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We consider a Cellular Neural Network (CNN) with a bias term in the integer lattice Z2 on
the plane Z2. We impose a space-dependent coupling (template) appropriate for CNN in the
hexagonal lattice on Z2. Stable mosaic patterns of such CNN are completely characterized. The
spatial entropy of a (p1, p2)-translation invariant set is proved to be well-defined and exists.
Using such a theorem, we are also able to address the complexities of resulting mosaic patterns.
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1. Introduction

The Cellular Neural Networks (CNNs) was orig-
inally formulated by Chua and Yang in [1988a,
1988b]. The CNNs without input terms are of the
form

dxi,j
dt

= −xi,j + z

+
∑

|k|≤d, |`|≤d
ak,`;i,jf(xi+k,i+`) ,

(i, j) ∈ Z2 , (1a)

xi,j(0) = x0
i,j . (1b)

Here xi,j denote the state of a cell Ci,j, and z is

an independent voltage source. When z = 0, (1)

is called unbiased; when z 6= 0 it is called biased.

The nonlinearity of f is a piecewise-linear function

of the form

f(x) =
1

2
(|x+ 1| − |x− 1|) . (2)

For fixed i, j, the numbers ak,`;i,j|k|, |`| ≤ d, k,

` ∈ Z and d a positive integer, denote the (local) in-

teraction weights between the center cell Ci,j and its

neighboring cells Ck,`. The numbers ai,j;k,`, |k| ≤ d,
|`| ≤ d, can be arranged in a (2d + 1) × (2d + 1)

matrix form, which is called a space-dependent
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1718 J. Juang et al.

Ai,j-template

Ai,j =


ai,j;−d,d ai,j;−d+1,d . . . ai,j;d,d

ai,j;−d,d−1 ai,j;−d+1,d−1 . . . ai,j;d,d−1

...
...

...

ai,j;−d,−d ai,j;−d+1,−d . . . ai,j;d,−d


(2d+1)×(2d+1).

(3)

Ai,j is called space-invariant if Ai,j ≡ A for all i,
j ∈ Z2. If, for each i, j, ai,j;k,` = ai+k,j+`;−k,−`
for all |k|, |`| ≤ d, then Ai,j are called symmetric.
For further physical and mathematical backgrounds
of CNNs as well as their applications, we refer to
[Chua, 1998; Chua & Roska, 1993; Chua & Yang,
1988a, 1988b; Crounse et al., 1996; Thiran, 1997,
Thiran et al., 1997; Special Issue, 1995]. Much of
the theoretical work concerning CNNs focus on the
space invariant template. Our motivation for study-
ing a space-dependent template is two-fold. First,
chaotic dynamics is only reported (see e.g. [Yen,
1998; Zou et al., 1993; Zou & Nossek, 1991] in
case that the template is space-dependent. It seems
to be very unlikely that a space-invariant template
would yield chaotic dynamics. Second, suppose one
considers the regular hexagonal lattice in R2 and
that each cell, lying on the vertices of hexagons,
only directly interacts with its nearest neighbors.
Such a problem is equivalent to placing each cell
on the integer lattice in R2 with a space-dependent
template. To see this, consider the following hexag-
onal lattice in R2.

We assume that each cell only directly interacts
with its nearest neighbors. For instance, the cell F
only directly interacts with cells E, F , G and I.
Now, if one squeezes each hexagon into a square,
we will get the following integer lattice in R2

From Fig. 2, we see that the cell E interacts
with the cell A, which is on top of E, while the cell

�

�

�

�

�

�

� �

�	

Fig. 1. The hexagonal lattice in R2.

F does not interact with the cell B. Thus, to study
the dynamical systems on hexagonal lattice in R2

we consider an equivalent problem on integer lattice
in R2 with the following space-dependent template
Ai,j.

Ai,j =

 0 ai,j;0,1 0

ai,j;−1,0 ai,j;0,0 ai,j;1,0

0 ai,j;0,−1 0



=




0 a3 0

a1 a a2

0 0 0

 if i+ j is even


0 0 0

b2 b b1

b3

 if i+ j is odd.

(4)

In this paper, we investigate the mosaic patterns of
(1), (2), and (4) and the complexity of mosaic pat-
terns. Some simulations of the CNN mosaic pat-
terns are given in the appendix. A mosaic solution
x = (xi,j) is a stationary solution of (1a) satisfying
|xi,j| > 1 for all (i, j) ∈ Z2 and y = (f(xi,j)) is
called a mosaic pattern.

Mosaic solutions of lattice dynamical systems
have been studied by many authors ([Chow &
Mallet-Paret, 1995a, 1995b; Chow et al., 1996a,
1996b] and the work cited therein). In the case of
CNNs, mosaic patterns of one-dimensional CNNs
with symmetric, space-invariant template, [b, a, b],
were studied by Thiran [1997] etc. Mosaic patterns

� � � �

� � �

� � 	

Fig. 2. The integer lattice in R2 squeezed from Fig. 1.
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Space-Dependent Template, Mosaic Patterns and Spatial Chaos 1719

of two-dimensional CNNs with symmetric coupling
between nearest neighbors, and also next-nearest
neighbors are completely characterized by Juang
and Lin [2000]. In [Shih, 1998], mosaic pat-
terns of two-dimensional CNNs with asymmetric
template were investigated. Local patterns for
general space-invariant templates were studied in
[Hsu et al., 2000].

2. Notations and Preliminaries

Given a template Ai,j, as defined in (3), and a bi-
ased term z, the stationary equation for (1a) is

xi,j = z+
∑

|k|≤1,|`|≤1

ak,`;i,jf(xi+k,j+`) , (i, j) ∈ Z2 .

(5)
Let x = (xi,j) be a solution of (5). Two types
of stationary solutions are of interest: mosaic and

defect. A defect solution x = (xi,j) satisfies |xi,j | >
1 for (i, j) ∈ Z2\D and |xk,`| < 1 for (k, `) ∈ D,
where D 6= ∅ and D 6= Z2. Its corresponding pat-
tern y = (f(xi,j)) is called a defect pattern. Let
x = (xi,j) be a (defect or mosaic) solution of (5),
we denote Γ+, Γ− and Γ× as follows

Γ+ = {(i, j) ∈ Z2 : xi,j > 1}
Γ− = {(i, j) ∈ Z2 : xi,j < −1} ,

(6a)

and
Γ× = {(i, j) ∈ Z2 : |xi,j| < 1} , (6b)

respectively. Let Z2
E = {(i, j): i, j ∈ Z and i + j

is even} and Z2
O = {(i, j): i, j ∈ Z and i + j is

odd}. If (i, j) ∈ Z2
E (resp. Z2

O), then (i, j) is called
even (resp. odd point). Stability is then studied us-
ing spectral theory. Let ξ = (ξi,j) ∈ ˜̀2, a suitable
weighted `2 space. The linearized operator L(x) of
(5) at x is given by

(L(x)ξ)i,j =

{
−ξi,j + Li,j , if (i, j) ∈ Γ+ ∪ Γ−,

(ai,j;0,0 − 1)ξi,j + Li,j, if (i, j) ∈ Γ×.
(7a)

Here,
Li,j =

∑
(k,`)∈N+(i,j)∈Γ×

ai,j;k,`ξk,` (7b)

and

N+(i, j) = {(p, q) ∈ Z2: |p− i|+ |q− j| = 1} , (7c)

Definition 2.1. Let x = (xi,j) be a solution of (5)
with |xi,j | 6= 1 for all (i, j) ∈ Z2. x is then called
(linearized) stable if all eigenvalues of L(x) have
negative real parts. The solution x is called un-
stable if there is an eigenvalue λ of L(x) such that
λ has a positive real part.

Theorem 2.1. Let x = (xi,j) be a solution of (5)
and let the templates Ai,j be given as in (4). Then
the following holds. (i) If Ai,j are symmetric for all
i, j, then L(x) is self-adjoint. (ii) If x is a mosaic
solution of (5), then x is stable. (iii) If ai,j;0,0 > 1
for all (i, j) ∈ Z2, and x is a defect solution, then
x is unstable.

Remark

(1) Theorem 2.1 is a direct generalization of Theo-
rem 2.4 of [Juang & Lin, 2000].

(2) If Ai,j are given as in (4), then Ai,j are sym-
metric if and only if ai = bi i = 1, 2, 3.

To study the complexity of mosaic patterns, we
review some definitions and results concerning spa-
tial entropy. Let A be a finite set of d elements
and D ≥ 1 be an integer representing the lattice

dimension. Denote by AZD the set of all map-
pings y:ZD → A. In our case, D = 2, d = 2 and
A = {−1, 1} for the mosaic patterns. Consider any

nonempty subset U ⊆ AZ2
. Here U will represent

the mosaic patterns. The set U is said to be transla-
tion invariant if Sk(U) = U , k = 1, 2, . . . , D, where

Sk:AZ
D → AZD is a shift operator. To save our no-

tation later, we write Sk(U) = U as U + ek = U .
Here ek is the unit basis vector in the kth direction
of RD. Let ΓN (U) count the number of distinct pat-
terns among the elements of U restricted in a given
rectangle of size N1 ×N2.

Definition 2.2. The set U is said to be (p1, p2)-
translation invariant if there exist non-negative in-
tegers p1, p2 such that

∑2
i=1 pi ≥ 1 and U +

(p1, 0) = U+(0, p2) = U . The spatial entropy h(U)
of the set U is defined as the limit

h(U) = lim
N1,N2→∞

log ΓN (U)

N1N2
, (8)
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1720 J. Juang et al.

where the limit is taken over all possible choices of
N1 ×N2 rectangles.

In CNNs, if the template is space-invariant,
then any stationary solution of (1a) is translation
invariant. Note that if the template Ai,j is given as
in (4), then any stationary solution of (1a) is (1, 1)-
translation invariant. One of our main results, The-
orem 4.1, will show that the spatial entropy h(U) is
well-defined and exists provided that U is (p1, p2)-
translation invariant.

Definition 2.3. Let U be a translation invariant
subset of AZD ; U exhibits spatial chaos if the spa-
tial entropy h(U) is greater than zero. Otherwise,
U exhibits pattern formation.

3. Local Mosaic Patterns

To simplify our representation, we consider the
templates given in (4) with a = b, and ai = bi,
i = 1, 2, 3. We first set the following notations

Ai,j =




0 a1 0

a1 a a1

0 0 0

 := AE if (i, j) ∈ Z2
E


0 0 0

a1 a a1

0 a1 0

 := AO if (i, j) ∈ Z2
O,

(9)

N+
E (i, j) = {(p, q) ∈ Z2: |p− i|+ |q − j| = 1,

q − j > 0} , i+ j is even ,

N−O (i, j) = {(p, q) ∈ Z2: |p− i|+ |q − j| = 1,

q − j < 0} , i+ j is odd .

Definition 3.1. Given any proper subset T ⊆ Z2,
x|T (≡ xT ) is called a local mosaic solution if xT is
a restriction of some mosaic solution x of (5) on T .
The restriction (f(xi,j))|T on T is called a local pat-

tern, and will be denoted by (f(xi,j))|T = (yTi,j) =

yT ; when T = Z2, y is called a global mosaic pattern.

Definition 3.2. A set T ⊆ Z2 is called basic with
respect to the template Ai,j, as given in (4), if
T = {(i, j)} ∪ N+

E (i, j), where i + j is even or
T = {(i, j)} ∪N+

O (i, j), where i+ j is odd. A basic

mosaic pattern is a local pattern defined on some
basic set T .

Notation 3.1. Let yT be a local mosaic pattern on
a subset T ⊆ Z2. For any (i, j) ∈ T , if f(xi,j) = 1
(resp. f(xi,j) = −1), then to draw a figure for yT

the output f(xi,j) of the state of the cell Ci,j will
be denoted by + (resp. −).

For any (i, j) ∈ Z2
E , a basic mosaic pattern yT

must have one of the following forms.

(i) +
+•+ (ii) − +•+ (iii) +

−•+ (iv) +
+• −

(v) − −•+ (vi) − +• − (vii) +
−• − (viii) − −• −.

(10)
Here • is either + or −, the output of the state of
the (center) cell Ci,j . For any (i, j) ∈ Z2

O, a basic
pattern yT also has eight possible forms which are
obtained by rotating the forms in (10) by 180◦.

Notation 3.2. Let V• = {v• ∈ R3, v• =
(v1, v2, v3)•, |vi| = 1, i = 1, 2, 3}. Here • = + or
−. Clearly, V• can be used to represent all eight pos-
sible forms in (10). For instance, we may identify
the output of the state of the cells Ci−1,j, Ci,j+1 (or
Ci,j−1), and Ci+1,j as v1, v2, and v3, respectively.

With such identification,
+

+ + +
= (1, 1, 1)+ and

+
+ − − = (1, 1, −1)−. We shall use V E

• or V O
• to

distinguish the position of the center cell provided
the distinction is needed.

Definition 3.3. For any (i, j) ∈ Z2, the total out-
put of any basic mosaic pattern whose center is at
(i, j) is defined to be v1 + v2 + v3.

We are now in a position to study the local ba-
sic mosaic patterns. Let (i, j) ∈ Z2, the state xi,j
of the cell Ci,j is greater than one if and only if

a1(yi−1,j +yi,j+1 +yi+1,j)+a+ z−1 > 0 . (11a)

Similarly, xi,j < −1 if and only if

a1(yi−1,j +yi,j+1 +yi+1,j)−a+ z+1 > 0 . (11b)

Since (yi−1,j , yi,j+1, yi+1,j) ∈ V•, inequality (3.3)
can be, respectively, simplified as follows

ka1 + a+ z − 1 > 0 , (12a)

and
ka1 − a+ z + 1 > 0 , (12b)

where k = 3, 1, −1, −3.
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[4,3]

[4,2][2,4]

[4,4]

(-1,0)  (1,0)

[0,0]

[3,3]

3

1

-1

-3l

l

l

[3,4]

-3 3l

[2,2]

[1,4] [4,1]

[4,0][0,4]

[0,4]

[0,2]
[2,0]

[3,0]

[3,1]

[2,3]

[1,3]

[0,3]

[0,1] [1,0]

[3,0]

[4,0]

[0,3]

[1,1]

[3,2]

-1

1

a

E

r

r

r

r

B

C

D

z

Fig. 3. B = 1/1 + 3|ε|, C = 1/1 + |ε|, D = 1/1 − |ε|, E = (1/1 − 3|ε|) 0 < |ε| < 1/3. Here [m, n]ε = [m, n], `i,|ε| = `i and
ri,|ε| = ri, i ∈ {3, 1, −1, −3}. The classification of parameter space with respect to the mosaic patterns.

If we treat a1, a and z as three independent
variables, the regions separated by those inequali-
ties in (12) are difficult to picture. To better visu-
alize the regions, we set a1 = aε. The inequalities
(12) then reduce to

a(1 + εk) + z > 1 (13a)

a(−1 + εk) + z > −1, where k = 3, 1, −1, −3 .

(13b)

Let rk,ε and `k,ε be straight lines whose equations
are, respectively,

a(1 + εk) + z = 1 (14a)

and
a(−1 + εk) + z = −1 . (14b)

Let ` be a straight line that does not pass
through the origin in a plane. Denote by `(0) the

open half-plane containing the origin, while `(×)
denotes the other open half-plane.

For fixed 0 < |ε| < 1/3, the straight lines in
(14) divide z − a plane into the following disjoint
regions.

In Fig. 3, we see, for instance,

[4, 4]ε = `3,|ε|(×) ∩ r−3,|ε|(×) ,

and

[2, 2]ε = `−1,|ε|(×) ∩ `1,|ε|(0) ∩ r−1,|ε|(0) ∩ r1,|ε|(×) .

In general, for m, n ∈ {1, 2, 3, 4} and a > 0,

[m, n]ε = r−2m+5,|ε|(×) ∩ r−2m+3,|ε|(0)

∩ `2n−3,|ε|(0) ∩ `2n−5,|ε|(×) . (15a)

Here, if |k| > 3, then rk,|ε|(·) and `k,|ε|(·) are inter-
preted as the z−a plane P2. For m, n ∈ {1, 2, 3, 4}
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1722 J. Juang et al.

and a < 0,

[m, 0]ε = r2m−3,|ε|(0) ∩ r2m−5,|ε|(×)

∩ `3,|ε|(0) , (15b)

[0, n]ε = `5−2n,|ε|(×) ∩ `3−2n,|ε|(0)

∩ r−3,|ε|(0) , (15c)

and

[0, 0]ε = `3,|ε|(0) ∩ r−3,|ε|(0) . (15d)

We omit the subscript ε where the meaning is
clear.

Remark. For 1/3 ≤ |ε| < 1, the a-intercept E (see
Fig. 3) of r−3,|ε| and `3,|ε| lies either below the z-axis
or does not exist. This implies that the region [4, 4]
will disappear. For |ε| ≥ 1, the regions [3, 3], [3, 4],
and [4, 3] will no longer exist.

Theorem 3.1. Let 0 < |ε| < 1/3, and [m, n]ε be
the disjoint (open) regions described in (15) and
shown in Fig. 3. Suppose (z, a) ∈ [m, n]ε and
aε > 0. Then any basic mosaic pattern in V+

(resp. V−) whose total output is greater or equal to
5−2m (resp. no greater than 2n−5) exists. Suppose
(z, a) ∈ [m, n]ε and aε < 0. Then any basic mosaic
pattern in V+ (resp. V−) whose total output is no
greater than 2m−5 (resp. no less than 5−2n) exists.

Proof. We illustrate only for [3, 3]ε and aε > 0.
The illustration for other regions can be similarly
derived. Note that [3, 3]ε is bounded by `1,|ε|, `3,|ε|,
r−3,|ε| and r−1,|ε|. If (z, a) ∈ r−1,|ε|(×) ∩ r−3,|ε|(0),
a > 0 and ε > 0, then any positively saturated
cells whose three neighbors are shown in (10) must
have at least one positively saturated neighbor.
Thus, if (z, a) ∈ r3,|ε|(0) ∩ r1,|ε|(×), a > 0 and
ε > 0, then the total output of any basic mosaic
pattern in V+ is no less than −1. Moreover, if
(z, a) ∈ `3,|ε|(0) ∩ `1,|ε|(×), a > 0 and ε > 0, then
the total output of any mosaic pattern in V− is no
greater than 1. �

Remark. Suppose (z, a) ∈ [m, n], where aε > 0.
Then any basic mosaic pattern in V+ (resp. V−) ex-
ists provided that the center of the pattern must be
coupled to at least (4−m)+ ’s (resp. (4− n)− ’s).
See (10). Suppose (z, a) ∈ [m, n] and aε < 0. Then
any basic mosaic pattern in V+ (resp. V−) exists pro-
vided that the center of the pattern must be coupled
to at least (4−m) −’s (resp. (4− n) +’s).

Denote by FE([m, n]) (resp. FO([m, n]) the set
of all basic mosaic patterns that have parameter ε
in [m, n] and is centered at (i, j), where (i, j) ∈ Z2

E

(resp. Z2
O).

Corollary 3.1. Suppose aε > 0, and let • be either
+ or −. Then

(i) FE([4, 4]) =
{ •
• + • ,

•
• − •

}
;FO([4, 4]) =

{
• + •
• , • − ••

}
.

(ii) FE([3, 3]) =
{ •

+ + • ,
+
• + • ,

•
• + + ,

•
− − • ,

−
• − • ,

•
• − −

}
. FO([3, 3]) is the rotation of FE([3, 3]) by

180◦.
(iii) FE([2, 2]) =

{
+

+ + • ,
•

+ + + ,
+
• + +

,
−

− − • ,
•

− − − ,
−
• − −

}
. FO([2, 2]) is the rotation of FE([2, 2]) by

180◦.
(iv) FE([1, 1]) =

{
+

+ + +
,
−

− − −

}
;FO([1, 1]) =

{
+ + +

+
,
− − −
−

}
.

(v) F ([0, 0]) = ∅.

The other cases can be constructed accordingly.

4. Global Mosaic Patterns and
Their Complexities

To see the complexities of a certain set of global mo-
saic patterns, we first show that the limit in (8) is
well-defined and exists provided that U is (p1, p2)-
translation invariant. We note that with the tem-
plates given as in (4), any stationary solution x of
(1a) is (2, 2)-translation invariant. To this end, we
need the following notation.

Definition 4.1. Let N = (N1, N2) be a two-tuple

of positive integers, and let Γ
(i,j)
N (U) count the num-

ber of distinct patterns among the elements of U
restricted to a rectangle of size N1×N2 whose lower
left corner point is at (i, j). When the reasoning
is general, we may omit the (i, j) and write only
ΓN (U).

Definition 4.2. Let p1 and p2 be as in Defini-
tion 2.2. A standard window N is a rectangle of
size N1×N2, where N1 and N2 are positive integer
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multiples of p1 and p2, respectively, whose lower
left corner point is at (p1k1, p2k2) for some integers
k1, k2.

We note that if N is any rectangle then there
are standard windows Ñ and N̂ with Ñ ⊆ N ⊆ N̂
and the areas of N\Ñ and N̂\N are less than
δ := 4(p1N2 + p1N2). It follows that

ΓN̂ (U) ≤ 2δΓN (U) and ΓN (U) ≤ 2δΓÑ (U) ,

because the cardinality of A being two implies that
there are at most 2δ ways to put symbols in the
regions N̂\N or N\Ñ . So,

2−δΓN̂ (U) ≤ ΓN (U) ≤ 2δΓÑ (U) . (16)

We are now ready to state one of our main re-
sults in this section.

Theorem 4.1. Suppose U is (p1, p2)-translation
invariant. Then the limit in (8) is well-defined and
exists.

Proof. First,

lim
N1,N2→∞

log ΓN (U)

N1N2

exists when the limit is restricted to standard win-
dows N , using the methods of [Chow et al., 1996,
Sec. 5]. Next, let N be any window and let Ñ and

N̂ be standard windows chosen to get (16). Let

the sizes of Ñ and N̂ be Ñ1 × Ñ2 and N̂1 × N̂2,
respectively. We have

N̂1N̂2

N1N2

−δ log 2 + log ΓN̂ (U)

N̂1N̂2

≤ log ΓN (U)

N1N2

≤ Ñ1Ñ2

N1N2

δ log 2 + log ΓÑ (U)

Ñ1Ñ2

.

Because δ/N1N2 = 4(p1N2 + p1N2)/N1N2, the
existence of

lim
N1,N2→∞

log ΓN (U)

N1N2

follows. �

We note that with the templates given as in (4),

even more is true: Γ
(0,0)
(2n+1,2n)(U) = Γ

(1,0)
(2n+1,2n)(U) for

all positive integers n. We illustrate this by con-
sidering the following two rectangles, ABCD and
A′B′C ′D′, of size 2× 3 whose lower left corners are
A(0, 0) and A′(1, 0).

D D′ C C ′

A A′ B B′

Clearly, A, D, B′ and C ′ ∈ Z2
E and A′, D′, B and

C ∈ Z2
O. By rotating by 180◦ a pattern restricted on

the rectangle ABCD, we would get a pattern that
can be fit in the rectangle A′B′C ′D′. The converse
is also true. Hence,

Γ
(0,0)
(3,2)(U) = Γ

(1,0)
(3,2)(U) .

Notation 4.1. We denote by M[m, n] the set of
all global mosaic patterns that have parameters
(z, a) ∈ [m, n].

Theorem 4.2. Let aε > 0, m, n ∈ [0, 1, 2, 3, 4],
and let α = max{m, n} and β = min{m, n}. Then
(1) exhibits spatial chaos if and only if α ≥ 2 and
β ≥ 2.

Proof. From Theorem 3.1, it is clear thatM[m, n]
is increasing with respect to m and n. That is if
m1 ≤ m2 and n1 ≤ n2, then

M[m1, n1] ⊆M[m2, n2] .

To prove the theorem, it suffices to show that

h(M[4, 1]) = h(M[1, 4]) = 0 (17)

and
h(M[2, 2]) > 0 . (18)

We first prove (17). For aε > 0, (z, a) ∈ [4, 1] or
[1, 4], the only two global mosaic patterns are either
all +’s or all −’s. Hence h(M[4, 1]) = h(M[1, 4]) =
0. To prove (18), we consider a global mosaic pat-
tern that is an alternative array of vertical stripes
of width 3 that are alternating in signs. See Fig. 4.

We shall assume the lower left corners of the
3 × 2 rectangles that are boxed and are even. Re-
stricting our observation to the 9×12 rectangle con-
taining those boxed rectangles, we conclude that
each of the boxed rectangles can either remain the
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+ + + - - - + + +
+

+

+

+

+

+ -

-

- -

- - +

+

+ +

++

+ + +
+ + +
+ + +
+ + +

- - -
-- -

- -
- -

-
-

+ + +
+ + +
+ + +

++ +

+ + +
+ + +
+ + +

++ +

- -
- -

- --
- -

+ + +
+ + +
+ + +
+ + +-

-
-

+ + + - - - + + +

Fig. 4. Using Theorem 3.1 to find a lower bound for the spatial entropy of M[2, 2] with aε < 0.

same or be replaced by a rectangle of the same size
that is filled with opposite signs. Thus, we see in
general that for (i, j) ∈ Z2

E

Γ
(i,j)
N (M[2, 2]) ≥ 2n

2
,

where N = (3n, 4n). Hence,

h
(i,j)
N (M[2, 2]) ≥ log 2

12
.

Using Theorem 4.1, we conclude that h(M[2, 2]) ≥
log 2/12. �

Theorem 4.3. Let aε < 0, m, n ∈ {1, 2, 3, 4}.
Then (1) exhibits spatial chaos if and only if
m+ n ≥ 4.

Proof. We only illustrate that

h(M[2, 2]) > 0 , (19)

h(M[1, 3]) = h(M[3, 1]) > 0 , (20)

and
h(M[2, 1]) = h(M[1, 2]) = 0 . (21)

The other possibilities can be similarly treated as
in Theorem 4.2.

Let aε < 0, (z, a) ∈ M[2, 2], so any + must
have among its three interacting neighbors at least
two −’s and any − must have among its three in-
teracting neighbors at least two +’s. Consider the
boxed 3× 2 rectangles

+ − +
− + −

and

− + −
+ − +

.

As offset in the figure below, any arrangement con-
sisting solely of these 3× 2 rectangles whose lower
left corners are even, i.e. are in Z2

E , makes a global
mosaic pattern in M[2, 2]. So, in every window of
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Fig. 5. Using Theorem 3.1 to find a lower bound for the
spatial entropy of M[2, 2] with aε < 0.

size 3n×2(n+1), there are at least 2n
2

distinct pat-
terns. It follows that h(M[2, 2]) ≥ log 2/6, giving
(19).

Let aε < 0, (z, a) ∈ M[1, 3], so any + must
have all three of its interacting neighbors as −’s and
that any − must have among its three interacting
neighbors at least one +. Define a 3× 3 rectangle

3 :=
− − +
− + −
+ − −

.

Consider the 12× 12 rectangles

1 :=

3 3 3 3
3 3 3 3
3 3 3 3
3 3 3 3

and

2 :=

− − + − − + − − + − − +
− + − − + − − + − − + −
+ − − + − − + − − + − −
− − + − + − − − + − − +
− + − + − + − + − − + −
+ − − + − + − + − + − −
− − + − + − + − + − − +
− + − + − + − + − − + −
+ − − − + − + − − + − −
− − + − − + − − + − − +
− + − − + − − + − − + −
+ − − + − − + − − + − −

.

Noting that both rectangles 1 and 2 are of the form

3 3 3 3
3 3
3 3
3 3 3 3

for some interior choices of 6 × 6 rectangles, one
can check that any arrangement consisting solely
of rectangles 1 and 2 whose lower left corners are
even, i.e. are in Z2

E , makes a global mosaic pattern
in M[1, 3]. So, in some window of size 12n × 12n,

there are 2n
2

distinct patterns. It follows that
h(M[1, 3]) ≥ log 2/144, giving (20).

As for (21), let aε < 0, (z, a) ∈ M[1, 2], so
m = 1 implies that any + must have all three of its
interacting neighbors as −’s, and n = 2 implies that
any − must have among its three interacting neigh-
bors at least two +’s. The latter implies that there

cannot be three horizontally consecutive −’s. So,
the only global mosaic patterns which are possible
are (a) the single “checkerboard” pattern of alter-
nating +’s and −’s, and (b) those patterns which
have somewhere two horizontally consecutive −’s.
In case (b), one can see by tedious logical impli-
cations that the pattern must have two adjacent
diagonal “stripes” of all −’s surrounded by alter-
nating diagonal stripes of all +’s or all −’s. So, for
all windows N which are N1 ×N2,

ΓN (U) ≤ 2 + 2 max{2 +N1, 2 +N2} .

Inequality (21) follows. �

We conclude by mentioning possible future re-
lated work. First, the classification of the defect
patterns is of interest. It is numerically reported in
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[Yeh, 1998] that CNNs with space-dependent tem-
plate such as (4) can generate temporal chaos. The
rigorous study of such phenomenon is of consider-
able interest. The other dynamics properties, such
as stability, traveling waves and scrolling waves of
CNNs addressed in this paper have not been ad-
dressed yet. Finally, in practice CNNs are imple-
mented on a finite lattice. Thus, it is also desirable
to study the dynamics of such CNNs on a finite lat-
tice. In particular, how do the boundary conditions
on finite lattice influence the dynamics properties
and pattern formation of CNNs on infinite lattice
(see e.g. [Shih, 2000]).
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Appendix

The purpose of the simulations is to support the
assertions of Theorem 2.1(ii) and Theorem 3.1. In
the following figures, all the lower-left 1 × 1 boxes
are assumed to be at the integer lattice (0, 0). If
the output f(xi, j) of the state of a cell Ci,j is +1
(resp. −1), then we use black (resp. white) to color
its associated box. Numerical tables give values of
the states xi,j.

In Fig. 6, we pick ε = 1/6 and (z, a) ∈ [3, 2]
region. According to Theorem 3.1, in Fig. 6(c), the
outputs of the cells at (4, 4) and (4, 1) are initially
white but cannot remain white. The basic mosaic
patterns whose centers are at (i, j), 0 ≤ i, j ≤ 5,
(i, j) 6= (4, 4), (i, j) 6= (4, 1) are initially good.
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1.5 1.5 1.5 1.5 1.5 1.5
1.5 −1.5 −10 −10 −10 1.5
1.5 −7 −5 −10 −1.5 1.5
2.5 −1.5 −8 −1.5 −5 1.5
1.5 −1.5 −2.5 −1.5 −1.5 1.5
1.5 1.5 1.5 1.5 1.5 1.5

(a)

1.9 1.9 1.5 1.9 1.9 1.9
1.5 −1.3 −1.3 −1.3 1.5 1.9
1.5 −1.3 −1.7 −1.7 −1.3 1.5
1.5 −1.3 −1.7 −1.7 −1.3 1.5
1.5 −1.3 −1.3 −1.3 1.5 1.9
1.9 1.9 1.5 1.9 1.9 1.9

(b)

(c) (d)

Fig. 6. [3, 2] region: a = 1.2, ε = 1/6, z = 0.1.

1.5 1.5 1.5 −1.5 −1.5 −1.5
1.5 1.5 1.5 −2 −2 −2
−1.5 −1.5 −1.5 1.5 1.5 1.5
−1.5 −1.5 −1.5 1.5 1.5 1.5
1.5 1.5 1.5 −1.5 −1.5 −1.5
1.5 1.5 1.5 −1.5 −1.5 −1.5

(a)

1.167 1.5 1.167 −1.167 −1.5 −1.167
1.167 1.167 1.167 −1.167 −1.5 −1.167
−1.5 −1.167 −1.5 −1.5 −1.5 −1.5
−1.5 −1.167 −1.5 −1.5 −1.5 −1.5
1.167 1.167 1.167 −1.167 −1.5 −1.167
1.167 1.5 1.167 −1.167 −1.5 −1.167

(b)

(c) (d)

Fig. 7. [2, 2] region: a = 1, ε = 1/6, z = 0.
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1.5 −1.5 1.5 −1.5 1.5 −1.5
−1.5 1.5 −1.5 2.5 −1.5 1.5
1.5 −2.5 1.5 −1.5 1.5 −1.5
−2.5 1.5 −1.5 1.5 −1.5 1.5
1.5 −1.5 2.5 −1.5 1.5 −1.5
−1.5 1.5 −1.5 1.5 −1.5 1.5

(a)

1.75 2.25 2.25 2.25 2.25 2.25
−1.25 −1.75 1.75 2.25 2.25 1.25
−2.25 −2.25 −1.75 1.25 −1.75 −1.75
−2.25 −1.75 −1.75 1.25 −1.75 −2.25
1.75 1.75 2.25 2.25 1.75 −1.25
2.25 2.25 2.25 2.25 2.25 2.25

(b)

(c) (d)

Fig. 8. [3, 3] region: a = 1.5, ε = 1/6, z = 0.

1.5 1.5 1.5 1.5 1.5 1.5
1.5 −1.5 −10 −10 −10 1.5
1.5 −7 −5 −10 −1.5 1.5
2.5 −1.5 −8 −1.5 −5 1.5
1.5 −1.5 −2.5 −1.5 −1.5 1.5
1.5 1.5 1.5 1.5 1.5 1.5

(a)

4 4 3.33 4 4 4
3.33 −1.33 −1.33 −1.33 3.33 4
3.33 −1.33 −2 −2 −1.33 3.33
3.33 −1.33 −2 −2 −1.33 3.33
3.33 −1.33 −1.33 −1.33 3.33 4
4 4 3.33 4 4 4

(b)

(c) (d)

Fig. 9. [4, 2] region: a = 2, ε = 1/6, z = 1.
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1.5 1.5 1.5 1.5 1.5 1.5
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Fig. 10. [4, 3] region: a = 2, ε = 1/6,= 2, ε = 1/6, z = 1.
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Fig. 11. [4, 4] region: a = 3, ε = 1/6, z = 1.
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Therefore, in Fig. 6(d) the final outputs seem to be
very resonable. Note also that the evolution from
the unstable pattern in Fig. 6(c) to the pattern in
Fig. 6(d) involves the least number of changes to
arrive at a final, stable pattern.

Indeed, we see that all figures of evolution from
unstable to stable patterns, for parameters (z, a, ε)
corresponding to the [3, 2], [2, 2], [3, 3], [4, 2], [4, 3]
and [4, 4] regions, are consistent with the theory
proved in Theorem 2.1(ii) and Theorem 3.1.
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