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Optimization of Two-Dimensional Radome 
Boresight Error Performance Using 

Simulated Annealing Technique 
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Abstract-In this paper a systematic approach to radome 
design is presented. The problem is formulated as a global 
optimization procedure such that the radome performance is 
optimized by properly adjusting the thickness of the radome 
layer over the entire radome surface. In this approach the 
thickness profile is parameterized via B-splines representation. 
Simulated annealing technique is applied to finding the best 
thickness profile so that the maximum boresight error is re- 
duced as small as possible over the entire range of the antenna 
look angle. A two-dimensional design example is given. The best 
possible thickness profile is found and the boresight error is 
reduced considerably compared to that due to a uniform layer. 
The method is general and can be applied without difficulty to 
other realistic three-dimensional radomes of arbitrary shapes. 

I. INTRODUCTION 
S a dielectric layer, the radome inevitably introduces A pointing error with respect to the apparent look 

angle of the radar antennas. In the past, major re- 
searchers have concentrated on the analysis of the bore- 
sight error (BSE), which is a major consideration in 
radome performance. Since in practice the shapes of 
radomes often conform to aerodynamic requirements of 
the radar housing, such as the missiles, the aircraft, etc., 
no rigorous electrical analysis is possible except for a few 
simple geometries. One must therefore resort to some 
approximation methods. Early investigators employed the 
geometrical optics and surface integration [ 11 technique. 
The fields on the outer surface of the layer are first 
obtained via ray-tracing, and the equivalence principle is 
employed next to evaluate the radiation fields. By the 
plane-wave spectrum technique [2], the ray-tracing is re- 
placed by constituents of plane waves and therefore the 
transmitted fields can be found by simply approximating 
the local radome layer as slab, and thus the solution 
corresponding to the slab problem can be applied. Further 
improvement [3] makes use of the cylindrical wave spec- 
trum and approximates the local layer as circular in order 
to take into account the curvature effect. 

One notes that all the literature relates to the perfor- 
mance evaluation of the radome; little has been published 
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concerning the design issue, i.e., to improve the perfor- 
mance such as to minimize the boresight errors. In this 
paper, we develop a systematic method to address this 
problem. As a specific example, we require that for a 
specified shape of the radome, the boresight error is 
minimized over the entire range of the antenna look angle 
through proper adjustment of layer thickness over the 
radome. The problem is formulated as a global optimiza- 
tion procedure in which the radome performance as cost 
function is to be optimized. Constrained optimization is 
also considered by way of examples. In Section I1 we start 
by problem specification and formulation. Section I11 gives 
the surface modeling. Global optimization is introduced in 
Section IV. In Section V we apply our technique to a 
design example, and the numerical result is presented in 
Section VI. The conclusions are in the last section. 

11. PROBLEM SPECIFICATION AND FORMULATION 
Fig. 1 depicts a two-dimensional (2D) antenna-radome 

system. The radome layer is made of dielectric material 
with permittivity E ,  which is assumed to be constant as in 
practical situations. The antenna is represented by a y -  
directed constant-density current sheet of infinite extent 
over the width W,. A time dependence elmf is assumed 
and omitted throughout. The outer radome surface s is 
assumed to be specified. As a design objective, we look for 
the inner surface, and hence the thickness profile d(s )  
along the surface, such that the boresight error over the 
entire antenna look angle is made as small as possible. 
For simplicity, the rate of change of the boresight error is 
not considered in this paper, though it can be incorpo- 
rated into the optimization algorithm. 

A. Fields on the Outer Surface of the Radome 
To find the field at any point on the outer surface, we 

adopt a slightly different approach than that found tradi- 
tionally. We approximate the local surface as a slab of 
infinite extent; therefore, the fields on the outer surface 
can be found in terms of the dyadic Green’s function, 
denoted as G ,  corresponding to the slab problem, i.e., 

E ( s ,  d )  = /// G,(s ,  r ’ )J(r ‘ )  dr’, 

H ( s ,  d )  = /// G,(s ,  r’>J(r’> dr‘, 

(1) 

(2) 

aP 

aP 
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B. Radiation Fields in the Presence of the Radome 
By the equivalence principle [6], the fields transmitted 

through the radome can be evaluated by making use of 
the equivalent current distribution over the outer surface. 
The equivalent electric and magnetic surface currents are 
given respectively as J, = f i  X H and M, = E X f i .  The 
resulting potentials are 

1 J,( r’)e -jkoir- r’ 1 
A = -// Ir - r’l da’ , 

45- 

and therefore in free space the electric field can be found 
through 

1 

J W E  
E =  - V X F + - V X V X A .  (8) 

For a 2D problem shown in Fig. 1, the electric field has 
only a y component E,  which can be simplified as 

E = -/H,$2)(koR)Ht k,2 ds 
4WEO s Fig. 1. Geometry of a two-dimensional antenna-radome system. 

- jkO T/H12)(k , ,R)( f i  * k ) E ,  ds, ( 9 )  
where s defines a parametric representation of the outer 
surface and d = d(s)  is the thickness at s. G, and G, are 
respectively the Green’s functions for the electric and 
magnetic fields corresponding to the slab problem. Notice 
that the Green’s functions are functions of parameter s of 
the curve length in the 2D case. For specified 2D radome 
profile, the last WO integrals become WO line integrals 
over the antenna width, and the Green’s functions as 

S 

Where H1 and E, are tangential field components on the 
m h m e  surface p d  f i  is the o u t ~ a r d  unit vector 
on the surface. R is the unit vector from the outer surface 
of the radome to the observation point. HA2’ and Hf2’ are 
respectively the Hankel functions of the second kind of 
order 0 and 1. 

functions of d(s)  have the spectral representations [41 c. Boresight and Global 

where k ,  is the wave number, p is the distance, and 4 is 
the incident angle from the source point to the radome’s 
inner surface. E ,  is the free space permittivity. T(w,  d(s)) 
is the plane-wave transmission coefficient [51 for the pla- 
nar slab of thickness d(s), which is given as 

where 

K = k ,  COS w, 

K€ = k,-, 

The boresight error S is defined as the angular devia- 
tion of the antenna beam maximum in the presence of the 
radome from that without the presence of the radome. 
Previous discussion states that for a specified antenna 
look angle 8, S varies as a functional of the thickness 
profile d(s). On the other hand, for specified d(s), S 
varies as a function of 8. Therefore 

6 = S(8,  d(s ) ) .  (10) 
The optmal radome design, as we defined it in this partic- 
ular application, is to find the optimum S throughout the 
whole range of d(s)  and 8. By optimization, we adopt the 
minimax criterion, i.e., 

(11) min max S(8 ,  d(s ) ) ,  
d ( s )  @ 

with the maximum operating on the whole range of 8 and 
the minimum on d(s), which is nonnegative. However, a 
trivial case should be excluded for which d(s)  = 0. More- 
over, in practice, d(s)  should not deviate dramatically 
from a nominal value do. In summary, the optimal radome 
design problem is formulated as to 
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subject to a nominal specification 

maxId(s) -dol I E ,  (13) 

where E might be taken, for example, as a proper fraction 
of do. Consequently, (12) becomes a constrained minimax 
optimization problem. 

111. CUBIC B-SPLINE REPRESENTATION OF THE 
THICKNESS PROFILE FUNCTION 

In general, the process of optimal design requires a 
finite number of unknown parameters to be determined, 
whereas in (121, d(s), which is a continuous function of s, 
imposes infinitely many possible unknown parameters as- 
sociated with its amplitude corresponding to each location 
at s. Clearly, it is hard to find an optimal thickness profile 
by the ordinary finite-parameter optimization techniques. 
To circumvent this difficulty, a transformation of the 
parametric representation of the thickness profile be- 
comes necessary. This can be done, for example, by simple 
Fourier representation. However, here, a natural candi- 
date for the thickness profile d ( ~ )  is suggested to be the 
well-known cubic B-spline representation, which can be 
expressed as 

N +  1 

d ( s )  = P j B j W ,  (14) 

where Bj's are the spline basis functions and pi's are the 
expansion coefficients to be determined. Even though (14) 
is an approximation, it can be made as accurate as desired 
for sufficient large N .  Then the problem of (12) can be 
parameterized as 

i =  -1 

subject to the same nominal specification constraint as 
mentioned in (13). Equation (15) is regarded as a standard 
form in the theory of global optimization. 

A. Spline Space and B-splines 
Before giving a formulation of the B-spline representa- 

tion, we introduce some definitions [71. 
Definition: Given the interval [a,  b ]  of the real line, let 

6 denote the discrete set of N + 1 points and a = to < 
t1 < -.. < tN = b. The spline space S , ( t )  of degree 
m is defined by S , ( t )  = { g ( O  E Cm- '[a ,  bl; g ( t )  is a 
polynomial of degree m on each interval [ t,, tl+l], i = 
0, l,..., N - l}. For a given spline space Sm(tO, . . . ,  t,,,), it 
always associates with further points C-, < < t-l < 
a and b < tN+' < < tN+,, where these points may 
be chosen arbitrarily. 

Lemma: For each i E { -m,..., N - 1}, there exists a 
unique spline B,", called B-spline, of degree m with knots 
t-,,..., tN+,  such that 

B y ( t )  = 0 t ~ ( - 0 0 ,  ( , I  U [ t l + , + l , O O ) ,  (16) 

B," > 0 t E (ti, t i + m + I ) ,  (17) 

(18) 

Accordingly, a spline is a piecewise polynomial function 
with derivative continuity condition at each fixed knot. It 
is shown [8] that any continuous function, say f,  can be 
approximated to arbitrarily high accuracy by a spline of 
degree m ,  provided that the spacing between knots is 
sufficiently small. In the case of m = 3 and the uniform 
spacing between points ti+ and tj ,  i = 0, l,..., N - 1 
(i.e., h = for all i) ,  it had been proven that 
there exists a spline s E S, which has the approximation 
error of order 4, that is, 

- 

(19) 

B-splines are specific splines which satisfy a few more 
constraints and form a basis of any spline spaces [7]. 
B-splines are splines which have the smallest possible 
support. Moreover, a stable evaluation of B-splines with 
the aid of a recurrence relation is possible. Thus B-splines 
are a popular choice of piecewise polynomial interpola- 
tion. Cubic polynomials are the most frequently used for 
splines since they are the lowest order in which the 
curvature can change sign and have the minimum mean 
squared curvature. Based on the above facts, the cubic 
B-splines are chosen to model the thickness profile func- 
tion (TPF). 

B. TPF Interpolation by Cubic B-splines 
In the two-dimensional case, the TPF can be expressed 

by a curve 4 s )  with abscissa of curve length s. Moreover, 
without loss of generality, the curve length s can be 
normalized to unity such that the TPF curve can be 
represented by d( p) with the range that p E [O, 11. As- 
sume that ( N  + 1) points located on the TPF curve are 
chosen and denoted by ( p j ,  d( pi)), where pi = i / N  and 
i = 0, l,..., N.  Those points are also called the knots of 
the associated interpolation spline. [9] shows that the 
resulting cubic spline representation of the TPF curve can 
be generated by these chosen N + 1 knots and described 
bY 

Nf 1 

d ( p )  = PiB(i - N p ) ,  (20) 
j =  - 1  

where pi is the ith unknown expansion coefficient and 
B(i - N p )  (i.e., B?) is its associated cubic spline basis 
function. The cubic spline function has a characteristic 
bell shape and can be described by the following five 
equations: 

B ( 7 )  = (2  + d 3 / 6  - 2 1 7 1  -1, 

= (4 - 67' - 3 ~ ~ ) / 6  - 1 I 7 I 0, 

= (4 - 67' + 3 ~ ~ ) / 6  0 I 7 I 1, 

= (2 - d 3 / 6  1 5 7 5 2 ,  

= o  2 I 171, (21) 
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where T = Np. The N + 1 chosen knots are substituted 
into (20) to yield 

1 

Observing (22), there are ( N  + 3) unknown variables pi 
involved in ( N  + 1) linear equations that cannot give an 
unique solution. In order to tackle this difficulty, we need 
two more independent linear equations. These two equa- 
tions can be obtained by placing the clamped end con- 
straints [9] on the both ends of the curve, which in this 
case will be to fix the gradient at the ends. The clamped 
end condition is used to determine the shape at the ends 
of a spline. The gradients at the ends will be denoted by 
go and gN. To compute them, the interpolation spline 
equation has to be differentiated with respect to p, giving 

d ' ( p )  = N &B'(Np - i). (23) 
N +  1 

i =  -1 

and 

(25) 
Usually, the gradient at the ends is specified by the user, 
or alternatively can be set to some default value. Combin- 
ing (221, (241, and (251, it can be summarized in a compact 
matrix form 

where M a p  = d ,  (26) 

-N/2 0 N/2 0 
1/6 2/3 1/6 0 
0 1/6 2/3 1/6 I 

0 0 0  
I a o o o  0 0 0  

It can be easily shown that det ( M I  # 0; such an expan- 
sion coefficient vector p can be calculated by direct 
matrix inversion: 

p = M-' . d .  (30) 
Equation (30) shows that there is a one-to-one mapphg 
between and d implicitly. Once d is chosen, p is 
determined uniquely. Consequently, the cost function 
m a o  N e ,  p-l,--., pN+l) of (15) is then in terms of d = 

' (d( pol, d( pl),*--, d( pN)). Therefore, the constrained 
minimax optimization problem can be solved with respect 
to a set of new variables d( pO);-* ,  d( pN). This yields 

I min max H e ,  d( po),..., d( pN)) .  (31) 

IV. OPTIMIZATION BY SIMULATED ANNEALING 
TECHNIQUE 

Simulated annealing is a recently developed and cost- 
effective approach to solving the combinatorial optimiza- 
tion problems. Kirkpatrick et al. [lo] first recognized a 
strong analogy between physical annealing and solving 
large combinatorial optimization problems. In simulated 
annealing, the possible solutions of a combinatorial opti- 
mization problem are analogous to the states of a physical 
system, the cost of a given solution is analogous to the 
energy of a given state, and the control parameter T, is 
analogous to the temperature of a heat bath. 

An instance of a combinatorial optimization problem 
[ l l ]  can be formalized as a pair W,f) where the solution 
state space U denotes the finite set of possible solutions 
and the cost$nctionf is a mapping defined as f: U + 'ill. 
Hence, the goal of combinatorial minimization is to fmd 
the solution uOpt E U such that f(uopt) ~ f ( u , )  for all 
ui E U. This goal may be achieved by using the following 
proposed simulated annealing algorithm. 

Simulated annealing is a smart random search tech- 
nique which is often more efficient than exhaustive search 
yet more robust than gradient descent. The search process 
of the simulated annealing is controlled by an externally 
specified parameter, usually called effective temperature, 
T,, with the same units as the cost function. When T, is 
relatively large compared with the maximum value of the 
cost function, simulated annealing explores the entire 
solution space using a uniformly generated random per- 
turbation which is a transition from the current state 
(state ui with cost f (u i ) )  to the proposed state (state uj  

d(po); . . ,  d ( l L N )  0 

0 0 *.. 0 0 0  
0 0 ..* 0 0 0  
0 0 * * *  0 0 0  
. . ... 
. , ... 
0 0 *.. 1/6 2/3 0 
0 0 *.* 1/6 2/3 1/6 
0 0 ..* -N/2 0 N/2 

(29) 

with cost f (u j ) ) ,  and with no preference for lower cost 
function. As T, gets smaller, this undirected eploration 
changes. When T, is small enough, simulated annealing 
becomes a descent algorithm. At intermediate values of 
T,, the simulated annealing moderates its behavior be- 
tween these two extremes: The transition is immediately 
accepted if f ( u j )  is less than or equal to f(u,); otherwise, 
it is accepted with a probability given by the Boltzmann 
distribution e(f(ui)-f(uj))' 'e. By gradually decreasing T,, the 
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M := 0 

4 Yes 

uj:="state generated by 
state transition procedure" 

Fig. 2. Flow diagram of simulated annealing technique. 

search is systematically concentrated into regions likely to 
contain a global minimum, but still random enough to 
escape most local minimum. Ref. [ l l ]  shows that the 
convergence to the global minimum is provable with prob- 
ability 1 sense. 

The algorithm can be best understood in the flow 
diagram shown in Fig. 2; it is observed that there are two 
nested loops involved in the simulated annealing algo- 
rithm. The outer one will be terminated when the number 
of iterations, M ,  is equal to a sufficiently large value 
M,,, , which could be obtained by a priori measure for the 
lowest effective temperature. And the inner loop stops if 
the equilibrium condition [121 is satisfied. In addition, a 
cooling process [ l l l  should also be used to control the 
decrement of T,, and is given by T,(M + 1) = aT,(M),  
where M is the index of the iteration for the outer loop, 
and the control parameter reduction factor, a, is between 

0.95 and 1. The initial effective temperature T,(O) should 
be chosen so that the initial transition-acceptance ratio is 
high [ll]. 

It should be mentioned that the condition of reaching 
an equilibrium point at the nth iteration can be deter- 
mined by the following equations: 

n 

where t is a specified criterion and AVEaccept is the 
estimate of the average of the accepted cost functions and 
given by 

(33) 

where naCcept is the number of acceptions. 

V. RADOME DESIGN BY SIMULATED ANNEALING 
In this section, the simulated annealing approach will 

be incorporated into the problem of radome design. To 
solve the optimization problem (31), a solution state is 
chosen as the ( N  + 1)-dimensional vector 

= (d( pO),*", d( P N ) ) ,  (34) 

where d( pi)  is the value of thickness at knot i .  The value 
of the cost function is taken as the maximal boresight 
error, which can be estimated by choosing the maximal 
value of the boresight errors which correspond to a num- 
ber of sampling angles within the antenna's scan range. 
Suppose that there are p sampling angles belonging to the 
scan range, that is, e,, j = l , . . * , p ;  then the estimated 
maximal boresight error becomes 

Clearly the estimate can be made as accurate as desired 
for sufficiently large p .  Since the radome thickness cannot 
be too thick or too thin in practical sense, it is required 
that the thicknesses d( pi)  ( i  = O,..., N )  satisfy the follow- 
ing boundness constraint: 

dmjn 2 d( P,)  5 dmax 7 (36) 
where d,, and d,,, denote the lower and upper bounds 
of d(p,) ,  respectively. As discussed in Section IV, a 
combinatorial optimization problem can be executed suc- 
cessfully by using the simulated annealing technique when 
the solution state space is finite. Unfortunately, the possi- 
ble number of states belonging to the feasible range of 
d( p,) is infinite. This truly contradicts the requirement of 
the finite state space. To overcome this difficulty, a realis- 
tic way is to use a sampling method. By the method of 
sampling the closed interval [dmin, d,,,], the possible val- 
ues of the thickness of d( p,) will form a finite set, i.e., 

(37) d( pi) E (b,lk = l , . . . ,  4 )  E b , ,  
where 

dmin = b ,  < < bq = d,,,. 
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(F) 
randomly in (0,. . . , N } "  

r f  := max(r1, rz) 
r -  := min(r1, r2) 

9 IF (k 5 N )  ? 

1 Yes 

I 
Fig. 3. Flow diagram of the state transition procedure. Ad is the 

sampling interval. 

Consequently, the finite discrete solution state space of 
the constrained minimax optimization problem can be 
expressed as the N Cartesian's product of ( N  + 1) sets 
and given by 

(39) 

with the size of the space (total number of states) IUI 
given as 

IUI = ( N  + l)! (40) 

Therefore, the process of finding a minimax boresight 
error solution becomes a combinatorial optimization 
problem characterized by a pair (U, i3max(u)), where U and 
Sm&) are the finite solution space and the cost function, 
respectively. Undoubtedly, the simulated annealing algo- 

U = b,  X b, X *.* x b,  , . -, 

N + 1 terms 

rithm can be utilized to find the global minimax solution 
over the feasible space directly. Meanwhile, a smart state 
transition procedure procedure based on the previous 
state and its local perturbation is conducted to improve 
the effectiveness of the original simulated annealing tech- 
nique. The procedure is described via the flow diagram as 
shown in Fig. 3. 

. VI. DESIGN EXAMPLES 
For illustration purpose the method has been applied to 

the design of a two-dimensional ogival radome as depicted 
in Fig. 1. Here the dielectric constant of the radome is 
assumed to be 4. A loss tangent ranging from 0 to 0.002 is 
incorporated into the design examples. The frequency of 
operation is 10 GHz. L, = 6A and L, = 12h where h is 
the free-space wavelength. The maximum scan angle of 
the antenna is 45" about the ogive axis. 

Our numerical program is carefully checked for each 
module in the design. For special case E = 1, which corre- 
sponds to the removal of the radome, there exhibits an 
inherent numerical error about 0.01' , marked as curve E 
in each of the following figures. This in effect establishes 
a criterion with which the performances of the optimized 
design can be compared. In the surface integration to 
acquire the far fields, the integration is extended to 90" 
with respect to the main beam in order to achieve suffi- 
cient accuracy. 

Fig. 4 shows the resulting designs for various design 
objectives, where curve A refers to the initial layer of 
uniform thickness which is to be optimized. The material 
has a dielectric constant E = 4 - j0.002. The BSE reaches 
the peak level of 0.27' at the antenna look direction of 
30". After optimization, the resulting BSE curve B is 
reduced considerably to 0.02" maximum, a dramatic im- 
provement compared with the inherent error of 0.01'. 
However, as shown in Fig. 4(b), the maximum sidelobe 
level deteriorates as a result of the optimization with the 
BSE as the sole optimization goal. To overcome this, a 
multiobjective optimization is possible, with both BSE and 
sidelobe level incorporated into the objective function. 
But for simplicity we can equally impose a constraint on 
the sidelobe level in our optimization algorithm, as can be 
seen in the flow diagram in Fig. 2. Curve C corresponds to 
BSE optimization with the constraint that the maximum 
sidelobe level is restricted to -12 dB, while curve D 
corresponds to the constraint of sidelobe level of - 13 dB, 
which approximately equals that due to the uniform layer. 
Compare D with C; the BSE is only slightly degraded. 
Notice that from Fig. 4(a) the boresight error rate is not 
adversely affected after optimization in most cases, except 
perhaps in the large scan angle. This, as well as other 
performance measures, can be improved if necessary by 
simply imposing them as constraints in the optimization 
loop. We also plot the power transmittance versus the 
scan angle in all cases; except for the trivial case E = 1 for 
which the total transmittance is 1. It appears that at low 
scan angle before reaching 15', curves B and C have more 
power transmitted than that of the uniform layer. The 
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Fig. 4. Radome performance parameters for: case A radome charac- 
teristics for uniform layer before optimization; case B: optimized charac- 
teristics without constraint; case C optimized characteristics with side- 
lobe constraint - 12 dB; case D: optimized characteristics with sidelobe 
constraint - 13 dB; case E: trivial case E = 1; inherent numerical error 
is shown for boresight error. 
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Fig. 5. Relative power patterns with antenna at look angle 0 = 42" 
e = 4 - j0.002. 
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Fig. 6. Optimized thickness profle functions for cases B, C, and D. 

situation reverses for scan angle passing beyond 15". The 
field patterns corresponding respectively to the curves A, 
B, and D are plotted in Fig. 5,  with the antenna scanned 
at 42", in which direction it exhibits the highest sidelobe 
level if the constraint is not imposed. The optimized 
thickness profiles for cases B, C, and D are shown in 
Fig. 6. 

The effect of the dielectric loss on the optimal design is 
shown in Fig. 7. The boresight error is optimized for 
E = 4 -J0.002. Observe that the loss tangent in the typi- 
cal range has little effect on the optimized BSE and 
therefore in this case it will not be necessarily taken into 
serious consideration in optimal design. The sidelobe level 
is essentially unchanged for all loss cases. 

In the above example the antenna is represented by an 
electric current sheet. Thus the polarization is perpendic- 
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Fig. 7. Effects of the dielectric loss on (a) optimized boresight error 

(b) 

and (b) power transmittance. 

ular to the plane of scan ( H  plane) of the antenna. Both 
polarizations are present in practical three-dimensional 
configurations. For a comparison of the behavior of the 
two polarizations on the BSE, we replace the electric 
current sheet by a magnetic current sheet. The results are 
shown in Fig. 8. It is observed that the maximum BSE is 
0.4" before optimization. The optimal result we obtained 
is 0.068", which is a considerable improvement over the 
uniform layer. The boresight error rate is somewhat de- 
graded near the forward direction and at large scan angle. 

Optimization design usually costs a large amount of 
computation time since it involves many times of iterative 
calculations before reaching the desired performances. In 
our case, it takes a large amount of calculations to find 
the field transmitted through the layer as well as to 
evaluate the radiation fields by surface integration. To 
save computation, we adopt a curve-fitting technique such 

+optimized layer 
+inherent error 0.35 n 

1 
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Fig. 8. Boresight error due to a magnetic current sheet for uniform 
layer, optimized layer without constraint, and inherent numerical error 
for E = 1. 

that the transmitted fields through the layer as a function 
of the layer thickness deviated from its nominal values are 
first computed and then properly fitted by a polynomial 
which is stored and retrieved for each iteration. The 
number of coefficients of the polynomial should be taken 
sufficiently large in order to ensure the accuracy of the 
computation. 

The optimal result depends also on the number of the 
control points N, = N + 1 as well as the number of the 
sample points q for modeling the thickness profile of the 
layer. A few trials indicate that the best possible result 
can be obtained for N, = 11 in our design example. Be- 
yond that the improvement on BSE is well within the 
range of the inherent numerical error. For N, = 11 and 
q = 69, it takes 7702 iterations of search to reach the 
desired result. The optimization is performed on an IBM 
6000/560 workstation at the cost of CPU time 4.193 hours. 
With constraint it takes about 5000 iterations and 10.5 
CPU hours. It should be noted that additional 20 CPU hours 
are required to set up all the coefficients of the polyno- 
mial on curve fitting. 

VII. CONCLUSION 
We develop in this paper a systematic approach to 

optimal radome design. The problem is formulated as a 
global optimization procedure such that the radome BSE 
performance is optimized by properly adjusting the thick- 
ness of the radome layer over the radome surface. A 
two-dimensional example is presented to show the effec- 
tiveness of our design approach. In principle, the method 
is general and can be applied to other complicated struc- 
tures as well, such as the three-dimensional and unsym- 
metric one. In that case, it needs only to replace the 
two-dimensional BSE calculation by the three-dimen- 
sional one, while the radome is modeled by the spline 
surfaces [9]. 
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