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Abstract

Recently, Li and Chang proposed an approximate model for assortment problems. Although their model is quite

promising to find approximately global solution, too many 0–1 variables are required in their solution process. This

paper proposes another way for solving the same problem. The proposed method uses iteratively a technique of

piecewise linearization of the quadratic objective function. Numerical examples demonstrate that the proposed method

is computationally more efficient than the Li and Chang method. � 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Assortment problems occur when a number of
small rectangular pieces need to be cut from a
large rectangle to get minimum area. Recently, Li
and Chang [1] developed a method for finding the
global optimal solution of the assortment problem.
Li and Chang’s method, however, requires to use
numerous 0–1 variables to linearize the polynomial
objective function in their model, which would
cause heavy computational burden. This paper
proposes instead a piecewise linearization method.
The major advantage of this method is that it uses

much less number of 0–1 variables to linearize the
quadratic objective function than used in Li and
Chang’s model. The computational efficiency can
therefore be improved significantly. The numerical
examples demonstrate that the computation time
of the proposed method is much less than that in
Li and Chang’s model.

2. Problem formulation

Given n rectangles with fixed lengths and
widths. An assortment optimization problem is to
allocate all of these rectangles within an envelop-
ing rectangle, which has minimum area. Denote x
and y as the width and the length of the enveloping
rectangle (x > 0, y > 0), the assortment optimiza-
tion problem is stated briefly as follows:
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Minimize xy
subject to
1. All of n rectangles are non-overlapping.
2. All of n rectangles are within the range of x and
y.

3. 0 < x6 x and 0 < y6 y (x and y are constants).

An assortment optimization problem can be
formulated below. The related notations are those
of Li and Chang [1].

2.1. Assortment problem

Minimize xy ð1Þ
subject to

ðx0i � x0kÞ þ uik�xxþ vik�xx
P 1

2
½pisi þ qið1� siÞ þ pksk þ qkð1� skÞ�

8i; k 2 J ; ð2Þ
ðx0k � x0iÞ þ ð1� uikÞ�xxþ vik�xx

P 1
2
½pisi þ qið1� siÞ þ pksk þ qkð1� skÞ�

8i; k 2 J ; ð3Þ
ðy0i � y0kÞ þ uik�yy þ ð1� vikÞ�yy

P 1
2
½pið1� siÞ þ qisi þ pkð1� skÞ þ qksk�

8i; k 2 J ; ð4Þ
ðy0k � y0iÞ þ ð1� uikÞ�yy þ ð1� vikÞ�yy

P 1
2
½pið1� siÞ þ qisi þ pkð1� skÞ þ qksk�

8i; k 2 J ; ð5Þ
xP xP x0i þ 1

2
½pisi þ qið1� siÞ� 8i 2 J ; ð6Þ

yP yP y0i þ 1
2
½pið1� siÞ þ qisi� 8i 2 J ; ð7Þ

x0i � 1
2
½pisi þ qið1� siÞ�P 0 8i 2 J ; ð8Þ

y0i � 1
2
½pið1� siÞ þ qisi�P 0 8i 2 J ; ð9Þ

where uik, vik, si, sk are 0–1 variables, and x, y, x0i,
x0k, y

0
i and y

0
k are bounded continuous variables, pi

and qi are length and width of ith object.
Constraints (2)–(5) are the non-overlapping

conditions and constraints (6)–(9) ensure that all
rectangles are within the enveloping rectangle.
Li and Chang [1] proposed an approach for

solving this problem to obtain a global optimum.
The basic idea of their method is to approximately

substitute x and y continuous variables in (1) by
a set of 0–1 variables thus to linearize the prod-
uct term xy. Problem (1)–(9) can then be refor-
mulated as a linear mixed 0–1 problem which can
be solved to reach a global optimum within a
tolerable error.

3. Li and Chang approach

Li and Chang [1] substitute x and y by the
following 0–1 representation:

x ¼ �eex
XG

g¼1
2g�1hg þ ex; ð10Þ

y ¼ �eey
XH

h¼1
2h�1dh þ ey ; ð11Þ

where ex and ey are small positive variables. �eex and
�eey are the pre-specified constants which are the
upper bounds of ex and ey , respectively. hg and dh
are 0–1 variables, and G and H are integers which
denote the number of required 0–1 variables for
representing x and y.
Then the Li and Chang model is reformulated

as a linear mixed 0–1 program below.

3.1. Model 1 [1]

Minimize �eex
XG

g¼1
2g�1zg þ �eey

XH

h¼1
2h�1uh ð12Þ

subject to

zg P y þ �yyðhg � 1Þ; g ¼ 1; 2; . . . ;G; ð13Þ
uh P ex þ �eexðdh � 1Þ; h ¼ 1; 2; . . . ;H ; ð14Þ

constraints in (2)–(9)

zg P 0; uh P 0; hg; dh 2 f0; 1g: ð15Þ
The major difficulty of Model 1 is that it involves
Gþ H additional 0–1 variables. The smaller the
tolerable errors (i.e., ex and ey), the larger the size
of G and H and the longer the CPU time for
solving the problem.

4. Proposed new linear strategy

This paper proposes another strategy for lin-
earizing the quadratic objective function xy in (1).
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Define K be a set expressed as

K ¼ f0 < x6 x6 x; 0 < y6 y6 y; x; y 2 F ;
F is a feasible setg:

It is clear that an optimization program P1:
fMinimize Obj1 ¼ xy jx; y 2 Kg is equivalent to
the program below.

P2 : fMinimize Obj2 ¼ ln xþ ln y jx; y 2 Kg:
Following propositions discuss the proposed

approach of linearizing the logarithmic terms ln x
and ln y.

Proposition 1 [3]. A logarithm function ln x; 0 <
a16 x6 am; as shown in Fig. 1, can piecewise lin-
early be approximated

ln x _¼¼ ln x̂x ¼ ln a1 þ s1ðx� a1Þ

þ
Xm�1

j¼2

sj � sj�1
2

x
��� � aj

��þ x� aj
�
;

ð16Þ

where aj; j ¼ 1; 2; . . . ;m; are the break points of
ln x, aj < ajþ1 and sj are the slopes of line segments
between aj and ajþ1;

sj ¼
ln ajþ1 � ln aj
ajþ1 � aj

for j ¼ 1; 2; . . . ;m� 1:

Proposition 2. Since ln x is concave function, it is
clear that the approximation bounds ln x from be-
low. That means ln xP ln x̂x.

Proposition 3 (Lower bound). Consider the follow-
ing two programs:

P2 : fMinimize Obj2 ¼ ln xþ ln y jx; y 2 Kg:
P3 : fMinimize Obj3 ¼ ln x̂xþ ln ŷy jx; y 2 Kg:

Program P3 provides a lower bound on Program P2
due to Proposition 2.

Now we discuss the way to linearize ln x̂x. Con-
sider the following proposition.

Proposition 4 (Linearization). ln x̂x in (16) can be
linearized as follows.

ln x̂x ¼ ln a1 þ s1ðx� a1Þ

þ
Xm�1

j¼2
ðsj � sj�1Þðajuj þ x� aj � wjÞ ð17Þ

where

ðiÞ � amuj6 x� aj6 amð1� ujÞ

for j ¼ 2; 3; . . . ;m;

ðiiÞ � amuj6wj6 amuj
for j ¼ 2; 3; . . . ;m;

ðiiiÞamðuj � 1Þ þ x6wj6 amð1� ujÞ þ x

for j ¼ 2; 3; . . . ;m;

ðivÞuj P uj�1 for j ¼ 2; 3; . . . ;m;

ðvÞ uj are 0–1 variables and wj P 0

for j ¼ 2; 3; . . . ;m:

Proof. If x� aj P 0 then uj ¼ 0 and wj ¼ 0 based
on (i) and (ii); which results in

ajuj þ x� aj � wj ¼ x
��� � aj

��þ x� aj
�
2

�

¼ x� aj:

If x� aj < 0 then uj ¼ 1 and wj ¼ x based on (i)
and (iii); which results in

ajuj þ x� aj � wj ¼ x
��� � aj

��þ x� aj
�
2= ¼ 0:

Therefore, ln x̂x in (16) is equivalent to (17). Now
we consider condition (iv).
Since aj�1 < aj, if x < aj (i.e. uj ¼ 1) then

x < ajþ1 and we have ujþ1 ¼ 1.
If x > ajþ1 (i.e. ujþ1 ¼ 0) then x > aj, and we

have uj ¼ 0.Fig. 1. Piecewise linearization of ln x.
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Therefore, it is true that uj P uj�1, for j ¼
2; 3; . . . ;m.
Condition (iv) is used to accelerate the compu-

tational speed of solving the problem. �

5. Solution algorithm

From the above discussion, the proposed algo-
rithm is as follows: Let Sr and Tr be respectively a
set of break points of ln x and ln y at the rth iter-
ation. Denote e as a tolerable error. Then the lin-
earization (17) is built up iteratively as follows.
Let Sr ¼ Sr�1UfxðrÞg, Tr ¼ Tr�1UfyðrÞg, where

‘U’ means union. Denote the number of elements
in Sr as mr, and the number of elements in Tr as nr.
Solving the following linear mixed 0–1 program:

Minimize
ðx;yÞ

Objðxðr þ 1ÞÞ þObjðyðr þ 1ÞÞ

¼ ln a1 þ s1ðx� a1Þ

þ
Xmr�1

j¼2
ðsj � sj�1Þðajuj þ x� aj � wjÞ

þ ln b1 þ t1ðy � b1Þ

þ
Xnr�1

j¼2
ðtj � tj�1Þðbjvj þ y � bj � qjÞ

subject to

Restrictions part 1:

��xxuj6 x� aj6�xxð1� ujÞ;
��xxuj6wj6�xxuj;
�xxðuj � 1Þ þ x6wj6�xxð1� ujÞ þ x;
uj P uj�1;
for j ¼ 2; 3; . . .mr ðvariable xÞ;
a1; a2; . . . ; amr 2 Sr;
a1 ¼ x < a2 < � � � < amr ¼ �xx;

Restrictions part 2:

��yyvj6 y � bj6 �yyð1� vjÞ;
��yyvj6 qj6 �yyvj;
�yyðvj � 1Þ þ y6 qj6 �yyð1� vjÞ þ y;
vj P vj�1;
for j ¼ 2; 3; . . . nr ðvariable yÞ;
b1; b2; . . . ; bnr 2 Tr;
b1 ¼ y < b2 < � � � < bnr ¼ �yy;

uj, vj are 0–1 variables, wj; qj P 0.

Restrictions part 3:

constraints in (2)–(9).

Let the solution be ðxðr þ 1Þ; yðr þ 1ÞÞ.
If jObjðxðrþ 1ÞÞ� lnxðrþ 1Þj< e and jObjðyðrþ

1ÞÞ � ln yðr þ 1Þj < e then terminate the process,
and ðxðr þ 1Þ; yðr þ 1ÞÞ is the optimal solution.
Otherwise, let r ¼ r þ 1 and resolve the above

program. (A precise procedure is available by re-
quest, etc. from the authors.)

Proposition 5 (Convergence). The above algorithm
(run with e _¼¼0) terminates with the incumbent solu-
tion ðx̂x�; ŷy�Þ being optimum to the assortment prob-
lem (1)–(9) when r! 1.

Proof. By the concavity of ln x (and ln y) in (16)
and the mean value theorem, ln x̂x� (and ln ŷy�) are
the lower bounds of ln x (and ln y); ðx̂x�; ŷy�Þ there-
fore is the optimal solution. �

6. Numerical examples

Consider the following assortment optimization
problems adopted from Li and Chang [1]: Some
given rectangles are required to be placed within a
rectangle which has minimum area. The sizes of
pieces of rectangles are given in Table 1. Here we
solve the same problem using Model 1 [1] and
proposed model by LINGO [2], a common-used
optimization package, running in a Pentium III
1000 personal computer.
Model 1 solves problem 1 by specifying �eex ¼

�eey ¼ 0:1, and obtains the global optimal solution
ðx; yÞ ¼ ð31; 38Þ with the objective value 1178. Pro-
posed model solves Problem 1 by specifying �eex ¼
�eey ¼ 0:1 and obtains the same solution as found by
Model 1. Table 1 shows that for Problem 1 con-
taining four rectangles, the proposed model only
spends 1/7 of CPU time as spent in Model 1. For
Problem 2 containing five rectangles, the proposed
model uses much less CPU time than Model 1. The
associated graphs are presented in Figs. 2 and 3.
To compare the capability of the two models in

treating larger sizes of assortment problems, two

H.-L. Li et al. / European Journal of Operational Research 140 (2002) 584–589 587



other problems are examined as shown in Table 2.
All rectangles in these two problems are squares.
For Problem 3 where the number of squares is 8,

the proposed model spends less than 1/7 CPU time
as spent in Model 1 to obtain a global optimum.
The result is depicted in Fig. 4. For Problem 4 with

Fig. 2. Result for Problem 1 (four rectangles).

Table 1

Computational comparison of models with rectangles

Problem Number of

rectangles
pi qi CPU time (hh:mm:ss) Objective value

Model 1 Proposed model Model 1 Proposed model

Problem 1 4 24 20 00:05:12 00:00:44 1178 Global

optimum

1178 Global

optimum18 16

16 14

21 7

Problem 2 5 33 10 >10:00:00 00:16:16 NA 1518 Global

optimum
30 11

25 15

18 14

18 10

Fig. 3. Result for Problem 2 (five rectangles).

Table 2

Computational comparison of models with squares

Problem Number of

squares
Side pi CPU time (hh:mm:ss) Objective value

Model 1 Proposed model Model 1 Proposed model

Problem 3 4 1� 1 00:04:48 00:00:37 25 Global

optimum

25 Global

optimum3 2� 2

1 3� 3

Problem 4 4 1� 1 >10:00:00 00:08:26 NA 30 Global

optimum
4 2� 2

1 3� 3

588 H.-L. Li et al. / European Journal of Operational Research 140 (2002) 584–589



nine squares, Model 1 cannot find the solution
within 10 hours while the proposed model takes
eight and half minutes to find the global solution.
The solution is depicted in Fig. 5. The reported
CPU times can be improved if these problems are
run in a workstation computer instead of running
in a personal computer.

7. Conclusions

This paper proposes a piecewise linearization
method to solve the assortment problem. By piece-
wisely linearizing the quadratic objective function
in the assortment problem, the proposed method
reformulates the original problem as a linear
mixed 0–1 program. Solving the linear mixed 0–1
problem iteratively, the proposed method can fi-
nally find a global optimum. Numerical examples
demonstrate that the proposed method uses much
less CPU time than that in [1] for reaching the
global optimum.
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Fig. 4. Result for Problem 3 (eight squares).

Fig. 5. Result for Problem 4 (nine squares).
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