
408 IEEE TRANSACTIONS ON RELIABILITY, VOL. 42, NO. 3, 1993 SEPTEMBER

A Heuristic Task Assignment Algorithm to Maximize Reliability of
a Distributed System

Gwo-Jen Hwang, Member IEEE

Shian-Shyong Tseng, Member IEEE
National Chiao Tung University, Hsin-Chu

National Chiao Tung University, Hsin-Chu

Key Words - Distributed computer system, system reliabili-
ty, task assignment, distributed software design

Reader Aids -
General purpose: Propose an algorithm
Special math needed for explanations: Probability
Special math needed to use results: Same
Results useful to: Distributed-system designers

Summary & Conclusions - Distributed systems potentially
provide high reliability owing to the program and data-file redun-
dancy possible. In many applications, high reliability is the major
consideration for system design. Some work by Kumar, Hariri,
Raghavendra shows that the distribution of programs and data-
files can affect the system reliability appreciably, and that redun-
dancy in resources such as computers, programs, and data-files
can improve the reliability of distributed system. This paper first
formulates a practical application for a reliability-oriented
distributed task assignment problem which is NP-hard. Then, to
cope with this challenging problem, we p r o p a greedy algorithm,
based upon some heuristics, to find an approximate solution. The
simulation shows that, in most cases tested, the algorithm f ids
suboptimal solutions efficiently; therefore, it is a desirable approach
to solve these problems.

1. INTRODUCTION

Distributed systems can provide appreciable advantages,
including high performance, high reliability, resource sharing,
and extensibility [5,17,19]. Potential reliability improvement
of a distributed system is due to possible program & data-file
redundancy. The reliability evaluation of distributed systems
is widely published [l-4,6,11-13,15-16,201. To evaluate the
reliability of a distributed system, including a given distribu-
tion of programs and data-files, it is important to obtain a global
reliability measure that describes how reliable the system is.

Kumar, Hariri, Raghavendra [9,13] proposed the concepts
of distributed system reliability (DSR) which measures the
reliability of a distributed system by determining the probability
that all the distributed programs are working. They introduced
the KHR’ algorithm [9,13] based on graph theory to evaluate
the reliabihty measures. Some of their previous work also shows
that the distribution of programs and data-files can affect the
system reliability appreciably [13-15], and that redundancy in
resources such as computers, programs, and data-files can im-

prove the reliability of distributed systems [8]. Therefore, the
study of program and data-file assignment with consideration
of redundancy is important in improving the DSR.

Since the evaluation of task’s reliability is NP-complete
[3], Hariri & Raghavendra [7] proposed an algorithm to solve
some reliability-oriented task-allocation problems - assuming
that each computer had the same reliability and each communica-
tion link had the same reliability [7]. Shatz 8t Wang solved the
task allocation problems in redundant distributed-computer
systems by assuming that the system is a cycle-free network
[18]. In their model, software redundancy was not considered,
and the mission reliability (continuous time interval that is suf-
ficiently long for unit failures) was the major concern.

This paper formulates a practical application, of reliability-
oriented design for a distributed information system, to the k-
DTA problem; the k-DTA models the assignment of k copies
of both distributed programs and their data-files to maximize
the DSR under some resource constraints. Since the k-DTA
problem is NP-hard [21], we then propose a greedy algorithm
based upon some heuristics [101 to find an approximate solu-
tion. We conclude from the simulation results that in almost
every case the approximate solution is suboptimal with relative
error < 0.05 and the average absolute error = 0.02.

2. MOTIVATION OF THIS RESEARCH

The GDTA problem originated from a project of install-
ing several copies of a file server into the network which con-
nects all of the universities in Taiwan ROC. The file server con-
sists of a set of programs and a large database. The main pur-
pose of having several copies of the server working at the same
time is to ensure that the information system is not affected by
local failures of computer sites or network links. If a server
program can not access its data- files owing to disk failure, it
can access the data of other operational copies through network
to continue its work. If a host which holds some server pro-
grams fails, its users can still get the same services from other
Copies of the server.

There are many computers over several universities in ques-
tion. Those schools are willing to offer their computer resources
but with several resource constraints (eg, CPU time, memory
space, disk quota). Therefore, the programs and data-files of each
server are distributed among several computers under resource
constraints on each computer. The schools are requested to list
what their computers can afford (eg, how many processes, how
many MB of memory space, how many GB of disk space), so
that the whole information system can be planned.

‘Editors note: we have assigned this acronym for easy, clear reference.

0018-9529/93/$3.00 01993 IEEE

HWANG/TSENG: A HEURISTIC TASK-ASSIGNMENT ALGORITHM TO MAXIMIZE RELIABILITY OF A DISTRTBUTED SYSTEM 409

Because a server is constantly executing, its reliability
strongly depends on the failure probabilities of the associated
computer sites and communication links. Therefore, the
reliability of each computer or communication link can be

Other, standard notation is given in “Information for Readers
& Authors” at the rear of each issue.

Dejnitions
evaluated according to the ratio of time periods of its historical
failures. Section 4 puts this application into a formal descrip-
tion, in which a server is considered as a distributed system
consisting of several programs and data- files; each communica-
tion link is a link in a graph with a reliability measure, and each
computer is a node in the graph with a reliability measure and
some resource constraints.

3. Distributed system: A system involving cooperation
among several loosely coupled computers (processing elements);
the system communicates (by links) over a network.

3.2 Distributed program: A program of some distributed
system which requires one or more files. For successful execu-
tion of a distributed program, the local host, the processing
elements having the required files, and the interconnecting links

3. NOTATION & DEFINITIONS

must all be operational [13,15].

system are operational} [13,15].
3.3 DSR: Pr { all the specified distributed programs for the

file
G
V
E

DSR
KHR

Xi
Lij
R (X i)
R(Lij)
Pi
Fi
PF;

3.4 Dependent set: A set S of distributed programs & files
such that there does not exist a partition which divides S into
two disjoint subsets s1 & s,, where s1 U s, = s, and s1 n
S2 = 0 such that each program and the files required are
within the same subset.

3.5 DTA problem: Find an assignment for a dependent set
under some resource constraints on the distributed system such
that the distributed system reliability is maximum.

Bidirectional communication channels operate between
processing elements. A distributed network can be modeled by
a simple undirected graph.

Notation & Acronyms

AR-tree access-relation tree
A..*,. Gl,.
~ ~ - 1 l l G

3.6 k-DTA problem: Find an assignment for k copies of
a dependent set to maximize the DSR under some resource con-

4 straints on the distributed system.

simple undirected graph: (V , E)
set of nodes representing the processing elements
set of links representing bidirectional communication
channels
distributed-system reliability
Kumar, Hariri, Raghavendra reliability-computing

Example 3.1

Let AFL(P1) = {F,, F 2 } , AFL(P2) = (F2, F3}.

According to definition 3.4, S . (P I , P2, Fl, F2, Fj} is a
dependent set. If P2 requires only file F3, S is not a dependent
set since S can be divided into SI = {Pl, F1, F2} and S2 =
(P2, F3} such that both S1 & S, are dependent sets. 4

Assume that in a dependent set, one arbitrary program is
not operational or can not access the required file because of

algorithm [9,13]
node representing processing element i
link between Xi and Xj
Pr{Xi is operational}
Pr{LU is operational}
distributed program i
c1- :
I l l G I

distributed program or file i
AFL (P i) list of files required for program i to complete its

execution
APL (Fi) list of programs which must access file i to com-

plete their executions
FST file spanning tree consisting of the root node (process-

ing element that runs the program) and some other
nodes which hold all the files needed for the program
held in the root node under consideration [13,15]

MFST minimal FST containing no subset file spanning tree
U51

MFST (P i) set of minimal file spanning trees associated with
program i

ASS (S, G) assignment which allocates all programs & files
to a set of nodes S of network G

DSR (S, G) DSR for ASS (S, G)
FSF file spanning forest: a set of FSTs whose root nodes

hold all of the programs under consideration [15]
MFSF minimal FSF containing no subset FSF
DTA distributed task assignment
k-DTA k-copies DTA.

the failure of network nodes or links. Then all other programs
of the dependent set must stop executing. In example 3.1 , let
PI & P2 be 2 processes of a parallel algorithm, it is pointless
for P2 to continue executing if PI has already halted due to
failure of some nodes or links. By definition, the operation of
a dependent set S relies on the operation of the programs & files
of S. Therefore, the reliability of a dependent set in the
distributed system can be evaluated by KHR which measures
the DSR by determining the probability that all the distributed
programs are working.

This paper is concerned with the assignments of depen-
dent sets to maximize the distributed system reliability evaluated
by KHR.

4. HEURISTIC ALGORITHM FOR THE k-DTA ProbLEM

4. I Background
This section proposes an efficient heuristic algorithm to

find an approximate solution of the k-DTA problem. Without
loss of generality, we use memory constraints instead of resource
constraints to simplify the discussion.

410 IEEE TRANSACTIONS ON RELIABILITY, VOL. 42, NO. 3, 1993 SEPTEMBER

Theorem 1. Denote the set of minimal file spanning trees for
an assignment ASS (S , G) of a dependent set by MFST (S,G) .
If there exists another assignment ASS (S- { v} , G) , where v is
a terminal node of some MFST in MFST(S,G), then
DSR(S,G) < DSR(S-{v},G).

Proof: The theorem is obvious from the definition of DSR.
4

Definitions

4.1 Node XI is more reliable than node X2 iff the degree
of Xl is higher than that of X2. [The node with higher degree
is more likely to have more paths to the destination nodes than
those with lower degrees. Thus according to DSR(S,G) = Ui
Pr{MFSFi), Xl could provide higher reliability than X2.]

4.2 Program PI is weaker than program P2 (or, P2 is
stronger than P1) iff the minimum number of nodes required
to assign P1 and its associated files are greater than those re-
quired for P2. [If any associated file is not accessible, the pro-
gram fails. From theorem 1, we can always find an assignment
such that P2 is in a more reliable situation than P1; therefore,
PI is weaker than P2.]

4.3 File Fl is more influential than file F2 iff Fl is ac-
cessed by more programs than F2. [By definition of DSR, if
any program can not access its associated file, the whole
distributed system fails. Therefore, if Fl is accessed by more
programs than F2, then the probability that some program can
not access Fl is likely to be greater than the probability for Fz.]

Finding the minimum number of nodes needed to hold a
program and its associated fdes is interesting and difficult.
Basically, in most cases the total required memory size
dominates the number of nodes needed; therefore, we simply
use the total memory size of Pi and its associated files to ap-
proximate the number of nodes required. The weakness deci-
sion function is:

WEAKNESS (Pi) SIZE (Pi) + C q E m L (p i) SIZE (5).
Example 4.1

tions of a dependent set are:
All the program & files are the same size. The access rela-

The order of the programs from weakest to strongest is:

P2, PI, P3r P4.

fieorem 2. The most reliable assignment for k copies of some
program or file is to assign these copies to k distinct nodes.

Proof: The theorem is obvious from the definition of DSR.
4

Heuristics 1 - 6 ire ideas about approximate efficient solu-
tion of the task assignment problem.

Heuristics

1. Assign the weaker programs first.
2. Assign the weaker programs to the more reliable nodes.
3. Assign the more influential files before the less influen-

4. Assign the more influential files to the more reliable

5 . Assign the copies of the same program or file to dif-

6. Assign a program as close to its files as feasible.

Our approximation algorithm is generally a greedy ap-
proach which uses heuristics 1 - 6 as optimization measures and
an AR-tree as the data structure to represent the requirement
relation between the distributed programs and their files. To
construct an AR-tree -

a. Assign the weakest program, say Pi, to the root of the

b. Assign each file in AFL(Pi) to the Pi-children nodes.
c. Assign the programs in APL($) to the $-children

nodes, etc.

That is, AFL (Pi) & APL (4) are assigned alternately to the
children nodes of Pi & $ for each Pi on odd depth and $ on
even depth of the AR-tree. Moreover, the children of the same
parent are assigned sequentially from weakest to strongest.

tial ones.

nodes.

ferent nodes.

4.2 Access Relation Tree

AR-tree.

Construction of AR-tree for Example 4. I

1. Determine the order of the programs from weakest to
strongest (see example 4.1).

2. Construct the APL(Fi) for each Fi and determine the
order of these files from most influential to least influential:

According to the size of APL (Fi) , the order of the files is F3,

3. Sort the elements of AFL (Pi) & APL (5) for each Pi
and each $ accordihg to the orders determined in steps 1 & 2:

F2, Pi, F4, F5.

41 1 HWANGITSENG: A HEURISTIC TASK-ASSIGNMENT ALGORITHM TO MAXIMIZE RELIABILITY OF A DISTRIBUTED SYSTEM

4. Assign each program and file alternately to form an AR-
tree. Initially, assign the weakest program P2 to the root of the
AR-tree. Assume k = 2 (2 copies of each program & file). The
following rules are used to assign the programs & files until
all of them appear twice:

A. AFL(Pi) is assigned to the children nodes of Pi. If any
file appears more thank (in this example, k=2) times, discard
it.

B. If Fj E AFLP,) and F, has been assigned to the parent
node of Pi, reorder 4 to be the last (rightmost) child of Pi to
be assigned.

C. Assign APL(Fi) to the children nodes of Fi. If any
program appears more than k times, discard it.

D. If Pi E APL(Fi) and Pi has been assigned to the
parent-node of Fi, then reorder Pj to be the last (rightmost)
child of Fi to be assigned.

E. If all modules appear k times, STOP the extension of
the AR-tree; else go back to A.
After several iterations, an AR-tree of example 4.1 is con-

The AR-tree represents two important relations among the
k copies of programs & files in a dependent set:

1. Parent & children have access relation; hence they
should be put as near as possible.

2. For the programs or files of the same parent, the left
one is weaker than the right one; therefore, the priority of assign-

4

structed as figure 1. 4

ment should decrease from left to right.

For these reasons, it seems that better solutions can result from
assigning the programs & files in breadth-first order.

4.3 Greedy Approach

After the AR'-tree is constructed, the greedy algorithm bas-
ed upon some heuristics is used to assign the programs & files
to the network:

1. Initially the program in the root of AR-tree is selected
and assigned to the node with the maximum environment weight.
The environment weight represents the composite reliability for
the nodes and links surrounding a node.

p3
Figure 1. An AR-Tree of Example 4.1

ENVIRONMENT-WEIGHT(Xi) R(Xi) *E& E ADJ(X~)

ADJ(Xi) = set of nodes which are adjacent to Xb

2. Once a program or file PF, is assigned to some node
4, we then try to assign the children of PF, to the nodes as
close to 3 as possible. The children of PF, are assigned from
weakest to strongest.

3. For some child of PF,, say PFk, we try first to assign
PFk to Xi if the current available memory of 3 is large enough
to hold PFk; otherwise, the i-movement nodes of 4 (for such
nodes, all of the paths to 5 must include at least i edges and
at least 1 path including exactly i edges) are tried for i =
1,2,. . . ,n - 1. In figure 2, the 1-movement nodes of X, are: XI,
X2, X,; the 2-movement nodes of X, are: &, &.

4. If there are at least 2 i-movement nodes with enough
memory space, assign PFk to the one with maximum access
weight. As an i-movement node, X, becomes the candidate
node, the access weight for Xs is:

ACCESS-WEIGHT (4, Xs)

PA = some i-movement path from 4 to Xs.

Access weight is an estimate of the reliability of assigning PFk
to some i-movement node Xs while the parent of PF, is in 4;
it considers the degree of parent node and the reliabilities of

412 IEEE TRANSACTIONS ON RELIABILITY, VOL. 42, NO. 3, 1993 SEPTEMBER

0.95

0.92 0.92

Figure 2. Example of Network Topology

91

associated nodes & links. For each pair of nodes, the access
weight can be found by the all-pairs-shortest-paths algorithm
[lo].

5. If the breadth-first order of PFk, is greater than that of
PFk, in the AR-tree, then PFk, must be assigned before PFk,.
This rule assures that the programs & files in AR-tree are assign-
ed to the network according to the priority of breadth-first order.

4

For programs of short execution time, the process reliabili-
ty is related to its execution time, communication time, and cur-
rent system load; hence the environment weights and access
weights will be changed. However, in considering the constant
(long term) execution, the program reliability strongly depends
on the failure probabilities of relative nodes & links; ie, the en-
vironment weights and access weights are constants in such case.

Example 4.2

For a dependent set {Pl, Fl, F2} to be assigned to the net-
work of figure 2, let the available memory space of each node
be C1 = 8, C2 = 8, C3 = 12, C, = 8, C5 = 10, C, = 10.

SIZE(F2) = 7, and the number of copies k = 2.
Let AFL(P1) = {FI, F2}, SIZE(P1) = 4, SIZE(F1) = 6,

F2 91 F1
Figure 3. An AR-Tree of Example 4.2

The AR-tree in figure 3 can be constructed. First compute the
environment weight for each node:

ENVIRONMENT-WEIGHT(1) = 1.465470

ENVIRONMENT-WEIGHT(2) = 2.257680

ENVIRONMENT-WEIGHT(3) = 2.3463 10

ENVIRONMENT-WEIGHT(4) = 2.328244

ENVIRONMENT-WEIGHT(5) = 2.34oooO

ENVIRONMENT-WEIGHT(6) = 1.494948.

According to the environment weights and the AR-tree,
initially P1 is assigned to X3. The children of PI (viz, F1, F 2)
are the next two files to be assigned. Fl is assigned to node X3;
hence C, becomes 12 - (4+6) = 2. Since SIZE(F2) = 7, X3
does not have enough available memory to hold F2; therefor,
the X3 l-movement nodes (viz, Xl, X2, X5) which have enough
memory space to hold F2 are tried. Their access weights are:

ACCESS-WEIGHT (X3, Xi) = 0.740050,

ACCESS-WEIGHT(X3, X2) = 0.812820,

ACCESS-WEIGHT (X3, X5) = 0.793440.

Since X2 has the maximum access weigd associated w 1

X3, then F2 is assigned to X2. We then consider the second
copy of P1 in depth 3 of the AR-tree (we call it P’l). Since P’l
is the child of F2, and since F2 has been assigned to X2,
therefore, we try to assign PIl to X2 first. However, the
available memory space of X2 is 8 - 7 = 1 < SIZE(P’1) =
4; so, the 1-movement nodes of X2 are tried.

Figure 4. Result of Applying the Greedy Algorithm

413 HWANG/TSENG: A HEURISTIC TASK-ASSIGNMENT ALGORITHM TO MAXIMIZE RELIABILITY OF A DISTRIBUTED SYSTEM

The algorithm continues iterating until k copies of all the Notation
programs & files are assigned to the network. The final result
of example 4.2 is in figure 4. By KHR, the distributed system
reliability of figure 4 is 0.980363.

M
N

k.(number of programs & files)
number of nodes in the distributed system.

4.3 Formal Description of the Greedy Algorithm The time complexities for the algorithm are:

Greedy Algorithm

1. Calculate the environment weight of each Xi.
1.1 ADJ(Xi) = {Xjl% is adjacent to Xi}
1.2 ENVIRONMENT-WEIGHTX,) = [use (4-l)]

2.1 For each Pi & 4, reorder the AFL(P,) & APL(4) .
2.2 Choose Ph as the root of the AR-tree,

2. Construct an Assignment-Relation tree.

WEAKNESS (Ph) = MAXi(S1ZE (P i) +
+AFL(P,) SIZE(5)).

2.3 I* D = depth of the current AR-tree) *I D=O
UNTIL k copies of all programs & files are in the AR-

2.3.1 IF D is odd
tree DO

THEN expand the tree for eacWi of level D;
the files of AFL (P i) become the children of

ELSE expand the tree for each Fi of level D;
the programs of APL(F,) become the
children of Fi

Pi

ENDJF
2.3.2 For the new expanded programs or files, remove

the excess ones if more than k copies are be-
ing expanded

2.3.3 IF (PFj is expanded from PFi) AND (PFj =
parent of PF,)

THEN reorder PFj to be the rightmost child of

ENDJF

END-UNTIL

PFi

2.3.4 D = D + 1
3. Apply the all-pairs-shortest-paths algorithm to find the ac-

cess weight for each pair of nodes in the distributed system.
4. Assign each program & file to the network according to

the greedy strategy and the AR-tree.
4.1 Choose node Xs which has the maximum environment

weight. Assign the root program of AR-tree to X,.
4.2 Select one program or file PFj from the AR-tree ac-

cording to the breadth-first order
UNTIL all programs & files are selected DO
4.2.1 Assume that PARENT(PFj) is assigned to X,
4.2.2 i = 0
4.2.3 WHILE none of the i-movement nodes of X,

has enough resources for PFj DO
i = i i - 1
END-WHILE

4.2.4 Choose 1 node X, from the i-movement nodes

4.2.5 Assign PFj to X, and update the available

END-UNTIL 4

of X, that have maximum access weight

resources of X,

Step Complexity

5. SIMULATION & ANALYSIS

To evaluate the performance of our approach, we applied the
heuristic algorithm to a wide variety of distributed task assign-
ment problems.

5.1 Quantitative Evaluation

The results of our algorithm are compared to those of a
Random Assignment algorithm and an Exhaustive Search
algorithm, The reliabilities of the assignments were evaluated
by applying KHR. To verify the accuracy & efficiency of our
algorithm, the simulation programs are implemented in C
language on a VAX-8800 and by COMMON LISP on a PCIAT,
respectively. Some parts of the simulation results are depicted
in tables 1 & 2. Since k (number of copies) = 2, the numbers
of programs & files are twice as large as those shown in the
tables. Two error measures, E, & E,,, are used.

Notation

E, relative error
E,,, average absolute error
DSR,,, solution of the approximation algorithms
DSK,,, optimal solution from exhaustive-search algorithm.

E, 3 1 - DSRapp/DS&ptimal

E,,, = (E I DSR,,,,id - DSkpp I)/(number of cases)

The simulation shows that our algorithm performs ac-
curately & efficiently for most cases without dependence on the
languages or computers used:

E, < 0.05 for each case

E,, = 0.02 on the average.

Therefore, in almost every case, our algorithm can find subop-
timal assignments.

414 IEEE TRANSACTIONS ON RELIABILITY, VOL. 42, NO. 3, 1993 SEPTEMBER

TABLE 1
Simulation Results of C Program Executed on VAX-8800

Exhaustive
Size Random Alg. Greedy Alg. Search

time time
L P F DSR E, (sec) DSR E, (min) DSR

TABLE 2
Simulation Results of LISP Program Executed on PClAT

Exhaustive
Size Random Alg. Greedy Alg. Search

time time
L P F DSR E, (sec) DSR E, (min) DSR

~~~~~ ~ 

8 1 2 0.924 0.068 0.07 0.971 0.020 18.4 0.991 
8 1 2 0.925 0.067 0.08 0.971 0.020 18.6 0.991 
8 1 2 0.902 0.088 0.08 0.980 0.009 18.6 0.989 
8 1 2 0.933 0.058 0.07 0.982 0.009 18.4 0.991 
8 1 2 0.903 0.080 0.08 0.972 0.010 19.1 0.982 
8 1 2 0.824 0.157 0.06 0.931 0.048 10.7 0.97 

8 1 2  
8 1 2  
8 1 2  
8 1 2  
8 1 2  
9 1 1  
9 1 1  
9 1 1  
9 1 1  
9 1 1  

0.871 
0.852 
0.897 
0.860 
0.844 
0.909 
0.915 
0.918 
0.785 
0.781 

0.112 
0.122 
0.093 
0.123 
0.131 
0.082 
0.077 
0.073 
0.185 
0.182 

0.07 
0.08 
0.07 
0.06 
0.07 
0.06 
0.05 
0.06 
0.06 
0.05 

0.956 
0.951 
0.968 
0.965 
0.951 
0.989 
0.975 
0.989 
0.944 
0.947 

0.026 
0.021 
0.022 
0.016 
0.021 
0.001 
0.017 
0.002 
0.020 
0.008 

18.7 
19.2 
18.8 
19.1 
18.6 
48.2 
46.6 
49.1 
48.5 
48.4 

0.98 
0.97 
0.99 
0.98 
0.97 
0.990 
0.992 
0.990 
0.963 
0.955 

8 2 2 0.895 0.094 0.06 0.961 0.027 934 0.988 
8 1 3 0.908 0.081 0.07 0.974 0.015 928 0.989 

8 2 3 0.907 0.069 0.09 0.960 0.014 > l o 4  0.974 
8 2 4 0.911 - 0.09 0.954 - >IO6 - 

10 1 2 0.932 0.039 0.07 0.967 0.003 616 0.970 
10 1 2 0.886 0.083 0.08 0.950 0.016 597 0.965 

10 1 3 0.918 0.054 0.10 0.968 0.001 >lo4 0.970 
10 2 3 0.946 - 0.12 0.973 - >io5 - 

Eav,(Random) = 0.094; Eave(Greedy) = 0.015 
L = number of Links 
P = number of programs 
F = number of data files 
1 year = 5.105 minutes; 1 month = 4.104 minutes 

5.2 Qualitative Evaluation 

We analyze the performance of our algorithm by compar- 
ing it with the same Random Assignment algorithm used in sec- 
tion 5.1 and with the heuristic Algorithm-S. 

Algorithm-S 

#3) node which has enough memory. 

holds the most programs that access it. 

1. Assign programs to the most reliable and allowable (see 

2. Assign each file to the allowable (see #3) node which 

3. If the node has held a copy of some program or file, 
4 do not assign the same one to it. 

Discussion of Algorithm4 (AlgS) 

A l g S  seems straight-forward and reasonable; however, 
AlgS has 2 problems. 

Problem #1: AlgS ignores the relationships among copies 
of the modules. For example, let Pi & P’i be 2 copies of the 

8 1 2  
8 1 2  
8 1 2  
8 1 2  
8 1 2  
8 1 2  
8 1 2  
8 1 2  
8 1 2  
8 1 2  
8 1 2  

0.924 
0.925 
0.902 
0.933 
0.903 
0.824 
0.871 
0.852 
0.897 
0.860 
0.844 

0.068 
0.067 
0.088 
0.058 
0.080 
0.157 
0.112 
0.122 
0.093 
0.123 
0.131 

0.16 
0.17 
0.17 
0.16 
0.17 
0.15 
0.16 
0.17 
0.16 
0.16 
0.16 

0.971 
0.971 
0.980 
0.982 
0.972 
0.931 
0.956 
0.951 
0.968 
0.965 
0.951 

0.020 
0.020 
0.009 
0.009 
0.010 
0.048 
0.026 
0.021 
0.022 
0.016 
0.021 

31.9 
37.4 
37.5 
37.5 
37.1 
21.2 
37.5 
37.4 
37.5 
37.7 
37.8 

0.991 
0.991 
0.989 
0.991 
0.982 
0.978 
0.982 
0.971 
0.990 
0.981 
0.971 

9 1 1 0.909 0.082 0.16 0.989 0.001 92.3 0.990 
9 1 1 0.915 0.077 0.11 0.975 0.017 95.8 0.992 
9 1 1 0.918 0.073 0.16 0.989 0.002 92.4 0.990 
9 1 1 0.785 0.185 0.16 0.944 0.020 97.7 0.963 
9 1 1 0.781 0.182 0.16 0.947 0.008 92.9 0.955 

8 2 2 0.895 0.094 0.16 0.961 0.027 1770 0.988 
8 1 3 0.908 0.081 0.17 0.974 0.015 1696 0.989 

8 2 3 0.907 0.069 0.18 0.960 0.014 >lo5 0.974 
> l o 6  - 0.19 0.954 - 8 2 4 0.911 - 

10 1 2 0.932 0.039 0.16 0.967 0.003 3100 0.970 
10 1 2 0.886 0.083 0.17 0.950 0.016 1013 0.965 

10 1 3 0.918 0.054 0.22 0.968 0.001 = l o 5  0.970 
10 2 3 0.946 - 0.28 0.973 - > l o 6  - 

E,,,(random) = 0.094; E,,(greedy) = 0.015 
[see footnotes on table 11 

same program, and similarly with Fj & F:. If AFL(Pl) = 
{Fl, F2};  then AlgS implies that only P1 or P‘l needs to ac- 
cess one of {Fl, Fz} ,  {F’I, F2}, { F l ,  F i } ,  {F1, Fi} to keep 
the whole system operational. 

Problem #2: AlgS does not decide the order of assigning 
modules by considering their relationships; hence a program 
is most likely to be assigned far from the files it needs, and 
vice versa. For example, the assigning orders of F1 & F2 can 
be much later than that of P1. Let P1 be assigned to X,. The 
nodes that are close to X, might already be occupied when Fl 

4 & F2 are going to be assigned. 

Discussion of Random-Assignment Algorithm (AlgR) 

AlgR works in an even simpler way: AlgR applies only 
rule #3 of Algorithm-S shown above. 

Problem #3: The performance of AlgR can be terrible if 
most of the modules are assigned to some unreliable nodes which 

Problems #1& #2 for Algorithm-S can be avoided by ap- 
are far apart. 4 

plying the AR-tree. 



HWANG/TSENG: A HEURISTIC TASK-ASSIGNMENT ALGORITHM TO MAXIMIZE RELIABILITY OF A DISTRIBUTED SYSTEM 

April 11-1 4 Fairmont Hotel San Jose, California USA 

For further information, write to the Managing Editor. Sponsor members will receive more information in the mail. 

415 

L 

Problem #3 for Algorithm-R usually can be solved by applying 
environment weights and access weights which lead the 
algorithm to assign the modules to more reliable nodes with 
more reliable links surrounded. Therefore, satisfiable results 
can be derived by our approach. 

ACKNOWLEDGMENT 

This research was partially supported by the National 
Science Council of the Republic of China under Contract 
NSC79-0408-E009-17. 

kEFERENCES 

K.K. Aggarwal, S. Rai, “Reliability evaluation in computer- 
communication networks”, IEEE Trans. Reliability, vol R-30,1981 Apr, 

A. Agrawal, R.E. Barlow, “A survey of network reliability and domina- 
tion”, Operations Research, vol 32, 1984 May, pp 478-492. 
M.O. Ball, “Complexity of network reliability computation”, Nezworks, 

D. Brown,“A computerized algorithm for determining the reliability of 
redundant configurations”, IEEE Trans. Reliability, vol R-20,1971 Aug, 

P. Enslow, “What is a distributed data processing system”, Computer, 

S. Hariri, C.S. Raghaven&, “SYREL: A symbolic reliability algorithm 
based on path and cutset methods”, IEEE Trans. Computers, vol C-36, 
1987 Oct, pp 1224-1232. 
S. Hariri, C.S. Raghavendra, “Distributed functions allocation for 
reliability and delay optimization”, Proc. IEEE/ACM I986 Fall Joint 
Computer Con$, 1986, pp 344-352. 
S.  Hariri, C.S. Raghavendra, V.K.P. Kumar, “Reliability analysis in 
distributed systems”, Proc. 61h Int ’1 Conf. Distributed Computing 
Systems, 1986 May, pp 564-571. 
S. Hariri, C.S. Raghavendra, V.K.P. Kumar, “Reliability measures for 
distributed processing systems”, Proc. Inr’l Symp. New Directions in 
Computers, 1985 Aug; Trondheim, Norway. 
E. Horowitz, S .  Sahni, Fundamenrals of Computer Algorithms, 1978; 
Computer Science. 
C.L. Hwang, F.A. Tillman, M.H. Lee, “System reliability evaluation 
techniques for complex large systems - A review”, IEEE Trans. Reliabili- 

K.B. Misra, “An algorithm for the reliability evaluation of redundant 
networks”, IEEE Trans. Reliability, vol R-19, 1970 Nov, pp 146-151. 
V.K.P. Kumar, C.S. Raghavendra, S. Hariri, “Distributed program 

pp 32-35. 

VOI 10, 1980, pp 153-165. 

pp 121-124. 

V O ~  11, 1978 Jan, pp 13-21. 

ty, V O ~  R-30, 1981 Dec, pp 411-423. 

reliability analysis”, IEEE Trans. Sofhvare Engineering, V O ~  SE-12, 1986 

C.S. Raghavendra, S .  Hariri,“Reliability optimization in the design of 
distributed systems”, IEEE Trans. Software Engineering, vol 1 1 ,  1985 

[I51 C.S. Raghavendra, V.K.P. Kumar, S. Hariri, “Reliability analysis in 
distributed systems”, IEEE Trans. Computers, vol 37, 1988 Mar, pp 

[16] S. Rai, K.K. Aggarwal, “An efficient method for reliability evaluation”, 
IEEE Trans. Reliability, vol R-27, 1978 Jun, pp 101-105. 

[17] D.A. Rennel, “Distributed fault-tolerant computer systems”, Computer, 
vol 13, 1980 Mar, pp 55-56. 

[I81 S.M. Shatz, J.P. Wang, “Models and algorithms for reliability-oriented 
task-allocation in redundant-computer systems”, IEEE Trans. Reliability, 
vol 38, 1989 Apr, pp 16-27. 

[19] J.A. Stankovic, “A perspective on distributed computer systems”, IEEE 
Trans. Computers, vol C-33, 1984 Dec, pp 42-50. 

[20] A. Satyanarayana, “A unified formula for analysis of some network 
reliability problems”, IEEE Trans. Reliability, vol R-31, 1982 Apr, pp 
23-32. 

[21] S.S. Tseng, G.J. Hwang, “Task assignment to maximize reliability of 
a distributed system is NP-hard”, Tech. Report NCTU-CC-80123001, 
1991; National Chiao Tung University, Taiwan - ROC. 

Jan, pp 42-50. 
[14] 

Oct, pp 1184-1193. 

352-358. 

AUTHORS 

Dr. Gwo-Jen Hwang; Computer Center; National Chiao Tung University; Hsin- 
chu 300 TAIWAN - R.O.CHINA. 

Gwo-Jen Hwahg (M’92) was born 1963 April 16 in Taiwan - ROC. In 
1991, he received his PhD from the Department of Computer Science and In- 
formation Engineering at National Chiao Tung University in Taiwan. He is 
now an Associate Professor and is Director of R&D Department of Computer 
Center at that university. His research interests are distributed systems, expert 
systems, and knowiedge engineering. 

Dr. Shidn-Shyong Tseng; Department of Computer and Information Science; 
National Chiao Tung University; Hsinchu 300 TAIWAN - R.O.CHINA. 

Shian-Shyong Tseng received his PhD in Computer Engineering from 
National Chiao Tung University in 1984. He is now a Professor in the Depart- 
ment of Computer and Information Science at National Chiao Tung Universi- 
ty, and is Director of Computer Center at Ministry of Education. He was elected 
an Outstanding Talent of Information Science of R.O.C. in 1989 and was award- 
ed the Outstanding Youth Honor of R.O.C. in 1992. His research interests in- 
clude computer algorithms, distributed / parallel computing, artificial in- 
telligence, and compilers. 

Manuscript TR89-224 received 1989 December 29; revised 1991 January 10; 
revised 1992 January 16; revised 1992 September 4. 

IEEE Log Number 06540 4TRF 

I 1994 international RELIABILITY PHYSICS Symposium I 


