
Computer Physics Communications 147 (2002) 697–701

www.elsevier.com/locate/cpc

A domain partition approach to parallel adaptive simulation
of dynamic threshold voltage MOSFET

Yiming Li a,∗, Tien-Sheng Chaob, S.M. Szea,c

a National Nano Device Laboratories, Hsinchu, Taiwan
b Department of Electrophysics, National Chiao Tung University, Hsinchu 300, Taiwan

c Institute of Electronics, National Chiao Tung University, Hsinchu 300, Taiwan

Abstract

In this paper, we present a dynamic domain partition simulation technique for parallel numerical solutions of semiconductor
device equations. Based on the adaptive finite volume method, a posteriori error estimation, and monotone iterative algorithm,
this dynamic load balancing approach has been successfully developed and implemented on a Linux cluster with message
passing interface library. The developed simulator is then applied to calculate the physical characteristics of deep submicron
dynamic threshold voltage MOSFET (DTMOS). We simulate DTMOS with two different parallel algorithms: (1) 2D dynamic
load balancing for parallel domain decomposition; (2) parallel I–V point simulation. Benchmark results show that a well-
designed load balancing simulation can reduce the execution time up to an order of magnitude. Compared with the measured
data, the simulated results for a 0.08 µm DTMOS are demonstrated to show the accuracy and efficiency of the method. 2002
Elsevier Science B.V. All rights reserved.

PACS: 73.40.Ty; 73.40.Qv; 02.70.Fj; 02.70.-c

Keywords: Semiconductor device simulation; DTMOS; Parallel adaptive FVM; Dynamic load balancing

1. Introduction

Computer-aided simulation for semiconductors pro-
vides the capability for a software-driven approach to
explore new physics and devices [1]. In recent years, a
novel device structure the so-called dynamic threshold
voltage metal oxide semiconductor field effect tran-
sistor (DTMOS), has been studied for an alternative
way to improve the conventional submicron MOS-

* Corresponding author. Yiming Li is with Microelectronics
and Information Systems Research Center, National Chiao Tung
University, Hsinchu 300, Taiwan.

E-mail address: ymli@cc.nctu.edu.tw (Y. Li).

FET’s I–V characteristics at ultralow supply voltage
applications [2–4]. Experimental fabrication and mea-
surement have illustrated primarily that the DTMOS
scheme appears to be very promising for future low-
power and high-speed circuit applications [3,4]. Some
theoretical studies for this new device have been of
great interest [5] with simplified compact or conven-
tional numerical modeling approaches.

In this paper, using the dynamic load balancing
approach we propose a new parallel adaptive DTMOS
simulation method and apply it to rapidly simulate
the physical characteristics of 0.08 µm DTMOS.
This simulator based on the adaptive finite volume
(FV) [6,7], domain decomposition, error estimation,

0010-4655/02/$ – see front matter 2002 Elsevier Science B.V. All rights reserved.
PII: S0010-4655(02)00368-5



698 Y. Li et al. / Computer Physics Communications 147 (2002) 697–701

and monotone iterative (MI) methods [8–14] has
been developed and implemented on a 16-processor
Linux cluster with message passing interface (MPI)
library. Two different parallel algorithms to simulate
a DTMOS are proposed; one is a 2D dynamic load
balancing for parallel domain decomposition, and
the other is a parallel I–V point simulation. The
practical implementation shows that a well-designed
load balancing simulation can reduce significantly the
execution time up to an order of magnitude.

Hydrodynamic (HD) DTMOS equations are dis-
cretized first with the FV method and hence a large-
scaled system of nonlinear algebraic equations is ob-
tained. The nonlinear system is then directly solved
with the MI method. This method for solution of the
nonlinear system derived from semiconductor equa-
tions has been successfully developed and applied by
us in various earlier devices simulations [8–14]. To
refine the mesh adaptively, a physical-based unstruc-
tured mesh refinement rule with a posteriori error esti-
mation has also been developed for the quality con-
trol of computed results. Compared with measured
data, simulated results for a 0.08 µm DTMOS are
demonstrated to show the accuracy and efficiency of
the method. The parallel methodology developed here
shows that it is a quite feasible computing alternative
for providing a fast characterization of semiconduc-
tor physics and devices with complicated structures.
This paper is organized as follows. Section 2 states the
device model and the computational algorithms. Sec-
tion 3 presents the simulation results. Section 4 draws
the conclusion.

2. Device model and simulation methods

2.1. A semiconductor device model

We simulate 0.08 µm DTMOS with a HD model.
This nonlinear model is often applied to study hot car-
rier and non-local effects for deep submicron semicon-
ductor devices [15–18].

�φ = q

εs

(
n − p + N−

A − N+
D

)
, (1)

1

q
∇ · Jn = R(n,p), (2)

∇ · Sn = Jn · E − n

(
ωn − ω0

τnw(Tn)

)
, (3)

whereφ is the electrostatic potential,n andp are the
carrier concentrations,N−

A and N+
D are the ionized

doping profiles. For electrons,Jn is the current density,
Sn is the energy flux, andR(n,p) is the generation
recombination rates. TheE is the electric field,ωn is
the energy,τnw is the energy relaxation time, andω0
is the thermal equilibrium carrier energy. TheJn and
Sn are as follows:

Jn = −qµnn∇φ + qDn∇n + nµnkB∇Tn, (4)

Sn = Jn

−q
ωn + Jn

−q
kBTL + Qn, (5)

wereµn, Dn, andQn are electron mobility, diffusion
coefficient, and heat flow, respectively [2–5,15–18].
There is a similar model for holes. The model is sub-
ject to proper boundary conditions and the unknowns
to be solved areφ, n, andTn.

2.2. Numerical methods

We now state the adaptive FV and MI computing
procedures for the DTMOS simulation. The adaptive
FV algorithm is outlined as follows:

Step A1. Initialization and initial mesh generation for
DTMOS.

Step A2. Construction of the data structure for the
specified mesh.

Step A3. Outer (Gummel’s) loop iteration [19].
Step A3.1. Inner (MI) loop iteration of Eq. (1)

for φ.
Step A3.2. Inner (MI) loop iteration of Eq. (2)

for n.
Step A3.3. Inner (MI) loop iteration of Eq. (3)

for Tn.
Step A4. A posteriori error estimation.
Step A5. Perform mesh refinement and go to A2, if

stopping criteria are not satisfied.
Step A6. Postprocessing.

For each decoupled equation, the system of nonlin-
ear algebraic equation results from FV discretization
is solved by the MI method. The refinement process
is guided by local error indicators that are based on
element-by-element calculations of the maximum gra-
dient of electrostatic potentialφ, and the variation of
carrier density and temperature. Our error estimation



Y. Li et al. / Computer Physics Communications 147 (2002) 697–701 699

Fig. 1. Domain decomposition for sub 0.1 µm DTMOS. Achieved
speedup for parallel SP simulation.

for DTMOS simulation shows good refinement effi-
ciency.

2.3. Parallel algorithms

The adaptation of the mesh produces imbalances in
the jobs assigned to the processor. Because of the ir-
regular load requirements of parallel adaptive compu-
tation, a mesh must also be repartitioned dynamically
for processors during runtime. Based on the monotone
convergent property of the MI method, we propose
two different parallel algorithms for DTMOS simula-
tion; the first algorithm developed with the dynamic
partition technique is for the parallel domain decom-
position approach, and the other is a novel parallel I–V
point simulation. The constructed Linux cluster con-
tains 16 PCs; file access and share are through a net-
work file system and a network information system.
The user datagram protocol controlled by MPI is ap-
plied to short-distance fast communication.

Algorithm 1. Parallel domain decomposition with
dynamic partition.

As shown in Fig. 1, we state a computational
procedure for parallel domain decomposition steps:

Step P1. Initialize MPI environment and configura-
tion parameters.

Step P2. Based on 1-irregular meshing rule, generate
a tree structure and mesh.

Step P3. Count number of all regular mesh points.
Apply dynamic partition algorithm for each sim-
ulation. Number all nodes, and identify boundary
and critical points.

Step P4. All processors perform inner and outer itera-
tion loops synchronously, and all assigned jobs are

solved with MI solver independently. The com-
puted data communicates with MPI protocol.

Step P5. Perform error estimation for all elements and
run adaptive refinement for those elements having
large errors.

Step P6. Repeat steps P3–P5 until errors of all ele-
ments are less than a specified error bound.

Step P7. Host collects all computed results and stops
the MPI environment.

The dynamic partition algorithm applied for load
balancing inStep P3 is:

Step D1. Count number of total nodes.
Step D2. Find out the optimal number of processors

based on the number of nodes.
Step D3. Calculate how many nodes should be as-

signed to each processor by dividing total nodes
by the optimal number of processors.

Step D4. Along the x- or y-direction in the 2D
DTMOS domain, search (from left to right and
bottom to top) and assign nodes to these proces-
sors sequentially. Repeat this step until all nodes
have been assigned.

Step D5. In the neighborhood of the p-n junction, if
necessary, one may have to change the search and
assign the direction for obtaining a better load
balancing configuration.

Algorithm 2. Parallel I–V point simulation.
With the robust and globally convergentbehavior of

the MI method, a parallel I–V point simulation tech-
nique is also proposed to rapidly compute full I–V
curves for DTMOS simulation. This approach simu-
lates I–V points independently. Each job represents
a complete process of adaptive computations as de-
scribed above. The outline of this approach is:

Step I1. Initialize MPI environment and configuration
parameters.

Step I2. Corresponding to all I–V points to be calcu-
lated for DTMOS, server creates required I–V job
queue.

Step I3. Server sends out I–V points to available
processors.

Step I4. Client calculates assigned I–V points inde-
pendently.



700 Y. Li et al. / Computer Physics Communications 147 (2002) 697–701

Fig. 2. A refined mesh for DTMOS simulation.

Fig. 3. Achieved dynamic loading for DTMOS simulation.

Fig. 4. (a) Measured and simulated DTMOS I–V curves. (b) Speed
up and efficiency of I–V point simulation.

Step I5. If the job is done, the client sends back
computed data to the server and calls for next
computation.

Step I6. Repeat I3–I5 until all jobs are done.
Step I7. Stop MPI environment.

3. Results and discussion

Fig. 2 shows an adaptive refinement mesh for a
DTMOS atVD = VG = 1.0 V. The final mesh indi-
cates the efficiency of the adaptive method. The speed
up, efficiency (the inserted figure) and maximum dif-
ference of the dynamic load balancing algorithm for
domain decomposition are shown in Fig. 3. The re-

fined node is about 24,000. Speed up is the ratio of
simulation time on a processor to that on multiple
processors. Efficiency equals to speed up divided by
the number of processors. Maximum difference per-
centage is maximum difference (in simulation time)
divided by maximum simulation time. Fig. 4 shows
the accuracy of the method for the 0.08 µm DTMOS
I–V curve simulation. Fig. 4(b) indicates that the par-
allel I–V point simulation has higher speed up and ef-
ficiency than parallel domain decomposition.

4. Conclusion

We have presented a parallel adaptive DTMOS sim-
ulation using the dynamic load balancing approach.
The 2D dynamic load balancing for parallel domain
decomposition and the parallel I–V point simulation
have been successfully developed for DTMOS simu-
lation. Achieved benchmarks showed an excellent per-
formance with respect to the number of processors on
a Linux cluster with MPI library. Simulation results
for 0.08 µm DTMOS have been presented to show the
accuracy and efficiency of the method.

Acknowledgements

This work was supported in part by the National
Science Council of Taiwan under Contract No NSC
90-2112-M-317-001.

References

[1] R.W. Dutton et al., IEEE T. CAD 19 (2000) 1544–1560.
[2] S.M. Sze, Physics of Semiconductor Devices, Wiley-

Interscience, New York, 1981.
[3] S.J. Chang et al., IEEE T. ED 47 (2000) 2379–2384.
[4] S.J. Chang et al., IEEE EDL 21 (2000) 127–129.
[5] F. Assaderaghi et al., IEEE T. ED 44 (2000) 414–422.
[6] R.S. Varga, Matrix Iterative Analysis, Springer, New York,

2000.
[7] T. Gallouet et al., SIAM J. Numer. Anal. 37 (2000) 1936–

1972.37 (2000)
[8] Y. Li et al., Comput. Phys. Commun. 142 (2000) 285–289.
[9] Y. Li et al., in: Proc. IEEE Int. Symp. VLSI Tech., Systems,

and Appl., 1999, pp. 27–30.
[10] Y. Li et al., in: Proc. IEEE 15th Int. Parallel and Distributed

Processing Symposium, 2001, pp. 17.3.1–17.3.6.



Y. Li et al. / Computer Physics Communications 147 (2002) 697–701 701

[11] N. Mastorakis et al. (Eds.), Advances in Scientific Computing,
Computational Intelligence and Applications, WSES Press,
2001, pp. 54–59.

[12] Y. Li et al., in: Tech. Proc. Int. Conf. Modeling and Simulation
of Microsystem, 2001, pp. 562–566.

[13] Y. Li et al., in: Proc. 2nd WSEAS Int. Multiconf. on Applied
and Theoretical Math., 2001, pp. 6201–6206.

[14] Y. Li, WSEAS Trans. on Systems 1 (2002) 68–73.

[15] K. Blotekjaer, IEEE T. ED 17 (1970) 38–47.
[16] P. Degond et al., SIAM J. Sci. Comp. 22 (2000) 986–1007.
[17] M. Ieong et al., IEEE T. ED 44 (1997) 2242–2251.
[18] T.W. Tang, IEEE T. ED 31 (1984) 1912–1914.
[19] H.K. Gummel, IEEE T. ED 11 (1964) 455–465.


