α ≤ 1 . (15)

2.3.5. Percentile confidence interval of Bootstrap

There are several ways of calculating confidence intervals of the Bootstrap Replica-

tions. The most straightforward one for the 1− 2α Bootstrap confidence interval is

the percentile Bootstrap confidence interval, and is defined as the interval that can

cover (1− 2α)∗nb Bootstrap Replications :

[θ%,lo, θ%,up] = [GB−1(α), GB−1(1− α)] , 0 ≤ α ≤ 0.5 . (16)

2.3.6. Bias-Corrected and accelerated (BCa) confidence interval

The BCa confidence intervals are complicated to describe but are as easy to use as

the percentile confidence interval5:

[θBCa,lo, θBCa,up] = [GB−1(α1), GB−1(α2)] ,

α1 = G

(
ẑ0 +

ẑ0 + zα

1− â(ẑ0 + zα)

)
,

α2 = G

(
ẑ0 +

ẑ0 + z1−α
1− â(ẑ0 + z1−α)

)
.

(17)
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The ẑ0 is designated as the Bias-Correction coefficient. It is simply derived from

the portion of Bootstrap Replications that are smaller than x̄ (the sample mean

of x):

ẑ0 = G−1

(
#{b < x̄}

nb

)
, (18)

where the #{b < x̄} is the number of Bootstrap Replications that are smaller than x̄.

The â is designated as the Acceleration coefficient. Before defining â, the definition

of the Jacknife value, J(i), of x̄ is defined as:

J(i) =

J(i)

∣∣∣∣J(i) =
1

n− 1

 n∑
j=1

xj

− xi
 , 1 ≤ i ≤ n

 . (19)

The mean of J(i) designate as J(·) is defined as:

J(·) =
1

n

n∑
j=1

J(i) . (20)

The Acceleration coefficient is then defined as:

â =

∑n

i=1
(J(·) − J(i))

3

6×
{∑n

i=1
(J(·) − J(i))

2
}3/2

. (21)

The BCa Bootstrap estimation of µx is defined as the 0.5-percentile of the distri-

bution of BCa Bootstrap Replications :

x̄BCa = GB−1

(
ẑ0 +

ẑ0 + z0.5

1− â(ẑ0 + z0.5)

)

= GB−1

(
ẑ0 +

ẑ0

1− âẑ0

)
. (22)

The Bias-Correction coefficient ẑ0 is designed to compensate the difference between

x̄ and the BCa mean x̄BCa. If the difference between them equals zero, ẑ0 equals

zero also. As for the Acceleration coefficient, it refers to the rate of change of the

standard error of x̄ with respect to x̄, measured on a normalized scale.6 The larger it

is, the wider is the confidence interval. Detail discussion about how this acceleration

coefficient works is referred to the references.5 For a Normally distributed x̄, the ẑ0

and â are both zero, and α1 = α2 = α. The BCa confidence interval is exactly the

same as standard confidence interval.

3. Bootstrap Monte Carlo Simulation

3.1. Bootstrap confidence level

For conventional Monte Carlo, the confidence interval and the rel err are calculated

with Eq. (9), in which the rel err totally relies on the assumption that the distri-

bution of x̄ is Normal. The possibility that the distribution of x̄ might be skewed
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or platykurtic is ignored. Bootstrap technique, can be used to adjust the confidence

level when the normality of the population is poor.

For a given error level, ε, the acceptable range for the real mean µx is defined as:

[Alo, Aup] = [(1− ε)MAX(x̄, x̄BCa), (1 + ε)MIN(x̄, x̄BCa)] . (23)

The acceptable range covers the safe range into which the real mean µx can land

without violating the user specified error level ε, with respect to either x̄ or x̄BCa.

And then, the Bootstrap Confidence Level is defined with:

αBCa = GB(Alo) + 1−GB(Aup) . (24)

3.2. Bootstrap Monte Carlo method

With the αBCa from Eq. (24), whether the user specified confidence level is guaran-

teed or not, can be easily determined. The proposed Bootstrap Monte Carlo (BMC )

method is demonstrated with the pseudo-codes in Fig. 1.

Bootstrap Monte Carlo ( )
Pwr, ε, α; /∗ Conventional Monte Carlo parameters ∗/
nb; /∗ Bootstrap parameter ∗/
{

nSamples = 1; rel err = 1; #Boot = 0;
zα = G−1(α);
while (rel err ≥ ε) {

nSamples++;
get new sample xn from Pwr;
update sample mean x̄ and sample variance s2;
update rel err;
if (rel err ≤ ε) {

Generate nb Bootstrap Replications b from x;
Calculate αBCa from b;
#Boot++;
if (αBCa > 2∗α) {

rel err = 1;
}
}
}
return nSamples, nBoot, and x̄;
}

Fig. 1. Pseudo code of BMC.

3.3. Bootstrap Monte Carlo versus conventional Monte Carlo

The proposed BMC method is tested with estimating the average powers of the

ISCAS-85 benchmark circuits. There are 10 000 input vectors in the input sequence

for each circuit. The input sequence is a compound of three segments: a counter
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sequence, a LFSR sequence and a sequence of pseudo random numbers. Note that

half of the input vectors in the counter sequence have only single input change,

therefore consumes less power. The LFSR sequence represents the input vectors

with temporal correlations. The pseudo random input vectors, on the other hand,

are spatially and temporally independent. The arrangement of the input sequence

is to give the estimator a tough situation because the power histogram of such

an input sequence is most likely to be skewed, long tailed and platykurtic at the

same time. Besides the ISCAS-85 benchmarks, an additional circuit, add mpr, is

included. It is a circuit with a mode controlling input that controls the function of

the circuit to be an adder or a multiplier. The power histogram of it is a typical

bimodal distribution. The experimental results are listed in Tables 1 to 3.

Table 1. MC versus BMC with α = 0.05.

MC BMC
Circuit

viol r nVecs viol r nVecs #Boot

C432 0.1235 1538.51 0.0949 1786.97 14.4926

C499 0.1164 585.86 0.1050 629.34 2.9860

C880 0.1218 616.24 0.1010 663.19 3.1880

C1355 0.1145 633.05 0.1005 682.92 3.2847

C1908 0.1194 908.35 0.1004 996.04 5.4834

C3540 0.1586 154.90 0.1563 156.16 1.0405

C6288 0.1259 1344.78 0.1014 1532.66 11.0338

add mpr 0.1384 281.35 0.1288 288.27 1.2202

Max 0.1586 1538.51 0.1563 1786.97 14.4926

Avg 0.1273 757.88 0.1110 841.94 5.3412

Table 2. MC versus BMC with α = 0.025.

MC BMC
Circuit

viol r nVecs viol r nVecs #Boot

C432 0.0748 2055.63 0.0487 2504.36 25.7884

C499 0.0591 820.55 0.0497 886.94 4.4027

C880 0.0611 862.70 0.0497 935.03 4.7865

C1355 0.0594 884.39 0.0499 961.19 4.9675

C1908 0.0653 1248.65 0.0525 1397.90 9.0968

C3540 0.0832 230.54 0.0810 232.59 1.0764

C6288 0.0710 1812.33 0.0485 2150.83 19.6258

add mpr 0.0688 408.67 0.0627 421.19 1.5073

Max 0.0832 2055.63 0.0810 2504.36 25.7884

Avg 0.0678 1040.43 0.0553 1186.25 8.9064
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Table 3. MC versus BMC with α = 0.005.

MC BMC
Circuit

viol r nVecs viol r nVecs #Boot

C432 0.0266 3089.78 0.0092 4145.60 59.5692

C499 0.0163 1345.06 0.0115 1480.03 8.3435

C880 0.0179 1408.56 0.0111 1558.86 9.2150

C1355 0.0180 1442.10 0.0138 1600.27 9.6379

C1908 0.0198 1980.65 0.0121 2322.61 19.8780

C3540 0.0160 409.03 0.0146 416.39 1.3426

C6288 0.0238 2768.35 0.0105 3561.91 44.9796

add mpr 0.0130 700.62 0.0111 728.20 2.9168

Max 0.0266 3089.78 0.0146 4145.6 59.5692

Avg 0.0189 1643.02 0.0117 1976.73 19.4853

Tables 1 to 3 are the results for α equals 0.05, 0.025 and 0.005, respectively.

The corresponding confidence levels are 90%, 95% and 99%. For each α, there are

results for every circuit with both conventional Monte Carlo method (MC ) and the

proposed Bootstrap Monte Carlo method (BMC ). Each method is performed 10 000

times for each circuit to estimate their average power consumption. The error level

ε is set to 0.05. If the error percentage of the estimated power exceed ε, the number

of violations is increased by 1. The viol r columns are the violation ratio defined as

the number of violations divided by the number of Monte Carlo simulations:

viol r =

#

{
x̄− µx
µx

> ε

}
10 000

. (25)

The nVecs columns contain the numbers of input vectors sampled by the cor-

responding estimation methods. For a good estimation method, the viol r should

be close to and always smaller than 2∗α. For two estimation methods with the

same viol r, the one with smaller nVecs is the better one. There is one additional

#Boot column for BMC. It is the average number of times that Bootstrap process

being invoked for a BMC estimation. It is roughly in proportion to the number of

additional samples required for BMC. With a larger #Boot, the overhead of using

Bootstrap is greater. For the circuits that the viol r of MC exceed 2∗α, the #Boot

for BMC is supposed to be larger to keep the viol r of BMC within 2∗α safe range.

As demonstrated in the tables, the viol r for conventional Monte Carlo method

exceeds 2∗α in all 24 cases. On the other hand, with the Bootstrap method monitor-

ing confidence level in BMC, the viol r are either under or close to the 2∗α, except for

two cases: C3540 and add mpr. One thing needs to be emphasized is that the nVecs

for C3540 and add mpr are the two smallest ones among all circuits. If the number

of samples is too small to represent the original population, e.g. pre-matured sam-

ples, BMC might sometimes fail to keep the viol r within 2∗α. This is because the
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Bootstrap method produces its Bootstrap Replications from the samples of Monte

Carlo. This drawback will be discussed and eliminated with the newly proposed

method Bootstrap Monte Carlo with Adaptive Stratification method (BMCAS ) in

the following section. Regardless of this deficiency, the proposed Bootstrap Monte

Carlo method is more trustable than conventional Monte Carlo method with about

10% increasing in nVecs.

4. Adaptive Stratified Random Sampling

Stratification is a technique to divide the sample space into subspaces to reduce

the sample variance so that the Monte Carlo can converge sooner with smaller

number of samples, n, and achieve better compaction ratio. An indicator function

for stratification is a function that returns a value closely related to or even equals

the power consumption of input vectors. To build an indicator function, the multiple

regression method is adopted.

4.1. Single variable linear regression10

Given a collection of n data points of two variables x and y:

(x, y) = {(xi, yi)|1 ≤ i ≤ n} . (26)

The best line describing the relation between x and y is defined as:

ŷ = ax + b ,

a =
E[xy]− E[x]E[y]

E[xx]− E[x]E[x]
,

b = E[y] − aE[x] ,

(27)

where E[ ] is the function of expected value, and ŷ is the predictor of y. This

predictor is the one with zero bias and minimum RMS error.

4.2. Multiple regression10

Multiple regression is simply an extension of the single variable linear regression.

Given n data points of m+ 1 variables:

(X, y) = {[x1,x2, . . . ,xm],y}

= {{[x1,i, x2,i, . . . , xm,i], yi}|1 ≤ i ≤ n} . (28)

Note that X is a row matrix stands for the x variables. The best function describing

the relation between X and y is defined as:
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ŷ = XA + b ,

C = E[Xy]− E[X]E[y] ,

D = E[XTX]− E[X]TE[X] ,

A = D−1CT ,

b = E[y]− E[X]A ,

(29)

where A is a column matrix that contains the coefficients for each x1, . . . ,xm. Note

that the order of X and A are switched to make the product of them a scalar.

4.3. Variable selection

As we can see in Eq. (29) that deriving the coefficient matrix A includes a matrix

inverse operation on matrix D. If matrix D were singular, the equation of mea-

suring the coefficient matrix A would fail. To prevent this, the basic assumptions

of Multiple Regression need to be taken into consideration while selecting the x

variables.

Assumption 1: The relation between y and xi is linear.

The y variable in power estimation is the power consumption of each input vec-

tor. The power consumption of CMOS circuits is dominated by the dynamic power.

The dynamic power is consumed when the inputs of the circuits are switching. In

other words, more input switching implies that more dynamic power is consumed.

This makes the switching conditions of the primary inputs good candidates for the

x variables.

Assumption 2: The xi variables are mutually independent.

For a primary input, there are four possible transitions between two consecutive

clock cycles: 0 to 0, 0 to 1, 1 to 0, and 1 to 1.

Let the Boolean value for the ith input in the jth clock cycle be denoted as bji ,

the input pattern in the jth clock cycle is defined as:

Patj = {bji |b
j
i ∈ {0, 1}, 1 ≤ i ≤ n in, 0 ≤ j ≤ N} , (30)

where n in stands for the number of primary inputs, and N stands for the total

number of input vectors. The jth input vector is defined as two consecutive input

patterns:

V j = {(Patj, Patj+1)|0 ≤ j ≤ N − 1} . (31)

There are four transition variables designated for the transition behavior of each

input:

T(i, V j) = {Tk(i, V j)|0 ≤ k ≤ 3, 1 ≤ i ≤ n in, 0 ≤ j ≤ N − 1} ,

where Tk(i, V j) =

{
1, if k = 2× bji + bj+1

i ,

0, otherwise .

(32)
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For an input i and input vector V j , one and only one of the four transitions can

take place. This makes the four transition variables mutually dependent:

T0(i, V j) + T1(i, V j) + T2(i, V j) + T3(i, V j) = 1 . (33)

Therefore, at most three out of the four transition variables need to be chosen as

the x variables for multiple regression. In this paper, T0, T1 and T2 are selected.

Note that, any combination of three chosen transition variables will not lose their

generality because the removed one can always be derived from the others.

After choosing the X variables for Eq. (29), it can be rewritten in the form of

constructing the predictor for the power consumption of each input vector. Let the

power consumption of each input vector indicated by the indicator function be:

P̂ ower(V) = X(V)A + b ,

X(V) = {[T0(i,V), T1(i,V), T2(i,V)]|1 ≤ i ≤ n in} ,
(34)

where V is the set of all input vectors. In the same manner, the coefficient matrix

A can be derived from the multiple regression equations:

C = E[X(W)Pwr(W)] − E[X(W)]E[Pwr(W)] ,

D = E[X(W)TX(W)]− E[X(W)]TE[X(W)] ,

A = D−1CT ,

b = E[Pwr(W)] − E[X(W)]A ,

(35)

where W is the set of sampled input vectors and Pwr(W) are their corresponding

power consumption measured with simulator.

4.4. BMC with adaptive stratification (BMCAS )

With the coefficient matrix A and Eq. (34), the population can be stratified into

a certain number of strata. Initially, the population is not stratified, and the first

few samples xi’s are randomly sampled. After the number of sampled input vectors

is larger than a predefined threshold, the Multiple Regression function is invoked

to derive A. The P̂ ower(V) is calculated with Eq. (34) and the stratification pro-

cess starts. Hence, the stratified random sampling process takes over the place of

random sampling. After some other new input vectors are sampled, the Multiple

Regression process is executed again to recalculate a better A for re-stratification.

The pseudo code for the proposed Bootstrap Monte Carlo with Adaptive Stratifica-

tion (BMCAS ) is depicted in Fig. 2.

The reason of starting multiple regression after the number of W larger than

9∗n in is to prevent too many empty elements in matrix D which might lead to a

singular matrix for the matrix inverse operation. The keep sampling variable is an

insurance to prevent the Bootstrap Monte Carlo failure caused by the premature
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Bootstrap Monte Carlo with Adaptive Stratification ( )
Pwr, ε, α; /∗ Conventional Monte Carlo parameters ∗/
nb; /∗ Bootstrap parameter ∗/
{

nSamples = 0; rel err = 1; nRestrat = 0; keep sampling = 0;

W = {∅}; S = {∅}; V = {V i|1 ≤ i ≤ N}
zα = G−1(α);
while (rel err ≥ ε)
{

nSamples++;
if (stratified)

Sample input vectors v from V with stratified sampling;
else

Sampled input vectors v from V with random sampling;
S = S ∪ v; W = W ∪ v;
Get y = Power(v); from simulator;
y = y ∪ y;
if (keep sampling) {

keep sampling–; rel err = 1; continue;
} else {

update x̄, s2, and rel err;
}
if (rel err ≥ ε) {

if (#(W) > 9∗n in) {
MR: X = T(S);

if (A = Multiple Regression(X, y) is success) {
P̂ower(V) = T(V)A + b;

Restratification(V);

stratified = TRUE; W = {∅}; nRestrat++ ;
}

}
} else {

Generate nb Bootstrap Replications b from x;
Calculate αBCa from b;

#Boot++;
if (αBCa > 2∗α) {

rel err = 1;
} else if (stratified) {

rel err = 1; keep sampling = 2; goto MR;
} else {

return nSamples, nRestrat, and x̄;
}
}
}
}

Fig. 2. Pseudo code of BMCAS.
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samples as discussed in previous section. The rel err and the keep sampling are

given one and two, respectively when BMCAS exits before any stratification is

performed. With these setting, the BMCAS will stratify the population at least

once and samples three new samples after the forced stratification get at least three

samples that are sampled from the population more uniformly.

4.5. Experimental results

To demonstrate the performance of the proposed BMCAS, one more stratification

method called Hamming Distance Method (HDM ) is implemented for comparison.

It is a stratification method based on the assumptions that when power consumption

increases with the number of inputs transitions. HDM method stratifies the input

vectors into strata according to the Hamming Distance of each input vector. For

both methods, the input vectors are stratified into six equal sized strata. The reason

is that one can get little sample variance reduction by setting the number of strata

larger than six 0.

The results are in Tables 4 to 6. The results from BMC method in Sec. 4 are

listed in the tables, too. It is designated as NO STRAT because there is no strati-

fication procedure in BMC. Similar to Tables 1 to 3, Tables 4 to 6 show the results

for confidence level 90%, 95% and 99%, respectively. The first columns of them are

the names of the circuits. The numbers in the brackets next to the circuit names are

the number of inputs of the corresponding circuit. They are listed as a reference be-

cause BMCAS re-stratifies the population after 9∗n in new sampled input vectors.

There are three columns of data for each stratification method. The “nSample”

column shows the average number of samples required for the corresponding strat-

ification method to converge to a value of estimated power. The “nVecs” columns

are the average numbers of sampled input vectors. The smaller is the nVecs, the

better is the stratification method. The error level ε is set to 0.05. The viol r col-

umn shows the violation ratios with the same definition as Eq. (25), and the #Boot

columns are of the same definition as in Tables 1 to 3. The extra #ReStrat column

for BMCAS is the average number of stratification being performed.

Comparing the proposed BMCAS and the BMC, the viol r of BMCAS are

closer to 2∗α than BMC in almost all circuits and all confidence level. Besides,

with the proposed adaptive stratification technique, the numbers of sampled input

vectors are about 27% smaller than those of BMC in average. For some circuits,

BMCAS even needs only half of the number of input vectors that the BMC needs.

The #Restrat for some circuits, like C3540, are equal to exactly 1.0 because all of

the BMC estimations exit with a number of sampled input vectors smaller than

the threshold for starting stratification, and BMCAS will perform at least one

stratification process before exiting. As shown in Tables 4 to 6, the viol r for C3540

are safely kept within 2∗α. As for the results from HDM method, although its nVecs

is the smallest, the violation ratio exceeds 2∗α for all cases. This makes the results

from HDM untrustable and the nVecs meaningless. With the safely kept viol r and
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the smaller number of nVecs, we can summarize that the proposed BMCAS is the

most reliable one and can efficiently reduce the required number approach.

5. Conclusion

In this paper, the Bootstrap technique is adopted to assure the confidence level when

doing Monte Carlo estimation. With this technique, the Monte Carlo method can

be improved since confidence level is monitored during the Monte Carlo simulation.

Besides, this paper proposed a novel Adaptive Stratification technique, with which

the population can be dynamically and well stratified to keep the sample variance

minimized. The experimental results on the ISCAS-85 benchmarks show that the

proposed Bootstrap Monte Carlo with Adaptive Stratification (BMCAS ) success-

fully preserves the confidence level while efficiently reducing the required number

of input vectors.
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