
October 11, 2002 16:48 WSPC/123-JCSC 00052

Journal of Circuits, Systems, and Computers, Vol. 11, No. 4 (2002) 377–391
c© World Scientific Publishing Company

REDUCE THE MEMORY BANDWIDTH OF 3D GRAPHICS

HARDWARE WITH A NOVEL RASTERIZER∗

CHENG-HSIEN CHEN† and CHEN-YI LEE‡

Department of Electronics Engineering, National Chiao Tung University,
1001 TaHsueh Road, Hsinchu, Taiwan, 300, Republic of China

†chchen@royals.ee.nctu.edu.tw
‡cylee@royals.ee.nctu.edu.tw

Received 15 April 2002
Accepted 27 June 2002

Currently, memory bandwidth has become the main bottleneck in graphics system.
Reducing the memory access can reduce the power consumption and boost overall system
performance. Low power technique is more important for graphics applications on hand-
held or mobile device. In this paper, we propose a novel visibility driven rasterizer to
reduce the memory access and operations on invisible pixels. It integrates with two-level
hierarchical Z-buffer to do visibility driven rasterization. The rasterization scheme is
tile-order scan-line based, and the rasterizer can smartly change the tile-size depending
on the triangle size. This technique can balance the rasterization loading under different
triangles. Moreover, we propose a fast visibility test algorithm to quickly reject a group
of pixels within the tile. Simulation results show that the overall bandwidth reduction
can be up to 60% under our test images.

Keywords: Graphics processor; rasterizer; hierarchical Z-buffer.

1. Introduction

Three-dimensional computer graphics is widely used in various applications. Now,

the graphics processor has become the essential component in desktop PC. It is

capable of rendering million of triangles in one second. However, there are several

bottlenecks of graphics processor to generate life-like images at real-time. The most

serious one is memory bandwidth. Currently, the graphics processors1,2 have wide

memory bus (128-bit) and double data rate memory (up to DDR533) to boost

the performance. The power consumption is huge. In the graphics system, a large

portion of power is spent on memory bus transition. Off-chip memory bus transition

consumes many times power than on-chip circuit transition. It challenges the designs

of PCB board and high-speed memory interface. Besides, it makes it difficult to

run graphics application on handheld or mobile devices under limited hardware

∗Work supported by the National Science Council of Taiwan, R.O.C., under Grant NSC 90-2218-
E-009-035.

377

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
20

02
.1

1:
37

7-
39

1.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

04
/2

7/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.

October 11, 2002 16:48 WSPC/123-JCSC 00052

378 C.-H. Chen & C.-Y. Lee

resource. When the applications become more and more complex, it needs lots of

effort and cost to increase the bandwidth for future system. Thus, it is urgent to

reduce the power consumption of memory access in graphics system.

� � � � � �
 �
 � � � � � � � � � � ! " $ & ()

* + , . / 0 1
2 3 5 6 7 8 :

;
< = ? @

A B D E F
G H I

J K L M N O P
Q R S T U V

W
X Y Z [\]

^ _ ` a b
c d e f g h

i j k l n o p qr s u v w y z {
} ~ � � � � �

Fig. 1. Traditional triangle-based rendering flow.

Figure 1 shows the rendering flow of traditional triangle-based graphics hard-

ware. The input triangles pass through the geometry transform, lighting and setup

stages, and then scan-convert to pixels in rasterization stage. There are several

memory accesses in the pipeline: texture buffer, Z buffer and color buffer accesses.

Many gigabyte data will be transferred between the processor and memory to

achieve the rendering speed of million triangles per second. Texture buffer and

Z-buffer accesses dominate the bandwidth consumption. Several techniques have

been proposed to overcome the bottleneck. Textures, which are two-dimensional

bitmap images, are used to add realism to three-dimensional objects. For texture

access, texture compression3 and cache4 techniques can reduce the texture buffer

bandwidth effectively. Z-buffer, which was first proposed by Catmull,5 is used to de-

termine the visibility of every pixel. It is simple and easy to implement in hardware.

But its efficiency is low. Every pixel will query Z-buffer to resolve the visibility, but

most of them are hidden. Several visibility test and occlusion culling algorithms

had proposed to accelerate this process.6 However, most of them need lots of pre-

processing and are not easy to be integrated into current hardware architecture.

Thus we propose a two-level hierarchical Z-buffer7 (HZ-buffer) to reduce the mem-

ory access. It is suitable for hardware implementation. This technique is application

invisible, and can be integrated into current pipeline smoothly. Although two-level

HZ-buffer performs well to reduce Z-buffer access, it still has space to improve the

efficiency. In this paper, we propose a novel visibility driven rasterizer. It can im-

prove the efficiency of HZ-buffer, and reduce the operations of scan-conversion as

well as memory access. The novel rasterizer incorporates with two-level HZ-buffer

to determine the visibility of a group of pixels at one time. Its scan-conversion

scheme is tile-order scan-line based. Besides, it can smartly choose the tile size for

different triangle size. This can balance the loading of rasterizer between large and

small triangles. Simulation results show that the reduction of overall memory access

can be up to 50 ∼ 60% under our test images.

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
20

02
.1

1:
37

7-
39

1.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

04
/2

7/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.

October 11, 2002 16:48 WSPC/123-JCSC 00052

3D Graphics Hardware with a Novel Rasterizer 379

2. Previous Work

In most of the 3D applications, the graphics processor spends lots of time processing

invisible triangles and pixels. These operations decrease the fill-rate, and consume

lots of bandwidth and power. We can increase the system performance and reduce

power by discarding invisible part of the geometry as early as possible. Several al-

gorithms have been proposed to accelerate visibility determination.6 For example:

object space pre-processing with binary space partition (BSP),8 object space oc-

trees combining with image space Z pyramid,9 portals culling10 and image space

hierarchical occlusion map.11 The goal of these visibility and occlusion culling al-

gorithms is to reject invisible objects at early stage. However, the above algorithms

need lots of pre-processing and cannot be integrated into current hardware architec-

ture without modifying the application. Thus for real-time interactive applications,

a hardware support efficient visibility test algorithm is very important.

Hierarchical Z-buffer, derived from the Z pyramid of N. Greene,9 is suitable

for hardware implementation. The simplified 8 × 8 HZ-buffer is used in current

commercial product.1 We also proposed a two-level HZ-buffer to test the visibility

at both triangle-level and pixel-level.7 It can effectively reduce the bandwidth of

Z-buffer and eliminate unnecessary operations of invisible pixels. We will briefly

introduce this in Sec. 2.

Beside two-level HZ-buffer visibility test, the rasterization stage will also in-

fluence the memory system performance. Rasterization means scan-converting the

primitives (triangle) into fragments (pixels). There are two popular scan-conversion

techniques as shown in Figs. 2(a) and 2(b): scan-line12–14 based and stamp-

based.15,16 Scan-line based means transverse the triangle scan-line by scan-line.

It starts from the vertex and walks along the edge and then horizontal line. Digital

differential analyzer (DDA) is used to interpolate correspond color and depth of

each pixel. Scan-line based is simple to implement, but it will decrease the memory

performance of texture access because the lines may cross multiple pages of cache

and cause cache miss. Stamp-based render pixels by n × m block size has good

cache temporal locality.4 It moves n ×m pixels across the triangle and evaluates

three edge equations14 for each pixel of the stamp to determine whether the pixel is

inside the triangle. Although stamp-based scan-conversion results in good memory

(a) (b) (c)

Fig. 2. (a) Scan-line based, (b) stamp-based, and (c) tile-order scan-line based rasterization.

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
20

02
.1

1:
37

7-
39

1.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

04
/2

7/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.

October 11, 2002 16:48 WSPC/123-JCSC 00052

380 C.-H. Chen & C.-Y. Lee

performance, it requires efficient polygon traversal algorithm17,18 and the hardware

cost is higher than scan-line based. Besides, its efficiency is low for small triangles.

Thus we combine both advantages and choose tile-order scan-line based algorithm

(Fig. 2(c)). It has good cache temporal locality and the location of pixel is explicit.

The visibility test can combine rasterization to form visibility driven

rasterization.19 Visibility driven rasterization can save the operations of hidden

pixels during rasterization. Meißner19 also proposed a visibility driven rasterization

scheme. It maintains a visibility mask in rasterizer and updates it for several frames.

It requires the generation of a scene hierarchy and the bounding box for each entity

before rendering. In this paper we propose another visibility driven rasterizer. It

smartly chooses the tile-size for different triangle and incorporates with two-level

HZ-buffer to accelerate the visibility test process. The HZ-buffer efficiency can be

increased, too.

3. Proposed Visibility Driven Rasterizer

3.1. Architecture

Figure 3 shows the modified pipeline of our visibility driven rasterizer and two-

level hierarchical Z-buffer. The triangle visibility test is placed before lighting stage

and a pixel visibility test is done after rasterizer. The HZ-Buffer management unit

maintains the correct depth information of HZ-Buffer. Moreover a bit-mask cache

is proposed to store the temporal pixel coverage information and feedback to man-

agement unit to update HZ-buffer. The rasterizer performs visibility driven scan-

conversion by fetching the visibility information from HZ-buffer.

� � � � � �
 �
 �

� � � �

� � � � � � !
" # $ & (

* + - . / 0 2 3 4 5
7 8 9 : ; =

> ? @ A C D E F G I

J K L M O P Q
S T V W X Y Z

\] _ a b c d e
f g i j

k l n o p
q r t

u v w x y z {
| } ~ � � �

�
� � � � � �

� � � � �
� � � � � �

� � � � � � � �
� � � �

¡ ¢
£ ¤ ¥ ¦

§ ¨ ª ¬ ® ° ± ³ ´ ¶ ¸ ¹

º » ½ ¾ ¿ À Á Â Ä Æ Ç È

É Ê Ë Í Ï Ð Ò Ó

Ô Õ Ö × Ø Ù Ú Û
Ü Ý Þ ß à á â

Fig. 3. The block diagram of two-level hierarchical Z-buffer and visibility driven rasterizer.

3.2. Two-level hierarchical Z-buffer

3.2.1. Triangle and pixel visibility test

Hierarchical Z-buffer is a reduced resolution of original Z-buffer. Figure 4 shows

the concept of HZ-buffer. The pixel in higher level hierarchy represents the far-

thest value in covered lower level block. In previous literatures,7 we shows different

configurations of two-level hierarchical Z-buffer. It performs well to reduce Z-buffer

access and efficiently discard hidden triangles and pixels.

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
20

02
.1

1:
37

7-
39

1.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

04
/2

7/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.

October 11, 2002 16:48 WSPC/123-JCSC 00052

3D Graphics Hardware with a Novel Rasterizer 381

� � � �

����

� 	
 �

���

�

� � � � � � � �
� � ! " $ % & (* + , - .0 1 3 4 56 7

89

Fig. 4. The concept of hierarchical Z-buffer.

� � � � � 	 � � � � �

� � � � � � � � �

Fig. 5. Triangle hierarchical Z-buffer visibility test scheme.

There are two visibility test stages in the pipeline. The first one is done at

triangle-level. For those triangles, which fall into high-level or low-level block

(Figs. 5(a) and 5(b)), we test the visibility before it enters the lighting stage. The

test is done by comparing the farthest vertex with the depth of corresponding block

in hierarchical Z-buffer. For those triangles that cross multiple blocks (Fig. 5(c)),

we leave it to visibility driven rasterizer to determine the visibility. Another visi-

bility test is done pixel by pixel after rasterizer. By combining triangle and pixel

hierarchical Z-buffer visibility test, we can quickly reject hidden primitives at early

stage and save memory bandwidth as well as computing power.

3.2.2. Hierarchical Z-buffer management

Although HZ-buffer can efficiently discard invisible pixels, the challenge of hardware

implementation is the HZ-Buffer update issue. From the definition of hierarchical

Z-buffer, the pixel in higher level represents the farthest value in lower level block.

If the low-level block size is n × n, we have to fetch and compare n × n pixels to

find the farthest one. This operation will be done every time, when the Z-buffer

updates. This will slow down the performance and increase the memory access.

Thus we propose a bit-mask cache to store the temporal pixel coverage information

for several blocks (Fig. 6). The temporal farthest value and coverage mask of each

block is stored in cache. By evaluating the coverage mask, we can find whether

the block is fully covered and then update HZ-buffer by this temporal depth value.

Simulation results show that 16 blocks bit-mask cache size is enough for good HZ-

buffer performance.7

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
20

02
.1

1:
37

7-
39

1.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

04
/2

7/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.

October 11, 2002 16:48 WSPC/123-JCSC 00052

382 C.-H. Chen & C.-Y. Lee

� � � � � 	 �

� � � � � � � � � �

� "

$ % & ' () + - . 0 2 3

56
78 9

:; <
= >
?@

A

B C D E

FG
HI J

KL M
N

OP
Q

R S
T U
V W

XYZ
[

\]
^_

`a
bc

de
f g

hi
jk l

mn o
p

qr
s

t u
v w
x y

z{|
}

~�
��

��
��

��
� �

��
�� �

�� �
�

��
�

� �
� �
� �

���
�

 ¡
¢£

¤¥
¦§

¨©
ª «

¬
®¯ °

±² ³
´

µ¶
·

¸ ¹
º »
¼ ½

¾¿À
Á

ÂÃ
ÄÅ

ÆÇ
ÈÉ

ÊË
Ì Í

Î Ï Ñ Ò Ô Ö Ø Ù Û Ü Þ ß

Fig. 6. The block diagram of bit-mask cache.

Table 1. The hierarchical Z-buffer size under 8-bit
16× 16 ∼ 8× 8 configuration.

16 × 16 ∼ 8× 8

Bi-level compression No Yes
1600 × 1200 31.88 KB 18.75 KB
1280 × 1024 21.76 KB 12.8 KB
1024 × 768 13.06 KB 7.68 KB
800 × 600 7.97 KB 4.69 KB

3.2.3. Dynamic bi-level compression

The hardware cost of HZ-buffer depends on the configuration, depth numerical ac-

curacy and screen resolution. To reduce the hardware cost, we propose a dynamic

bi-level compression technique7 to reduce the buffer size. The buffer size can de-

crease 40%. The concept is to explore the image space coherence of HZ-buffer and

carefully assign the depth value for high and low level blocks. The performance

degradation is very small and the decompression flow is very simple. Table 1 shows

the buffer size reduction under 8-bit accuracy and 16× 16 ∼ 8 × 8 configurations.

Simulation results will be shown in Sec. 4.

3.3. Visibility driven rasterizer

3.3.1. Tile-order scan-line based polygon traverse

Our visibility driven rasterizer scan-conversion scheme is tile-order scan-line based.

The triangle is rendered tile by tile and scan-line by scan-line in each tile (Fig. 2(c)).

Tile-order has better memory performance, and scan-line based makes it simple

to traverse triangle. Comparing with the whole scan-line order polygon traverse

(Fig. 2(a)), a little overhead will be paid for tile-order traverse. The state of the tile

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
20

02
.1

1:
37

7-
39

1.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

04
/2

7/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.

October 11, 2002 16:48 WSPC/123-JCSC 00052

3D Graphics Hardware with a Novel Rasterizer 383

� �

� �

� �

� �

� 	 � � � � � � � � � � � " $ & (* + -

Fig. 7. 4× 4 tile rendering.

� � �

� � �

	
 �

� �

� � �

� � �

� � �

� � �
� � " $ & (* , . 0 1 3

5 6 8 : ; = > ? @ A C D E F H J K M

O P Q R S T U V W X Y Z [
\] ^ _ ` a b c d e f g h i j k l m

n o p q r s t u v w x y z
{ | } ~ � � � � � � � � � � � � � �

� � � � � � � � � � � � �
� � � � � � ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª «

¬ ¯ ° ± ² ³ ´ ¶ ¸

º » ½
¾¿ À

Á Â Ä Á Ç
È É Â

Ë Ì Í
ÎÏ Ð

Á Ñ Ä Á Ç
È É Ñ

Ô Õ Ö
×Ø Ù

Á Ú Ä Á Ç
È É Ú

Û Ü Ý
Þß à

Á á Ä Á Ç
È É á

ã ä å ç è é ê ë ì í î ï ð

Fig. 8. Tile-order scan-line based triangle scan-conversion architecture.

boundary should be saved as the initial value for next tiles. Figure 7 shows a 4× 4

tile-order polygon traverse scheme. The left and right boundaries of the edge are

setup first, and then the rasterizer processes each tile at one time. The 4 × 4 tile

rasterizer architecture is shown in Fig. 8. The parallel span processors interpolate

the depth and the color of the pixel on each scan-line by digital differential analyzer

(DDA). The DDA is an adder and a span processor has four DDA to interpolate

both the depth and the RGB color. The new left and right boundary is stored in

register LB and RB for next iteration. We can increase the number of boundary

registers or adder unit to extend the architecture to process large tile. The number

of span processors can also be extended to increase the throughput.

3.3.2. Group of pixel visibility test

In Sec. 3, we have introduced the two-level HZ-buffer visibility test. However, the

triangles that cross multiple blocks are ignored at triangle-level test. Now, the

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
20

02
.1

1:
37

7-
39

1.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

04
/2

7/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.

October 11, 2002 16:48 WSPC/123-JCSC 00052

384 C.-H. Chen & C.-Y. Lee

visibility driven rasterizer processes these triangles and quickly discard the invisible

part of the triangles. It determines the visibility of a group of pixels. The group can

be a tile or a scan-line in tile. When the test is fail, these pixels can be discarded

immediately.

To determine the visibility of one tile or one scan-line, the maximum (or farthest)

“Z” (or depth) must be found first, and then we use this value to compare with

the depth in HZ-Buffer. If the test fails, it means that the whole tile or scan-line is

invisible. For each tile in rasterizer, we can find the trend of depth variation from

the slope dz/dx and dz/dy. The slopes are calculated in triangle setup stage, and

they are the increment of depth in horizontal and vertical direction. The definitions

are shown below.

Assume triangle vertices

(x1, y1, z1), (x2, y2, z2), (x3, y3, z3) and y1 < y2 < y3

area = (x3 − x1)× (y2− y1)− (x2− x1)× (y3− y1)

dzdx =
(y2− y1)× (z3− z1)− (y3− y1)× (z2− z1)

area

dzdy =
(x3 − x1)× (z2− z1)− (z3− z1)× (x2 − x1)

area

There are four different depth variations in one tile (Fig. 9). We can obtain

the maximum (or farthest) “Z” according to the sign of dz/dx and dz/dy. The

maximum will be one of the four corners in the tile. Then we use this MaxZ to

do visibility test with HZ-buffer. The maximum in one scan-line can also be easily

found according to the sign of dz/dx.

Although we can easily find the farthest pixel in one tile, this technique cannot

apply on partial covered tile. For partial covered tile, it needs more effort to find the

maximum “Z” in the covered area. Sometimes, the cost of searching process will be

equal to rasterize this tile. Thus it needs fast algorithm to do visibility test with this

tile. Figure 10 shows a partial covered tile. The depth decreases in X direction and

increases in Y direction. Thus the farthest value may be L2, L3, or LH. The exact

one will be obtained by comparing the absolutely value of dz/dx and dz/dy. Instead

of exactly evaluating the maximum in covered area, we conservatively estimate the

�

�

� � � � 	
 � � � � � � � � � � �

� � �

 ! " $ & ') * + , . / 0 1 2 4 5

6 7 9

; < = > ? @ B C D E F G H I J K L

M N O

P Q R S T U V W X Y Z [\] ^ ` a

b c d

Fig. 9. Four different depth variation in one tile.

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
20

02
.1

1:
37

7-
39

1.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

04
/2

7/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.

October 11, 2002 16:48 WSPC/123-JCSC 00052

3D Graphics Hardware with a Novel Rasterizer 385

� � � � � 	
 � � � � � � � � �

� �

 !

$

& '

() +

Fig. 10. A partial covered tile (LH: left-highest pixel, LL: left-lowest pixel).

�

�

� � � � 	 � � � � � � � � � � �

� � !

$ & ') + - . 0 1 3 4 5

6 7 8 9 : ; < = > ? @ A B C D F G

H I J

L M N O P Q R S T U V W X

Y Z [\] ^ ` a b c d e f g h i j

k l m

n o p q r s t u w y z { }

~ � � � � � � � � � � � � � � � �

� � �

� � � � � � � � � � � �

¡ ¢ £ ¤ ¥ ¦ § ¨ © ª ¬ ® ¯ ° ² ³

´ µ ¶

· ¸ ¹ º » ¼ ½ ¾ ¿ À Á Â Ã

Ä Å Æ Ç È É Ê Ë Ì Í Î Ï Ð Ñ Ò Ó Ô

Õ Ö × Ø Ù Ú Û Ü Ý Þ ß à á

â ã ä

å æ ç è é ê ì í î ï ð ñ ò ó ô õ ö

÷ ø ù

ú û ü ý þ ÿ � � � � �
 �

 � � � � � � � � � � � ! " $ %

& ' (

* + - . 0 2 4 5 7 8 9 : <

Fig. 11. Four conservative maximum “Z” estimations.

farthest value in this tile. Figure 11 shows the maximum “Z” estimation. The proof

of conservative maximum depth estimation is shown as follows.

Conservative estimation:

maxL =

(
dz

dy
≥ 0

)
? (LH : LL) ;

maxL1 = maxL + tile size× dz

dx

maxL2 = maxL− tile size× dz

dx

estimate maxZ =

(
dz

dy
≥ 0

)
? (maxL1 : maxL2) ;

Proof.

if
dz

dy
≥ 0 and

dz

dx
≥ 0

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
20

02
.1

1:
37

7-
39

1.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

04
/2

7/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.

October 11, 2002 16:48 WSPC/123-JCSC 00052

386 C.-H. Chen & C.-Y. Lee

The real maximum can be represented as:

maxZ = LL + a× dz

dx
+ b× dz

dy
; (0 ≤ a < tile size; 0 ≤ b < tile size)

LH can be represented as follows:

LH = LL + c× dz

dx
+ d× dz

dy
;

∵ LH is left top pixel ⇒ c ≤ a, b ≤ d

∴ maxZ ≤ LL + a× dz

dx
+ d× dz

dy
;

≤ LL + d× dz

dy
+ (c+ tile size)× dz

dx
;

= LH + tile size× dz

dx
= estimate maxZ.

The proofs of other cases are the same.

In Fig. 11, there are four cases under different dz/dx and dz/dy. Both LL and

LH are available in the beginning. According to the sign of dz/dx and dz/dy, the

estimated maxZ will be LL (or LH) add/sub tile size ×dz/dx. Because tile size

is power of two, the multiplication can be replaced by a shift. The conservative

maximum depth estimation forces the estimated maxZ larger or equal to the real

maximum in this tile. Thus the visibility test with this estimated maxZ would not

produce error in final images.

3.3.3. Adaptive changing tile size

In addition to visibility test, loading balance is also a problem in rasterizer. Ap-

plications, which include lots of small triangles, are triangle-rate limited due to

heavy geometry operation loading. However other applications, which include lots of

large triangles, are usually fill-rate limited. The rasterizer will generate more pixels.

Figure 12 shows the benchmark result of GPU2 under different triangle size. Due

to geometry overloading, the triangle rate would not increase when the triangle size

are under 10 pixels. Beside, the pixel fill rate will also saturate, when the trian-

gle size increase. Because different triangle sizes will cause different throughput of

rasterizer, other pipeline stages will stall to wait the data.

To balance the loading of different triangle, we try to accelerate the visibility

test of large triangles by increasing the tile-size. Our visibility driven rasterizer can

change the tile-size depending on the triangle size. For large triangle, the tile size

is as large as high-level HZ-buffer block. This can reduce the latency of visibility

test especially for large hidden triangle. For small triangle, we choose small tile

rasterization. The decision depends on the number of scan-line inside the triangle.

If the number of scan-line is larger than two times of low-level block, we change to

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
20

02
.1

1:
37

7-
39

1.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

04
/2

7/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.

October 11, 2002 16:48 WSPC/123-JCSC 00052

3D Graphics Hardware with a Novel Rasterizer 387

� � � � � 	
 � � � � � � � � � � � � ! # % ') + - . / 1 2 4 6 8 9 : <

>

? @ B

D E G

H I J

K L M

N O Q R

S T U V

W X Z [

\] ^ _

` a b c d e f g h i j k l n o p q r s t u v w x y z

{ | } � � � � � � � � �

� � � � � � � � � � � � � ¡ ¢
£ ¤ ¦ § © ª « ¬ ® ¯

± ² ³ µ · ¸ ¹ º ² µ » º ¹ ³ ¾ ³ » º ¿

Á ³ Ã º ¹ Ä Æ ³ ¹ ¹ ² µ » º ¹ ³ ¾ ³ » º ¿

Fig. 12. The triangle rate and pixel fill rate benchmark of GPU.

large-tile rasterization. Otherwise, the small-tile is used. By dynamically changing

the tile size, we can balance the loading of different triangles.

Combining all techniques, Fig. 13 shows the overall flow of our visibility driven

rasterizer for each triangle. First, we will choose the tile-size according to the tri-

angle size. Then we have to setup the initial status for tile-order scan-conversion.

The left boundary and right boundary of the triangle have to be evaluated first.

Following, the rasterizer processes tile by tile. It tests tile visibility and scan-line

visibility during rasterization. The operation will finish until it reaches the end of

triangle.

� � � � � 	 � � � � � � � �

� � � � ! " $ % & (* , - / 0 2 4 6
8 9 : < > @ A B C D E G I K L M N P Q S

T U W X Y Z [] ^ _ a b c e f g h i k l
m n p q

r s t u w x y { | } ~ � �
� � � � � � � � � �

� � � � � � �

� � � � � � � � ¡ ¢ £ ¤ ¥ ¦ ¨ © ª
« ¬ ® ¯ ° ± ² ³ ´

µ ¶ ¸ ¹ º » ¼ ½ ¿ Á Â Ã Ä Æ Ç

È É Ê Ë Ì Í Ï Ð Ñ Ò Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ à

á â ã å æ ç è

é ê

ë ì í

ï ð ñ

ó ô

õ ö ÷ ø ù ú û

ü ý þ ÿ � �

� � � �
 � � � � � � � � � � � � � " $ %

Fig. 13. The flow of visibility driven rasterization.

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
20

02
.1

1:
37

7-
39

1.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

04
/2

7/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.

October 11, 2002 16:48 WSPC/123-JCSC 00052

388 C.-H. Chen & C.-Y. Lee

Table 2. Simulation result.

House Chemical atoms

Total triangle 316672 622560

Original memory access 768902 2851709

HZ-buffer compression No Yes No Yes

8× 8- Triangle discard rate 22.4% 21.96% 14.69% 14.29%
4× 4 Pixel discard rate 5.9% 4.17% 24.1% 15.87%

Large tile test* 6496 6496 156248 156246
Large tile hidden * 546 1055 42899 60278
Small tile test ** 4798 4767 100857 100871
Small tile hidden ** 1184 1039 56025 47567
Scan-line hidden *** 5996 3247 167536 103574
Overall bandwidth reduction 49.73% 48.83% 58.54% 55.18%

16 × 16- Triangle discard rate 25.66% 22.04% 9.98% 8.52%
8× 8 Pixel discard rate 3.0% 2.61% 5.94% 4.79%

Large tile test * 2572 2572 9261 9261
Large tile hidden * 124 161 19 54
Small tile test ** 6316 6305 225100 225316
Small tile hidden ** 185 612 57563 50826
Scan-line hidden *** 3474 2656 43364 34688
Overall bandwidth reduction 48.02% 47.03% 45.25% 43.47%

Car Coffee Shop

Total triangle 454746 288374

Original memory access 781167 841034

HZ-buffer compression No Yes No Yes

8× 8- Triangle discard rate 36.58% 35.7% 21.08% 17.75%
4× 4 Pixel discard rate 21.62% 14.76% 7.31% 4.21%

Large tile test * 7557 7557 11855 11855
Large tile hidden * 1491 1832 2390 3411
Small tile test ** 22957 22337 6025 5908
Small tile hidden ** 15229 12251 3803 3149
Scan-line hidden *** 7428 4968 12699 5770
Overall bandwidth reduction 65.71% 62.76% 38.2% 36.24%

16 × 16- Triangle discard rate 35.26% 30.82% 18.39% 13.77%
8× 8 Pixel discard rate 12.84% 9.4% 5.55% 3.33%

Large tile test * 2721 2721 5781 5781
Large tile hidden * 170 275 647 1077
Small tile test ** 20462 20628 7064 7015
Small tile hidden ** 6227 5401 3037 2330
Scan-line hidden *** 4415 3247 9059 4790
Overall bandwidth reduction 60.72% 58.8% 37.82% 36.37%

* Large tile test: number of blocks that use large tile visibility test.
* Large tile hidden: number of blocks that fail large tile visibility test.
** Small tile test: number of blocks that use small tile visibility test.
** Small tile hidden: number of blocks that fail small tile visibility test.
*** Scan-line hidden: number of scan-lines that fail visibility test.

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
20

02
.1

1:
37

7-
39

1.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

04
/2

7/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.

October 11, 2002 16:48 WSPC/123-JCSC 00052

3D Graphics Hardware with a Novel Rasterizer 389

4. Simulation and Analysis

Table 2 shows the simulation results of our approach under 1600× 1200 resolution,

64-entry bit-mask cache, 8-bit depth representation and two different HZ-buffer

configurations with/without HZ-buffer compression. The test images includes hun-

dred of thousands triangles. Table 2 also shows the number of large tile, small

tile and line visibility test. The triangle discard rate represents the percentage of

total triangles that fail the visibility test before lighting stage. The pixel discard

rate represents the percentage of total pixel that fail HZ-Buffer visibility test af-

ter rasterization stage. The dynamic change of tile-size performs well to balance

the loading. For example: “Coffee Shop”, which includes many large triangles, has

more large-tile rasterization. In contrast with “Coffee Shop”, “Chemical Atoms”

has more small-size triangles and more small-tile rasterization.

The performance of triangle discard rate depends on the property of applica-

tion. If the application contains lots of small triangles (e.g., Chemical Atoms), the

triangle discard rate will be decreased by increasing the block-size of HZ-buffer.

Because large block-size results in coarse depth resolution and we cannot resolve

the visibility of the triangle by HZ-buffer. The pixel discard rate is much smaller

than previous approach,7 because the rasterizer discards most of the invisible pix-

els. This shows the improvement of visibility driven rasterizer. Overall, we can see

that the bandwidth reductions of the test images are between 30% to 60% un-

der our approach. Moreover, Table 3 shows the bandwidth reduction improvement

when comparing with previous scan-line based two-level HZ-buffer approach.7 We

can see that by combining two-level HZ-buffer and visibility driven rasterizer, the

bandwidth can further be reduced about 15% ∼ 30%.

Table 3. Original: scan-line based two-level HZ-buffer versus Modified: tile-order scan-line based
visibility driven rasterizer.

House Chemical atoms Cars Coffee Shop

TYPE
8× 8- 16× 16- 8× 8- 16× 16- 8× 8- 16× 16- 8× 8- 16× 16-
4× 4 8× 8 4× 4 8× 8 4× 4 8× 8 4× 4 8× 8

Original 21.5% 18.97% 42.55% 24.29% 42.65% 32.97% 18.4% 17.13%

Modified 49.73% 48.02% 58.54% 45.25% 65.71% 60.72% 38.2% 37.82%

5. Conclusion

Three-dimensional graphics applications are both computation and data intensive

operations. It requires bandwidth and computation reduction techniques for future

complex real-time applications. When bringing graphics applications into handheld

or mobile devices, the power consumption becomes an important issue. Today, mem-

ory bandwidth bottleneck has become the main issue of graphics hardware design.

Various techniques were proposed to save the bandwidth in different stages. In this

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
20

02
.1

1:
37

7-
39

1.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

04
/2

7/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.

October 11, 2002 16:48 WSPC/123-JCSC 00052

390 C.-H. Chen & C.-Y. Lee

paper, we propose a novel visibility driven rasterizer with two-level HZ-buffer. Com-

bining with two-level HZ-buffer, the rasterizer can quickly and efficiently discard

invisible part of the triangle during rasterization. The power can also be reduced by

saving the operations and memory access of hidden pixels in different stages: trian-

gle HZ-buffer test stage, visibility driven rasterizer stage and pixel HZ-buffer test

stage. Combining above techniques, the overall power consumption will decrease

largely. Beside, two-level HZ-buffer visibility test is application invisible. The ap-

plications will get the benefit of HZ-buffer without modifying the rendering flow.

Our approach is suitable for hardware implementation and can easily be integrated

into current graphics pipeline. Simulation results show that the overall bandwidth

reduction is quite large, leading to achieve a low-power solution.

Acknowledgment

The authors are grateful to the support from the National Science Council of

Taiwan, R.O.C., under grant NSC 90-2218-E-009-035.

References

1. S. Morein, “ATI Radeon HyperZ Technology”, Eurographics Hardware Workshop
2000, Hot3D Panel, 2000.

2. nVidia, “Technical brief: Geforce3: Lightspeed memory architecture”, http://
www.nvidia.com, 2001.

3. C.-H. Chen and C.-Y. Lee, “A JPEG-like texture compression with adaptive quanti-
zation for 3D graphics application”, The Visual Computer 18, 1 (2002) 29–40.

4. Z. S. Hakura and A. Gupta, “The design and analysis of a cache architecture for
texture mapping”, Proceedings of the 24th International Symposium on Computer
Architecture, 1997, pp. 108–120.

5. C. Edwin, “Computer display of curved surfaces”, Proceedings of the IEEE Conference
on Computer Graphics, Pattern Recognition and Data Structures, 1975, pp. 11–17.

6. T. Moller and E. Haines, Real-Time Rendering. A. K. Peters, Natick MA USA, 1999.
7. C.-H. Chen and C.-Y. Lee, “Two-level hierarchical Z-buffer for 3D graphics hardware”,

Proceedings of IEEE International Symposium on Circuits and Systems, Vol. 2, 2002,
pp. 253–256.

8. D. Gordon and S. Chen, “Front-to-back display of BSP trees”, IEEE Comput.
Graphics and Appl. 11, 5 (1991) 79–85.

9. N. Greene, M. Kass, and G. Miller, “Hierarchical Z-buffer visibility”, Proceedings of
SIGGRAPH, July 1993, pp. 231–238.

10. D. Luebke and C. Georges, “Portals and mirrors: Simple, fast evaluation of potentially
visible sets”, Proceedings of the 1995 Symposium on Interactive 3D Graphics, 1995,
pp. 105–106.

11. H. Zhang, D. Manocha, T. Hudson, and K. E. Hoff, “Visibility culling using hierarchi-
cal occlusion maps”, Proceedings of the 24th Conference on Computer Graphics and
Interactive Techniques, 1997, pp. 77–88.

12. R. W. Swanson and L. J. Thayer, “A fast shaded-polygon renderer”, Proceedings of the
13th Annual Conference on Computer Graphics and Interactive Techniques, Vol. 20,
No. 4, 1986, pp. 95–102.

13. S. W. M. Kelly and K. Gould, “A scalable hardware render accelerator using a mod-
ified scanline algorithm”, Proceedings of SIGGRAPH, 1992, pp. 241–248.

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
20

02
.1

1:
37

7-
39

1.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

04
/2

7/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.

October 11, 2002 16:48 WSPC/123-JCSC 00052

3D Graphics Hardware with a Novel Rasterizer 391

14. K. Akeley and T. Jermoluk, “High-performance polygon rendering”, Proceedings of the
15th Annual Conference on Computer Graphics and Interactive Techniques, Vol. 22,
No. 4, 1988, pp. 239–246.

15. J. Pineda, “A parallel algorithm for polygon rasterization”, Proceedings of the 15th
Annual Conference on Computer Graphics and Interactive Techniques, Vol. 22, No. 4,
1988, pp. 17–20.

16. J. McCormack, R. McNamara, C. Gianos, L. Seiler, N. P. Jouppi, K. Correll,
T. Dutton, and J. Zurawski, “Neon: A fast single-chip 3D workstation graphics
accelerator”, Technical Report 98.1, Compaq Western Research Laboratories, 1998.

17. M. D. Waller, J. P. Ewins, M. White, and P. F. Lister, “Efficient primitive traversal
using adaptive linear edge function algorithms”, Comput. Graphics 23 (1993) 265–275.

18. J. McCormack and R. McNamara, “Tiled polygon traversal using half-plane edge
function”, Proceedings of SIGGRAPH/EUROGRAPHICS Workshop on Graphics
Hardware 2000, 2000, pp. 15–21.

19. M. Meißner, D. Bartz, R. Gunther, and W. Straßer, “Visibility driven rasterization”,
Comput. Graphics Forum 20, 4 (2001) 283–294.

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
20

02
.1

1:
37

7-
39

1.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

04
/2

7/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.

