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Abstract

We have developed an evolutionary approach to predicting protein side-chain conformations. This approach,
referred to as the Gaussian Evolutionary Method (GEM), combines both discrete and continuous global
search mechanisms. The former helps speed up convergence by reducing the size of rotamer space, whereas
the latter, integrating decreasing-based Gaussian mutations and self-adaptive Gaussian mutations, continu-
ously adapts dihedrals to optimal conformations. We tested our approach on 38 proteins ranging in size from
46 to 325 residues and showed that the results were comparable to those using other methods. The average
accuracies of our predictions were 80% for x,, 66% for X, . », and 1.36 A for the root mean square deviation
of side-chain positions. We found that if our scoring function was perfect, the prediction accuracy was also
essentially perfect. However, perfect prediction could not be achieved if only a discrete search mechanism
was applied. These results suggest that GEM is robust and can be used to examine the factors limiting the
accuracy of protein side-chain prediction methods. Furthermore, it can be used to systematically evaluate
and thus improve scoring functions.
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Side-chain conformation prediction is important in model-
ing protein tertiary structures. Two factors are essential for
a good prediction method, these being a good scoring func-
tion and an efficient algorithm for searching conformational
spaces (Levitt et al. 1997).

A good scoring function should be able to distinguish
between correct and incorrect conformations. Various scor-
ing functions have been developed to predict side-chain
conformations, including simple molecular force fields
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which, for the sake of fast computation, usually employ a
Lennard-Jones 12-6 form (Lee and Subbiah 1991; Koehl
and Delarue 1994; Hwang and Liao 1995) or 6-9 form
(Holm and Sander 1992; Visquez 1995) to remove close-
range interactions. More sophisticated and longer range
functions (Tuffery et al. 1991), as well as statistically de-
rived contact potentials (Samudrala and Moult 1998), have
also been studied.

Until recently (Xiang and Honig 2001), the combinatorial
nature of side-chain placement was generally considered the
major obstacle in protein side-chain prediction. Various ap-
proaches have been developed to circumvent the combina-
torial problem and can be roughly divided into three cat-
egories: knowledge-based statistical methods, tree-based
elimination methods, and stochastic search methods.

Knowledge-based statistical methods include the homol-
ogy modeling methods (Holm and Sander 1992; Laughton
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1994; Bower et al. 1997), in which side-chain conforma-
tions are predicted on the basis of localized similarity be-
tween target structures and database templates. Other ex-
amples are approaches that use a rotamer library, in which
the statistical distributions of side-chain orientations derived
from known structures are tabulated. In general, there are
two kinds of rotamer library, one in which the rotamers are
dependent on the local main-chain environment (Dunbrack
and Karplus 1993) and one in which they are not (Ponder
and Richards 1987; Tuffery et al. 1991; De Maeyer et al.
1997; Xiang and Honig 2001). The information in these two
different kinds of rotamer libraries can also be implicitly
captured in neural networks (Hwang and Liao 1995). The
dead-end elimination algorithm (Desmet et al. 1992; Looger
and Hellinga 2001) and A* algorithm (Leach 1994; Leach
and Lemon 1998) are tree-based elimination approaches to
reduce search spaces. Whereas homology rotamer library
and tree-based approaches are deterministic stochastic
methods, such as simulated annealing (Lee and Subbiah
1991; Laughton 1994; Hwang and Liao 1995), genetic al-
gorithms (Tuffery et al. 1991), and mean field theory (Koehl
and Delarue 1994; Mendes et al. 1999), use biased sampling
to reach approximated solutions.

Despite the diversity of the strategies, algorithms, and
energy functions used in these methods, they all seem to
produce comparable results, with, for example, an accuracy
of ~70-80% in the ¥, angles of all residues (Levitt et al.
1997). However, it is not yet fully understood which factors
(e.g., search algorithms, energy functions, or experimental
errors) are mainly responsible for the 20%-30% of errors
(Levitt et al. 1997). In addition, many methods use a dis-
crete search to identify an optimal combination of side-
chain rotamer states before finding the optimal side-chain
conformations by energy minimization (Fig. 1), and it is not
clear to what extent the nature of discrete search has limited
the theoretical accuracy of a search method in protein side-
chain prediction.

Here we addressed these questions using an evolutionary
approach, referred to as the Gaussian Evolutionary Method
(GEM). Evolution-based algorithms (Goldberg 1989; Fogel
1995; Bick 1996) can generally be adapted to solve difficult
optimization problems and have been successfully applied
to problems of structural biology (Morris et al. 1998;
Tuffery et al. 1991, 1993; Yang and Kao 2000a). The pre-
sent work is an extended application of our recently devel-
oped evolutionary algorithm that combines adaptive muta-
tions and family competition to solve optimization problems
in widely differing fields (Yang et al. 2000; Yang and Kao
2000a,b, 2001).

The main difference in methodology between the present
work and our previous studies is the addition of a global
discrete-search to a continuous-search mechanism. To the
best of our knowledge, the present work on protein side-
chain prediction is also the first to integrate global discrete-
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Fig. 1. Main differences in search mechanisms for side-chain conforma-
tion prediction between previous approaches and our Gaussian Evolution-
ary Method (GEM).

and global continuous-search mechanisms (Fig. 1). This is
distinct from previous studies in which, although both dis-
crete- and continuous-search mechanisms have been used
(e.g., Dunbrack and Karplus 1993; Visquez 1995; Bower et
al. 1997; Xiang and Honig 2001), they were used separately,
with the result that the continuous search was only a local
search.

Results and Discussion

Overall accuracy of prediction
and comparison with other methods

The overall accuracy of GEM in predicting the side-chain
conformation of 38 test proteins (4313 residues) is shown in
Table 1. The geometric parameters evaluated were those
used commonly by others, namely the x, and ¥, , , angles
for all residues and the root mean square deviation (RMSD)
error in side-chain heavy atoms. The 38 structures selected
constitute a minimal set encompassing most of the common
structures tested in different prediction methods, allowing
comparison with these other methods (Holm and Sander
1992; Dunbrack and Karplus 1993; Laughton 1994; Hwang
and Liao 1995; Samudrala and Moult 1998; Looger and
Hellinga 2001). The results of the comparison are shown in
Tables 2 and 3.

As shown in Table 1, GEM yielded values for the ¥,
angles that were within 30° of those determined from the
crystal structure in 80% of cases and side-chain atomic po-
sitions with a mean RMSD of 1.36 A. For core residues with
<20% solvent exposure, the prediction accuracy increased
to 93% for x, and the mean RMSD was reduced to 0.92 A.
Thus, even though no energy minimization was applied to
the final structure and the bond lengths and bond angles
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Table 1. Gaussian Evolutionary Method (GEM) results for side-chain conformation prediction for 38 high-resolution structures

A (all) A (core?) B (all)

PDB Number RMSD RN!SD RN{SD

code residues (A) X1 Xi+2 (A) X1 X142 (A) X1 Xi+2
laac 105 1.05 0.92 0.69 0.83 0.97 0.82 0.17 1 1
lamm 174 1.66 0.73 0.61 1.18 0.954 0.77 0.22 0.99 0.99
larb 263 1.37 0.75 0.67 1.54 0.817 0.68 0.17 1 0.99
1bab 146 1.63 0.85 0.58 1.13 0.933 0.68 0.19 1 1
1bpi 58 1.26 0.8 0.65 0.97 1 0.75 0.14 1 1
1cbn 46 0.87 0.95 0.78 0.54 1 1 0.18 1 1
lcer 111 1.21 0.84 0.6 1.01 0911 0.73 0.22 1 0.99
lcex 197 1.09 0.8 0.71 1.04 0.854 0.74 0.19 1 1
lern 46 0.84 0.95 0.84 1.11 0.888 0.88 0.14 1 1
letf 68 0.88 0.87 0.7 0.32 1 0.91 0.18 1 1
lctj 89 1.23 0.85 0.62 0.73 1 0.85 0.15 1 1
lcus 197 1.27 0.82 0.66 0.94 0.92 0.79 0.18 1 1
ligd 61 1.28 0.76 0.74 0.24 1 1 0.15 1 1
lisu 62 1.12 0.84 0.74 0.47 1 0.9 0.15 1 1
11z1 130 1.16 0.82 0.66 0.86 0.913 0.84 0.26 0.99 0.97
1plc 99 1.24 0.82 0.7 0.76 1 0.82 0.2 1 1
1pmy 123 1.23 0.83 0.63 0.94 0.976 0.86 0.19 1 0.99
1ptx 64 1.73 0.74 0.61 0.94 0.882 0.82 0.2 1 1
1whi 122 1.52 0.73 0.65 0.55 0.972 0.91 0.16 0.99 0.99
1xnb 185 1.89 0.78 0.66 1.25 0.878 0.75 0.19 1 0.99
1xso 150 1.43 0.75 0.6 1.28 0.867 0.73 0.23 0.99 0.97
256b 106 1.53 0.73 0.53 0.58 1 0.95 0.16 1 0.98
2cro 65 1.58 0.75 0.57 0.81 0.882 0.76 0.18 1 1
2end 137 1.37 0.79 0.64 1.14 0.883 0.65 0.2 1 1
2erl 40 1.28 0.79 0.74 0.1 1 1 0.2 1 1
2hbg 147 1.34 0.76 0.61 1.01 0.891 0.78 0.19 1 0.99
2ihl 129 1.43 0.81 0.65 0.54 0.973 0.94 0.15 1 1
2sga 169 1.27 0.73 0.73 0.99 0.821 0.78 0.19 1 0.99
2tmn 316 1.52 0.77 0.64 1.05 0.888 0.72 0.21 1 0.99
3app 323 1.4 0.77 0.68 1.3 0.903 0.71 0.21 1 0.99
3apr 325 1.32 0.78 0.67 1.06 0.875 0.7 0.21 1 0.99
3fxn 138 1.72 0.75 0.56 1.22 0.847 0.69 0.18 0.99 1
3sdh 145 1.47 0.85 0.59 0.84 0.954 0.84 0.18 1 0.99
3tln 316 1.53 0.75 0.62 1.24 0.881 0.67 0.25 1 0.98
4fxn 138 1.35 0.74 0.56 1.16 0911 0.77 0.16 1 0.98
Spti 58 1.15 0.83 0.67 0.97 1 0.76 0.15 1 1
Trsa 124 1.44 0.79 0.71 1.01 0.952 0.8 0.17 1 1
Ornt 104 1.84 0.75 0.65 1.15 0.962 0.7 0.19 1 0.99
Average 1.36 0.80 0.66 0.92 0.93 0.8 0.19 1 0.99

X142 1s defined as those side-chains for which x; and x, are correct (within 30°) at the same time; side-chains with only a x, angle are included in x;,,-

A, using equation 2 as the fitness function.
B, using equation 1 as the fitness function.

“ refers to residues for which solvent exposure is ~20% as calculated using the Naccess program (Hubbard and Thornton, 1993).

used were those of standard templates and not of the indi-
vidual residues in the individual X-ray structures (see Ma-
terials and Methods), our results for core residues, on a
limited test set, were approaching those from a recent study
in which a very detailed rotamer library (7560 rotamers) and
experimental bonds and angles for every residue were used
(Xiang and Honig 2001).

In terms of residue types, it appears easier to predict the
orientation of small nonpolar or aromatic side chains, as
evidenced by a significantly better accuracy in x; angles

(90%) being achieved for these residues (Fig. 2a,b). This
means that prediction errors are contributed mainly by polar
and charged amino acids, for which interaction with the
solvent plays a significant role in determining their side-
chain orientation. The largest error was the 58% x, accuracy
for serine, which was probably attributable to its small size
and its conformation therefore being dictated by hydrogen
bonding (Koehl and Delarue 1994). These results indicate
that, in general, it is harder to predict the conformation
of those amino acids in which the side-chain conforma-
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Table 2. Comparison with other methods

Gaussian

Evolutionary Laughton Samudrala and Holm and Hwang and Dunbrack and
PDB Method” (1994)° Moult (1998)* Sander (1992)° Liao (1995)° Karplus (1993)°
code RMSD* X1 RMSD X1 RMSD X1 RMSD X1 RMSD X1 X1
lecm 0.84 0.95 1.43 0.68 1.4 0.87 — — 1.34 0.95 0.92
Letf 0.88 0.87 1.59 0.53 1.69 0.72 1.7 0.81 1.4 0.94 —
11zl 1.16 0.82 222 0.56 1.97 0.76 1.6 0.88 1.61 0.89 0.77
2cro 1.58 0.75 — — 2.29 0.66 2.3 0.57 — — —
2tmn 1.52 0.77 1.72 0.62 — — — — — — —
3app 1.4 0.77 1.22 0.7 1.2 0.81 — — 1.24 0.83 —
3apr 1.32 0.78 — — 1.44 0.85 1.4 0.84 — — 0.82
3fxn 1.72 0.75 — — 1.76 0.63 1.9 0.61 — —
3tln 1.53 0.75 — — 1.62 0.77 1.7 0.77 — 0.79 0.74
4fxn 1.35 0.74 1.96 0.46 — — — — 1.8 0.68 —
Spti 1.15 0.83 1.49 0.69 1.73 0.79 1.9 0.78 1.8 0.91 0.85
Trsa 1.44 0.79 2.02 0.54 2.02 0.67 1.8 0.79 1.73 0.78 0.79

“ Excludes proline and uses a 30° cutoff for x, angles.
® Includes proline and uses a 30° cutoff for x, angles.
¢ Includes proline and uses a 40° cutoff for x, angles.
JRMSD, root mean square deviation.

tion is more susceptible not only to steric hindrance, but also
to environmental factors, such as hydrogen bonds, salt
bridges, and solvent interactions. This observation is con-
sistent with the findings of previous studies (Table 3; Dun-
brack and Karplus 1993; Koehl and Delarue 1994), as well
as with the fact that the conformation of residues in the
protein core can be more accurately predicted (Levitt et al.
1997).

In general, it is neither straightforward nor completely
fair to compare the results of different protein side-chain
prediction methods, as different accuracy measures, energy
functions, and proteins have been used, and, with the ex-
ception of the studies of Bower et al. (1997) and Xiang and
Honig (2001), tests have been performed on a rather small
set of proteins (Tables 2, 3). Despite this, a number of
common characteristics emerge. For example, whereas no

Table 3. Comparison with other methods of the prediction accuracy of X, for specific side-chain types

Gaussian

Evolutionary Dunbrack and Laughton Koehl and Hwang and Bower
Residue Method Karplus (1993) (1994) Delarue (1994) Liao (1995) et al. (1997)
Val 0.88 0.91 0.81 0.84 0.85 0.83
Leu 0.89 0.68 0.73 0.85 0.82 0.83
Ile 0.88 0.86 0.86 0.82 0.79 0.87
Ser 0.58 0.65 0.51 0.42 0.61 0.62
Cys 0.83 0.93 0.79 0.81 0.81 0.74
Thr 0.73 0.84 0.68 0.8 0.79 0.83
Met 0.77 1 0.5 0.84 0.82 0.72
Pro 0.94 0.79 0.79 0.55 0.93 0.87
Phe 0.92 0.83 0.96 0.88 0.89 0.9
Tyr 0.93 0.86 0.87 0.93 0.88 0.9
Trp 0.86 0.82 0.71 0.87 0.74 0.87
His 0.92 0.92 0.81 0.81 0.85 0.85
Lys 0.77 0.66 0.56 0.68 0.6 0.68
Arg 0.62 0.74 0.41 0.66 0.64 0.65
Asp 0.66 0.74 0.64 0.64 0.73 0.76
Glu 0.73 0.61 0.53 0.66 0.71 0.63
Asn 0.76 0.76 0.64 0.73 0.77 0.73
Gln 0.59 0.72 0.59 0.73 0.75 0.68
No. of proteins 38 6 8 30 12 299

The results for other methods are taken from the literature.
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Fig. 2. Gaussian evolutionary method (GEM) results using different search mechanisms (discrete search only in white; discrete and
continuous search in black) and different fitness functions. (a, b) The energy-based function (equation 2); (¢, d) the exact root mean

square deviation (RMSD) function (equation 1).

obvious structures or classes of proteins emerge as particu-
larly easy or difficult to predict by any of the different
prediction methods, on the whole, the prediction accuracy
does not differ significantly from one method to another.
Furthermore, as mentioned above, the prediction accuracy
for x, angles in terms of amino acid type is quite consistent
between these methods (Table 3). The availability of
SCWRL (Side-chain placement With a Rotamer Library)
(Bower et al. 1997) through the Internet (http://www.
fcec.edu/research/labs/dunbrack/scwrl/), one of the more re-
cent and widely used side-chain modeling programs al-
lowed a more straightforward comparison, and the results of
SCWRL we obtained on the 38 test proteins using the same
accuracy criteria of GEM (Table 1) were also similar, with
the overall average RMSD being 1.46 A, x, accuracy being
81%, and x,,, accuracy being 64%. These results suggest
that the accuracy of GEM is comparable with those of pre-
vious prediction methods. However, the GEM approach, as
discussed below, can be used to analyze elements of meth-
odology, such as search scheme and energy function, and
should therefore help in moving toward error-free predic-
tion of protein side-chain conformations.

Evaluation of the energy function used

The main objective of this study was to evaluate whether the
evolutionary algorithm that we recently developed and ap-
plied to flexible ligand docking (Yang and Kao 2000a) was
also applicable to the prediction of side-chain conforma-
tions of proteins. To simplify the task, we adopted a typical
van der Waals—type energy function used in previous stud-
ies (see Materials and Methods). However, to enable the
global continuous search mechanism of GEM to energeti-
cally discriminate between different torsions, we found it
necessary to add a torsion term. In two previous studies in
which a very large set of rotamer states were sampled, a
torsion function was also used (Lee and Subbiah 1991;
Xiang and Honig 2001). The torsion term used in the pre-
sent work was that employed in the HIV protease-inhibitor
docking study of Gehlhaar et al. (1995).

The fact that although we did not attempt to refine any
parameters of the energy function used, we still achieved a
comparable prediction accuracy attested to the viability of
the use of GEM for protein side-chain prediction. However,
with uncertainty in the scoring (fitness) function, the robust-
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ness of GEM was difficult to assess. To address this ques-
tion, we made use of the high adaptability of GEM and
simply replaced the force-field energy function with a per-
fect-scoring function (i.e., one that would produce zero
RMSD in atom positions). As shown in Table 1 and Figure
2, ¢ and d, using the RMSD scoring function (equation 1;
Materials and Methods), GEM could indeed approach per-
fect prediction. Not only were almost all x, angles predicted
to within 30° (Fig. 2c; Table 1), but the absolute values of
the angles were very accurately reproduced, with >90%
having an error of <5° compared to a value of only 30%
when the force-field energy function (equation 2) was used
(Fig. 3a). The residual errors can be attributed to the use of
not completely flexible side-chain templates (Materials and
Methods), which have rigid bond lengths and bond angles.
This attribution is supported by the work of Xiang and
Honig (2001), which showed that the use of a standardized
geometry could lead to considerable errors. This was most
evident in the RMSD results for lysine and arginine, and, to
a lesser extent, those for glutamate and glutamine (Fig. 2d),
that is, those amino acids with side chains that are charged
or polar and are relatively long and flexible. Interestingly, in
the case of lysine and arginine, although almost all the ¥,
angles were predicted without error, the RMSD value was as
large as that obtained using the force-field energy function
(Fig. 2), reinforcing the fact that either RMSD or x, alone
cannot provide a complete assessment of side-chain prediction
accuracy. It is also worthy of note that GEM converges much
faster with the perfect-fitness function (Fig. 3b).

Limitation of discrete search

The purpose of discrete search, such as the use of a rotamer
library or uniformly divided torsion angles, is to reduce the

side-chain conformational space to render computational
search tractable. However, it frequently happens that many
side-chain conformations cannot be covered if only discrete
angle values are used. Indeed, the average prediction accu-
racy of GEM with discrete search alone was 70.9% for ¥,
and 1.72 A for RMSD for the 38 test proteins (Table 4).
GEM with both discrete and continuous search conse-
quently enjoyed an improvement of 9.1% in average ¥,
prediction and 0.36 A in average RMSD of side-chain po-
sitions (Fig.2a,b). Furthermore, even using the perfect-fit-
ness function, GEM with discrete search alone resulted in
substantial errors, especially for flexible residues, such as
serine, lysine, and arginine (Fig. 2c,d).

The shortcoming of discrete search over a limited number
of rotamer states (103 in this study) is even more evident in
the case of strained conformations (Schrauber et al. 1993),
which may be defined as those with a x, angle deviating by
>30° from the three energetically favored values (+/-60°
and 180°). As shown in Figure 4, the discrete search with
GEM yielded a difference as large as 30% in the x; accu-
racy between nonstrained and strained side-chain conforma-
tions. Such a large difference could often be easily over-
looked using statistical averages because strained residues
represent a small minority of all amino acid side-chain con-
formations (e.g., of the 4313 residues examined here, only
177 [5%] were strained).

A more detailed rotamer library may improve side-chain
prediction accuracy (De Maeyer et al. 1997; Liang and
Grishin 2002). Using a very large library with 7560 rotamer
states, Xiang and Honig (2001) indeed obtained very good
performance, especially for core residues. However, larger
rotamer states have not generally proven more accurate for
side-chain prediction than smaller states (Holm and Sander
1992; Laughton 1994; Visquez 1995). Using a library of

bl
3

)
2 © o
[ N ]

o s
n

Percentage (%,
&

| < 2 Energy Function (Equation 2)
[~ (. S, N PNl
0.3 2
02 R R N —
0.1 I’l 0.5 e g
0 'll'l-‘.._._..........n.-.n.n.nnm......,..L, 0 FTUWOL IOV TN T U T Y SO SO WY T T WO 1 Y DO T S A | 1.2
5 15 25 35 45 55 65 75 85 95 105 115 125 135 145 155 165 175 S S e PP S W\u r‘?p ‘_\,,\B %QB
Degrees .
Generations
(a) Distribution in y; errors (degrees) (b) Convergence for 3app
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Table 4. Gaussian Evolutionary Method (GEM) results on the
38 test proteins (Table 1) with two different rotamer libraries

Table 5. Gaussian Evolutionary Method (GEM) search
mechanisms and genetic operators

103 states 330 states
RMSD RMSD
A) X1 A) X1
GEM (Con + Dis + E2) 1.36 79.8% 1.37 79.9%
GEM (Dis + E2) 1.72 70.9% 1.65 71.1%
GEM (Dis + El) 1.26 78.8% 0.87 85.6%

RMSD, root mean square deviation; Con, continuous search; Dis, discrete
search; El, equation 1; E2, equation 2.

330 states (De Maeyer et al. 1997), GEM with the energy-
based scoring function (equation 2) yielded very marginal
improvements over the results with 103 states when only the
discrete-search mechanism was used, and essentially no im-
provements when discrete search was combined with con-
tinuous search (Table 4). However, it should be noted that
because the statistics of this larger library were not avail-
able, the statistics of the 103 states were transferred and
equal probability was assigned to each of the additional
states in the larger library, and, as such, the calculation
could not take full advantage of the evolutionary parameters
optimized in GEM. Interestingly, using the exact RMSD
scoring function (equation 1), the discrete-only prediction
of GEM improved significantly with the larger library (x,
from 78.8% to 85.6% and RMSD from 1.26 A to 0.87 A;
Table 4). These results may suggest that the scoring func-
tion is a key accuracy-determining factor in side-chain pre-
diction, and that the efficiency of utilizing a larger library
depends on search mechanisms. The suggestion is consis-
tent with a very recent finding of Liang and Grishin (2002),
who specifically optimized a scoring function to achieve
very accurate side-chain predictions.

In summary, we have demonstrated the robustness and
adaptability of GEM for exploring the conformational space

OGEM(Dis+El)
B GEM(Dis+Con+E1)

100

strained

non-strained

Fig. 4. Gaussian evolutionary method (GEM) results using different
search mechanisms on strained and nonstrained residues (see text). Dis,
discrete search; Con, continuous search; E1: equation 1 (the perfect scoring
function).

Genetic operator

(see Materials and Methods)  Local Global Discrete Continuous
Rotamer mutation operator no yes yes no
Decreasing-based Gaussian

mutation no yes no yes
Self-adaptive Gaussian

mutation yes no? no yes
Family competition yes no yes yes

# Self-adaptive Gaussian mutation may be viewed as both a local and a
global search operator.

of protein side chains and efficiently finding the combina-
torial solution under the constraint of the fitness function
used. The key novelty of the present work is the seamless
ability of GEM to blend global discrete search and global
continuous search, the former being required for efficiency
and the latter for accuracy, and to allow them to work co-
operatively. This was achieved through the incorporation of
a number of genetic operators, each having unique search
mechanisms (Table 5). For example, whereas the rotamer
mutation operator performs a discrete search on the global
rotamer space of the rotamer library, the self-adaptive Gaus-
sian mutation performs a local, but continuous, search on
torsional conformations, etc. Importantly, the flexibility of
GEM should allow us to begin to systematically improve
the forms and parameters of energy function for protein
side-chain and other protein-structure prediction problems.

Materials and methods

GEM parameters and computational details

The GEM parameters used in this paper are listed in Table 6. These
parameters were selected after many attempts to predict confor-
mations for test proteins with various initial values. GEM optimi-
zation stops when either the convergence is below a certain thresh-
old value or when the iterations exceed a preset maximum value.
In this paper, the maximal number of generations was set to be

Table 6. Gaussian Evolutionary Method parameters

Parameter Value
Population size 30
Recombination probability 0.2

Family competition length L=3

Step sizes of Gaussian

mutations v = 0.2 and o = 0.8 (in radius)
Number of maximum _ 100+ K/2 if 100+ K/2 =250
generations — 1250 if 100 + K/2 > 250

(K, the residue number of a protein)
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100 + K72 or 250 if 100 + K72 > 250, where K is the residue num-
ber of a protein. A set of 38 high-resolution crystal structures of
proteins (resolution better than 2 A) ranging in size from 46 to 325
amino acid residues was used to test the performance of GEM.
This set was selected from those used in many previous studies
(Holm and Sander 1992; Dunbrack and Karplus 1993; Laughton
1994; Hwang and Liao 1995; Samudrala and Moult 1998; Looger
and Hellinga 2001) to compare our results with those obtained
using other methods. All calculations were performed on a 500-
mHz Pentium III processor. A typical run time for a protein of 300
amino acids was ~25 min.

Root mean square deviation (RMSD) of atomic positions and
the percentage of side-chain dihedral angles that were correctly
predicted within 30° were used to assess the accuracy of the pre-
diction. The RMSD was calculated using the formula
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M
DUX,—x) > Y=y 4 Z,—2)VM (1)
i=1

where M is the number of atoms in a protein and (X,, ¥, Z,) and (x;,,
¥;» z;) the coordinates of the ith atom of the X-ray crystal and the
predicted structure, respectively. The calculation of RMSD in-
cluded the heavy atoms of side chains. The accuracies for x, and
X142 Were calculated excluding glycine and alanine residues. The
accuracy for x,,, refers to those cases in which both x, and x,
were correctly predicted.

Rotamer library and side-chain construction

A main-chain independent rotamer library was built using a modi-
fication of the method of Tuffery et al (1991). For each amino acid,
only up to ten of the highest populated rotamers were considered.
The number of rotamers was 1 for Pro; 3 for Cys, Ser, Thr, Val,
Asp, and Phe; 4 for Asn; 5 for Ile; 6 for His, Leu, and Tyr; 7 for
Trp; and 10 for the remaining amino acids (excluding Ala and Gly,
which have no rotamers). The total number of rotamers was 103.
The side-chain atoms were geometrically constructed by placing
side-chain templates onto the main chain of the X-ray structures,
using the side-chain dihedral angles generated by GEM. These
templates have standard bond lengths and bond angles according
to the AMBER force field (Weiner et al. 1984). The initial dihedral
angles of the side chains came either from the rotamer library or
from an assigned value within the feasible region (- to ). GEM
then adapted these dihedral angles to search for optimal side-chain
conformations by minimizing the scoring function.

Scoring energy function

Our scoring energy function was modified from Levitt (1983) and
Hwang and Liao (1995):

E= Evdw + Etor + EHbr)m] + ESb(md’ (2)
where E,,, is the van der Waals interaction potential, E, . the
torsional potential, and E,,,,, and Eg, ., are the potentials of
hydrogen bonds and disulfide bonds, respectively. E,,,, was com-
puted using a Lennard-Jones 6—12 potential:

M NB

E, 4, = 22 el (ry/Ry)"> = (ry/Ry)°], 3)

i=1 j=1
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where &;; and r; are constants which depend on the chemical
characteristics of atoms i and j; R; is the distance between the
atoms i and j; M is the number of atoms in a protein; NB is the
number of atoms within a preset distance (8 A) of atom i; g;; is the
depth of the energy well, and r;; is the equilibrium interatomic
distance for the van der Waals interaction between atoms i and j.
The same function form was used to compute the potential of the
hydrogen bonds (E,,,,,,) and disulfide bonds (Eg,,,,). Table 7
shows the values used for these parameters. We restricted the E, ;,,,
energy to a maximal value of 20 kcal/mole for each atom pair, as
described by Levitt (1983), to avoid infinite energies.

For the torsional energy, the equation of Gehlhaar (1995) was
used:

K chi

E, = 2.2 VALl = cos(nr — o)}, )

i=1 j=1

where K is the residue number of a protein and chi is the number
of dihedral angles of a residue. The values for A, n, and 7, were 3,
3, and mr, respectively, for the sp3-sp3 type and 1.5, 6, and O,
respectively, for the sp3-sp2 type (Gehlhaar et al. 1995).

GEM algorithm details

Here, we provide an outline of our evolutionary approach for
predicting protein side-chain conformations, which can be repre-
sented by adjustable variables of dihedral angles as

(0, 05, ....0,), (&)

where 7 is the number of dihedral angles of a side-chain confor-
mation. Generally, the steps involved are as follows:

1. Initialize the side-chain conformation of each residue on a
given backbone. The initial values for the dihedral angles are
selected either from the rotamer library or from the feasible
region (—, ). Repeat this N times to generate the initial popu-
lation of N side-chain conformations for a protein structure.
Evaluate the objective value of each conformation based on the
scoring function.

2. Change the dihedral angles of side-chain conformations by ge-
netic operators to generate offspring. Evaluate the objective
values of the offspring.

Table 7. Energetic parameters used for side-chain
conformation prediction

Atom r &t
(0] 3.1 0.185
N 3.817 0.413
C 4315 0.0738
S 4315 0.0738
H-bond" 2.9 3.0
S-bond*® 2.9 6

“ For atom pairs i and j the parameter values are r; = (r; + r;)/2 and g;; =
(8,-8/-)1/2.

" The parameter values are used for either oxygen or nitrogen to simulate
the energy of hydrogen bonds.

¢ The parameter values are used for disulfide bonds.
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3. Use selection operators to select N solutions from the side-chain
conformations of both parent and offspring solutions.

4. Repeat steps 2 and 3 until one of the terminating conditions is
satistied.

Main procedure

In the following subsections, we present the details of our ap-
proach for side-chain prediction. The method integrates a global
discrete-search mechanism based on a rotamer library and con-
tinuous-search mechanisms based on Gaussian mutations. The ba-
sic structure of the method is as follows (Fig. 5): N solutions are
generated as the initial population. Each solution (side-chain con-
formation) is represented as a set of three n-dimensional vectors
(8', o', vY), where 7 is the number of adjustable variables (dihedral
angles) of a side-chain conformation and i = 1,...,N. The vector
0 in equation 5 represents the adjustable variable to be optimized,
and o and v are the step-size vectors of decreasing-based mutation
and self-adaptive Gaussian mutation, respectively (Yang and Kao
2000a,b). In other words, each solution, 0, is associated with some
parameters for step-size control. In this paper, the initial value of
0,was randomly selected either from the rotamer library or from
— to 7 in radians. The initial step sizes, o and v, were 0.8 and 0.2
radians, respectively.

The main optimization procedure consists of three stages in one
generation: a rotamer-search stage, a decreasing-based Gaussian
mutation stage, and a self-adaptive Gaussian mutation stage. The
rotamer-search stage is a discrete-search mechanism that uses the
rotamer mutation operator to find an optimal combination of ro-
tamer conformations. The decreasing-based Gaussian mutation
and self-adaptive Gaussian mutation are continuous-search mecha-
nisms that mutate dihedral angles to find an optimal side-chain con-

] Initialize N so}utions (P) l
¥

FC_adaptive procedure with M,
rotamer-mutation operator and P
generates P,(g)

formation in continuous-search spaces. As shown in Figure 5, each
stage uses a general procedure, FC_adaptive, with two parameters to
generate a new quasi-population (with N solutions) as the parent of
the next stage. These stages differ only in the mutations used. The
recombination and mutation operators will be described below.

The FC_adaptive procedure employs two parameters, the popu-
lation operator (P, with N solutions) and the mutation operator
(M), to generate a new quasi-population. The main purpose of the
FC_adaptive procedure is to produce offspring and then perform
the family competition. Each individual in the population sequen-
tially becomes the “family father.” This family father and another
solution randomly chosen from the rest of the parent population
are used as parents for a recombination operation, with a probabil-
ity of recombination of p_; then a mutation operates on the new
offspring or the family father (if recombination does not occur).
For each family father, this procedure is repeated L times (family
competition length). Finally, L children are produced, but only the
one with the lowest objective value survives. Because we create L
children from one family father and perform a selection, this is a
family-competition strategy.

For easy description of operators, we use a = ( 8%, o“, v“) to
represent the family father and b = ( 8”, 6”, v”) as another parent
(only for the recombination operator). The offspring of each op-
eration is represented as ¢ = ( 6, o, v°). We also use the symbol
6}’ to denote the jth dihedral angle of a side-chain conformation d.

Recombination operators

Modified discrete recombination

Because experience indicated that our method was more robust
if the child inherited genes from the family father with a higher

FC_adaptive (P, M)

Generate L solutions from a
“family father” by applying
recombination and mutation M

v
FC_adaptive procedure with M,
decreasing-based Gaussian mutation and

P,(g) generates Py(g)

v

Repeat for !
cach individual| |Select the best solution from|
nP these L solutions

FC_adaptive procedure with M, self-
adaptive Gaussian mutation and P,(g)
generates P,

Satisfy terminal
conditions

Output the best solution

(@

A

4

Return the offspring population
(®

M: Mutation Operator (M,, M,,, or M,)
M :Rotamer-Mutation operator
M :Decreasing-based Gaussian mutation
M,;: Self-adaptive Gaussian mutation

L: Family Competition Length

P,(g) and P,(g) are quasi-population

Fig. 5. Overview of Gaussian Evolution Method (GEM). (@) Main procedure; (b) FC_adaptive procedure.
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probability, we therefore modified the original discrete recombi-
nation (Bdck 1996) as follows:

07 with probability 0.8
< _ { J p y (6)

i b - -
/67 with probability 0.2

Intermediate recombination

This operator is applied in the continuous-search stages as fol-
lows:

c a b a
0 =07+ (67 — 05)/2, and @)

0 =wf = B(w]l? - w})/2, (8)
where w is o or v, depending on the mutation operator applied. For
example, if the self-adaptive Gaussian mutation was used in this
FC_adaptive procedure, w is v. B is a constant set as 0.5 in this
work.

Mutation operators

Mutations are the main operators of our method. After recombi-
nation, a mutation operator is applied to the family father or to the
new offspring generated by a recombination operator.

Rotamer mutation operator

This operator is used at the rotamer-search stage to find a com-
bination of rotamer conformations. For each residue, this operator
is biased to select rotamers of higher probabilities and mutates all
of the dihedral angles of a residue according to the rotamer library.
For example, this operator changes 3 dihedral angles (0, 6; , ,, and
0. ,) if the residue is Gln, Glu, or, Met. For each of these dihedral
angles, this operator is applied with probability 0.2 as follows:

8;,:1 = "Vx; With probability p;; k€ {1,.. ., 18}and i€ (1,...,4},
)

where vy,; and p,, are the angle value and probability, respectively,
of the ith rotamer of the kth residue type. The values of y,; and p,;
are defined in the rotamer library.

Self-adaptive Gaussian mutation

The mutation is accomplished by first mutating the step size v;
and then mutating the dihedral angle 6, as follows:

vi = v exp{T’N(0,1) + TN,(0,1)} (10)

07 =07 + viN,(0,1), (11)
where N(0, 1) is the standard normal distribution and N0, 1) is a
new value with distribution N(0, 1) that must be regenerated for
each index j. We followed Bick (1996) in setting T and T as
(2n)" and (\2n)™", respectively.

Decreasing-based Gaussian mutations

The decreasing-based Gaussian mutation is accomplished by
mutating the step-size vector o with a fixed decreasing rate
v = 0.95 as follows:

o =vyo, (12)
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05 = 6%+ 0°N,(0,1) (13)

Previous results (Yang and Kao 2000b) showed that self-adaptive
mutations converge faster than decreasing-based mutations,
whereas, for rugged functions, self-adaptive mutations tend to
yield optimization results that are confined to local minima more
easily than decreasing-based mutations.
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