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A model describing two-phase, incompressible, immiscible flow in fractured media is
discussed. A fractured medium is regarded as a porous medium consisting of two
superimposed continua, a continuous fracture system and a discontinuous system of
medium-sized matrix blocks. Transport of fluids through the medium is primarily within
the fracture system. No flow is allowed between blocks, and only matrix-fracture flow is
possible. Matrix block system plays the role of a global source distributed over the entire
medium. T'wo-phase flow in a fractured medium is strongly related to phase mobilities
and capillary pressures. In this work, four relations for these functions are presented,
and the existence of weak solutions under each relation will also be shown.
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1. Introduction

A dual-porosity model describing two-phase, incompressible, immiscible flow in
fractured media is discussed. The phases are the nonwetting “0” (oil) phase and the
wetting “w” (water) phase. Within a fractured medium there is an interconnected
system of fracture planes dividing the porous medium into a collection of matrix
blocks. The fracture planes, while very thin, form paths of high permeability. Most
of the fluids reside in matrix blocks, where they move very slow. For model con-
sidered here, a fractured medium is regarded as a porous medium consisting of two
superimposed continua, a continuous fracture system and a discontinuous system
of medium-sized matrix blocks. Fracture system has a lower storage and higher
conductivity than matrix block system. Transport of fluids through the medium is
primarily within the fracture system. No flow is allowed between blocks, and fluids
that reside in matrix blocks must enter the fractures before shifting. Essentially,
matrix block system plays the role of a global source distributed over the entire
medium. As a consequence, two sets of equations are obtained for the flow. One
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contains macroscopic equations for fracture flow, and the other consists of micro-
scopic equations for flow in matrix blocks. The two sets of equations are coupled
through locally defined macroscopic matrix-fracture sources, one for each phase.
For more description of flow in the medium, readers are referred to Refs. 5, 7, 10,
12 and 13 and references therein.

If Q c R? is a fractured medium, equations for fracture flow Refs. 5, 10 are, for
reN, t>0,

S —Vy - (AW(S)VI(PVV*EW)) = 4w, (1'1)
_atS - Vx ' (AO(S)V:E(PO - Eo)) =do, (1'2)
Y(S) =P, — P, . (1.3)

S € [0,1] is water saturation; A, (o = w,0) is phase mobility of a-phase, a non-
negative monotone function of S (see Fig. 1); P, denotes pressure; E,, is a function
depending on density, gravity, and position; ¢, is the matrix-fracture source; and T
is capillary pressure, a non-negative decreasing function of S (see Fig. 1). Porosity
and permeability field have been set to 1 for convenience. Incompressibility implies
o + qw = 0.

A matrix block Q, C R3 is suspended topologically above each point z € €.
Equations for flow in a matrix block are, for z € Q, y € Qg , t > 0,

0t — Vy - (Aw(s)Vypw) =0, (1.4)
0hs = V- (o(5) V) =0, (1.5)
U(S) = Po — Pw - (16)

Each lower case symbol denotes the quantity on 2, corresponding to that de-
noted by an upper case symbol in the fracture system equations. S, P,, g, for
a € {w,o} in (1.1)—(1.3) are functions on Q x [0,T], and s, p, in (1.4)—(1.6) are
on [[,cq0% x [0,T]. po (@ = w,0) in (1.4) and (1.5) only takes derivative with
respect to variable y.

(a) (b)

Fig. 1. (a) Phase mobilities and (b) capillary pressures of fracture system and matrix blocks.
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The matrix-fracture sources are given by, for z € Q, ¢t > 0,

-1
QW(xat) = m/ﬁ ats(xayat)dy = 7QO($7t)a (17)

where |Q.| is the volume of 2,. Boundary 99 of Q includes 6,2, 92, which
satisfying 0:1Q N 0 = 0, 00 = 0:Q U 9. Boundary conditions for fracture
system are, for t > 0, a € {w, 0},

P, = ab for x € 819, (18)
Ao (S)V4(Py — E,)-1=0, forxe€ N, (1.9)

where 7 is the unit vector outward normal to 92. Boundary conditions for each
matrix block require continuity of pressures, i.e. for t > 0, z € Q, y € 9Q,, a €

{w, o0},

Da(T,y,t) = Py(x,t). (1.10)

Initial equilibrium gives
S(xz,0) = Sp(x), forxeQ, (1.11)
s(z,y,0) = so(z), forxeQ, ye,. (1.12)

Two-phase flow in fractured media is strongly related to phase mobilities and
capillary pressures.!®13 For flow in a bundle of tubes, a mobility curve was mea-
sured to be a linear function of phase saturation. In general, phase mobility curves
may be determined by being adjusted to history-match field data if all other data
are known. Fracture capillary pressure would be near zero for most water saturation
values. Matrix mobilities and matrix capillary pressure can be those measured on
unfractured media. To maintain gravity/capillary equilibrium, capillary pressure
endpoints in fracture system and matrix blocks must be set equal.'?!3 In real-
ity, it is not easy to measure phase mobilities and capillary pressures accurately.
Our intention is to look for proper relations for these functions. Some literatures
related to this problem are listed below. For unfractured media case (that is,
dw = ¢o = 0), existence of solutions of (1.1)—(1.3) were studied in Refs. 3, 4, 8
and 14 and references therein. If one linearizes matrix mobility A, (o = w,0) or
assumes matrix blocks are small, matrix-fracture source g, is a function of phase
saturation. Existence of weak solutions in these cases were considered in Refs. 6 and
9. Existence of solutions in a global pressure form of (1.1)—(1.12) could be found in
Refs. 7 and 17. In this work, four relations for phase mobilities and capillary pres-
sures are presented. Existence of weak solutions of (1.1)—(1.12) will be shown for
each relation. To reach the goal, a global pressure is introduced to simplify system
(1.1)—(1.12) first. Next, existence of solutions of the simplified system will be shown.
Finally, we prove that a subsequence of these solutions converges to a weak solution
of (1.1)—(1.12). Phase mobilities and capillary pressures in Refs. 10-13 satisfy one
of the relations here.
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The rest of the paper is organized as follows: notation is recalled and main result
is stated in Sec. 2. An auxiliary system for (1.1)—(1.12) is derived and the procedure
of proof for main result is described in Sec. 3. The main result is proved in Sec. 4
under the assumption of the existence of solution for auxiliary system, which is
shown in Sec. 5.

2. Notation and Main Result
2.1. Notation

Let Q C R? be open, bounded, and connected with Lipschitz boundary. For every
z € Q, Q, C R3 is a bounded region. Identify the product space [1.cq 2 (denoted
by Q) as a subset of RS. For simplicity, all matrix blocks are assumed to be identical,
volume 1, and smooth enough. That is, @ = Q x M, M| = 1, and M C R3
is assumed to be bounded with Lipschitz boundary M. Q L0 x [0,¢] and
ot ¥ 9 x 0,4

L"(B), H™(B), W™"(B), L"(Q, W™"(M)), L"(Q, L"(0M)), L™(0,T; X), and
H™(0,T; X) are Sobolev spaces! for 7 > 1, m € N, B C QT, and a Banach space X.

def

W6R7T(Q) = {f S Wm’T(Q) : f|31ﬂ - O}a
VEW(©Q),
WL (Q) € {fe L(Q): V, f € L(Q)},
UL W2(Q).

Note that Wy (Q) € L"(2, W' (M)). Let T, be the usual trace map of Wh"(M)
into L"(OM). We define the distributed trace 7 : W, (Q) — L"(Q, L"(dM)) by
Tf(z,y) = (Tef(2))(y)-

def

Wi (Q) = {f e WLT(Q) : Tf =0},
U EW,5(Q),

Yy
W €y v x i,

W EY V< Uy x Up

dual X % dual space of X |

si (resp. 1 —s;) L residual matrix water (resp. oil) saturation.

RS def RTYU{0}.If Y : (0,1] — R{ (resp. v : (sy, 8] — RY) is onto and a strictly

decreasing function, let T=! (resp. v™1) be the inverse function of Y (resp. v). We
def

define J : (0,1] — (s1,8,] by J(2) = v~}(Y(z)), and denote the inverse function
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of J by J~1. Let J(0.5) € (s1,5) C (0,1).

hpepy det SEER) = f(T)
af(t) = Y ,
P.; o Poy— Pyp,s

A AL+ A,

AE N+,

def g Aon
R(z) % / X
0.5

T A
D(z) & / S
J(0.5)

dY
ﬁ (£)d£7 for z € (07 1] ’

dv

ds

(&)d¢, for z € (sy,8,].
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We define £ : L™(2) — L"(Q,L>®(M)) by Lf(z,y) = f(z)l,, z € Q, y € M,
where f(x)1, is constant in M with value f(z). f € L™(Q) will be identified with

Lf € L7(Q, L™ (M)).

2.2. Main result

Taking (¢, Co, Tw, M0) € L2(0, T; Wh), multiplying (1.1), (1.2), (1.4), (1.5) by (yw, Co,
Nw, 7o Tespectively, and integrating these functions over QT, one obtains a weak

formulation for Egs. (1.1)—(1.2) and (1.4)—(1.5), by (1.8)—(1.10),

QT

_ /Q Gt /Q A(S)ValPy — BV, = /Q 05 G,

QT

o Os Nw + /QT Aw(S)VwaVyTIw =0,

—/ Ot8 Mo —i—/ 2o (8)VypoVyno = 0.
QT QT

8,5 Cu + / Aw(S)Va(Py — Bu)Valu = — | 015 G
QT

(2.2)

(2.3)

(2.4)

(2.5)

Definition 2.1. {S, Py, P,, s, pw, Po} is & weak solution of Egs. (1.1)—(1.12) if there

is a number r € (1,2) such that, for o € {w, o},

1. Py — Pop € L(0,T; Wy (), pa — Pa € L7(0,T;W,5(Q)),
2. S+ [, s dy € dual L2(0,T;V), 8ys € dual L(0,T;Up),
3. AaViPy € L2(QY), \aVypa € L2(Q1),
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4. T(S):Pofpwa U(S):pofpwa

5. (2.2)—(2.5) hold for any (, € L*(0,T;V), na € L?(0,T;Up),
6. 0<S<1, s <8< 8y,

7

. For ¢ € L*0,T;V)n HYQT), n € L*0,T;U) n H*(0,T; L*(Q)), ¢(T) =
n(T) =0,

BtS <+ /QT 8ts n= */QT(S — So)atC — /QT(S — 50)8”7. (26)

QT

Theorem 2.1. A weak solution of Egs. (1.1)—(1.12) exists if the following condi-
tions hold:

Al 9,0 #0.

A2, Ay, Aw (resp. Aoy Xo) @ [0,1] — [0,1] are continuous and increasing (resp.
decreasing), Aw(0) = Ao(1) = Me(51) = Mo(52) = 0, Awho(2)locion) # O,
Awdo(2)ze(s1,50) 7# 0, infe(o,1{A(2), M(2)} > 0.

A3. YT :(0,1] = Ry (v: (s1,8-] — RY) is onto, decreasing, and a locally Lipschitz

vl > 0.

continuous function, and infze(o’l] ‘%’ X ianG(sl,sr]
A4, 8,P., € LY(QT), Eq € L®(0,T; W-°(2)), Pay € L2(0,T; HY(R)), o = w, 0.
A5 ki < T H(Pep) <1—ky, ky < Sp(z) <1—ky, v(so(x)) = Y(So(x)), = € Q.
A6. min{m§%0%7m§%x w(J( §>>} < oo,

min{ﬁgﬁl%((%),mgﬁlx o(J (6))} < 0.

AT7. One of the following conditions is satisfied:

Er MG A) a(7(2))
lim ———4t— im— sup +#———- 0,
R IR .ty E)
Dl AELE L AT
@) TR i e
1
TR T
Au(T (=) A(T1(2)) IL(71(2))
lim —2 7 4 fim — 2 Sup ——g— 00,
L vy Rl ey v it you S
W1 e AITTEATTE) L AEA)
el T ) — R et T = s — )
lim ;>O
=7 |Z*Sl|k2|D( )l ’
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dv
T — el el
z—>0|z| |d—(z)| z—0 ﬁ(z)
Ao -1 dax -1
lim (j2 55 ) + Tim 45 (du (2)) < 00,
ZHST|STfZ| E(Z)‘ Z— S, E(z)
AW >\W
(c) { lim E{Z) X lim (‘Tk(z)) >0,
z—0 |Z| 2 z—0 |Z| 2
-1
im 27 G M)
Z—35, |8T — Z|k2 Z—35, |8T — Z|k2
li L >0
im-—— ,
=0 2% |D(T (2))]
A -1 ax 7-1
lim —W(j d(z)) + lim ¢ 777 (;7 (2)) < 00,
ez — 52| 92(2)] = 92(2)
— A, dv
i Q(Zd)r + lim Sd(Tj(z)) < 00,
z—)1|]_ z| ‘ﬁ(z)‘ z—1 ﬁ(g)
A -1
(d) ¢ 1im AT (2) lim Aw(z) >0,
s |z — sl zs |z — si|k2
. Ao(2) . Ae(JT(2)
lim ———— X lim ———= >0
e AR ke
1 1 >0
im ,
Z—35; |Z — Sl|k2|D(Z)|

where ki, ko are positive constants. See (2.1) for A, A, Py, D.

Remark 2.1. 1. By A2 and A3, D is a strictly increasing function on (s, s,],
so it has a bounded and strictly increasing inverse function D~!. Let us extend
D! to R continuously and linearly with slope 1. The new function will not be
relabelled.

2. A7 sets restrictions on phase mobilities and capillary pressures around end-
points only. Roughly speaking, A7(a) corresponds to that fracture capillary pressure
decreases faster than matrix capillary pressure around endpoints. A7(b) is the
inverse case of A7(a). By proper combinations of the restrictions in A7(a) and
A7(b), we obtain A7(c) and A7(d). A7(c) is the case that fracture capillary pres-
sure drops faster around 0 (resp. slower around 1) than matrix capillary pressure
around s; (resp. around s,). A7(d) is the inverse case of A7(c).

3. If )‘W—;‘” |‘é—1s’| € L!'(s;,s,] (assumption in Refs. 7 and 17), D is bounded.
If D is a bounded function on (s, s,], then A7(a)s, A7(b)s, A7(c)s, and A7(d)s
obviously hold.
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4. If lim, 0|2[%2| Y (2)| < 00, A7(a)3 and A7(c)5 hold. If lim, |2 —si|%?|v(2)| <
00, A7(b)s and A7(d)s hold. So, if D(J(z)) (resp. D(z)) grows slower than ‘z‘%
(resp. m) as z approaches 0 (resp. as z approaches s;), then A7(a)s and A7(c)s
(resp. A7(b)s and A7(d)s) hold.

3. Procedure of Proof

Now we derive an auxiliary system for (1.1)—(1.12), and describe procedure of proof
for Theorem 2.1. Global pressure® is defined as

T(S)
porl <Po et [ (oo - Fae) d£> SNCEY

See (2.1) for A. Then V,P = 2V, P, + 4V, P,. Let {w = ¢ = ¢ in (2.2) and
(2.3), and add the two equations to obtain

/QT(VPVC_ Z/ S)VaEaVa(=0. (3.2)

ac{w,o}

If we define
G 7(5), (3.3)

(2.2) can be written as

dv
[Lasar [ (asvar-p) - 200800 6 v.q,
QT QT A(S)
=— | O ¢w. (34)

QT
If we repeat the process (3.1)—(3.4) in each matrix block, (2.4) can be written as
Aw ()6 (8) &2 (s
/ 08 Ny — / nysvyw =0. (3.5)
oT oT )\(S)
Let € be a small number satisfying

0<e<ki/4, (3.6)

where k; is the one in A5. Let us extend mobility functions A,, Ay (@ = w,0)
constantly and continuously to R, and find continuous monotone functions A, X},
in R such that

£ < (AL () 620} < supfAZ () A5} < 1, -
A:(2) = Au(2) and X, (T (2)) = Aa(T (2)) for z € [e,1 —¢].
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Next we define, for z € R,

A(2) B AG(2) + AS(2),

X(2) N5 (2) + X5 (2)
Ae(2) 2 A, ( (0%5_2))’ oc{wol, (3.8)

Ae(2) B RS (2) + Ag(2).

By A3, one may find decreasing and Lipschitz functions Y¢, v in R so that
dxe

@ @} <o {155 0[5 @} <.

Té(z) =T (z) and v°(J(2)) = v(T(2)) for z € [e,1 —¢], (3.9)

T¢ (resp. v¥) has inverse function Y=~ (resp. v®~1) in R,

dv®
ds

dv®
ds

0 < k3 < inf {‘
z€R

T(E v5=1(T%)) is linear in R \ [¢, 1 — €] and has inverse J51,

where k3 is a constant independent of . By A4 and A5, there exist smooth functions
S5 86 Peys P » (& =w,0) such that

e _ pe e
Pc,b_Po,b_P

w,b
ki k
0<— < inf {S5THPL}< sup {S5,T(PL)}<1-=,
2 (z,t)eQT ’ (z,t)eQT 2 (310)
55 =J(56)
55— v N (P5y)(x,0) €V,
and, as € — 0,
S§ — So, in L2(Q),
PSy — Pap, in L2(0,T; HY(2)), (3.11)
O PZ, — OPep, in LYy(Qm.
Auxiliary initial and boundary conditions are defined as
G5 < J(S5),
def _
gb i 1(P(ib)ﬂ (312)

or 1 For (A e A% (pe-
Edfg(P§7b+p;,,+ [ (Bero) - e 1<s>>)d£>-
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Auxiliary system of (1.1)—(1.12) for each ¢ is to find {S¢, G¢, P¢, s°} such that
OS5 + /M Oys°dy € dual L*(0,T;V), 0;s° € dual L*(0,T;Uy), (3.13)
e< S <l—-¢, JE)<ss<T(1—¢e), (3.14)

GE=J(S%), (G°—G, P°— P, s—G°) e L*0,T; W), (3.15)

/QT at55<1+/m (A;(SE)VI(PE—EW) Avlo (geyy 18 )> .

+ E)tsag”l = 0, (316)
QT
/ (SIVePVela— > / A (S5 EoVaila =0, (3.17)
ar ac{w,o}
Aw Ao
/ Ops®n — / (s5)V4u(s*)Vyn =0, (3.18)
QT QT A
G°(z,0) =G5, s°(z,9,0) =55, (3.19)

for any ((1,C2,m) € L2(0,T; Wy). See (3.8) for A%, AS (o = w, 0). Later the following
result will be proved:

Theorem 3.1. Under A1-A5, for each e, there is {S%, G%, P%, s%, P, p5, (o =
w,0)} such that (3.13)—(3.19) hold. Moreover,

(Pvi* wba Po Paba P@*an pi*P§)€L2(07T;W2)7 (320)
T(S%) = — P2, w(s®) =p -, (3.21)
| ase+ / (A (55T P5 — K& (8)Va By + (RS, — M)V P9 V.G
QT QT
+ 0;5°Cw =0, (3.22)
QT

—/ at58<0+/ (Ao(S%)V 2P — A2(S%)V o Ey + (AS — Ay) Vo P?) V.o
0T foxs

— | 8¢, =0, (3.23)
QT
/ 0¢S M —i—/ Aw (%) Vype Vynw =0, (3.24)
QT QT
- 04810 +/ Ao (85)VypiVyn, =0, (3.25)
or or

for all ¢, € L*(0,T;V), na € L*(0,T;Up).
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Similar result as Theorem 3.1 had been considered in Ref. 17. For completeness,
the proof of this theorem will be given in Sec. 5. In the next section one will see
that a subsequence of the solutions of Theorem 3.1 converges weakly to a solution
of (1.1)—(1.12) as e approaches 0, which implies Theorem 2.1.

4. Existence of a Weak Solution

The objective of this section is to prove Theorem 2.1 if Theorem 3.1 holds. It is
done as follows: First we show P, pS, for o € {w,o} (solutions of Theorem 3.1)
are bounded independently of € (see Lemmas 4.1-4.3), next we prove {S¢} has a
convergent subsequence in L?(Q7) (see Lemmas 4.4-4.6), then show {s°} has a
convergent subsequence in L2(Q7T) (see Lemmas 4.7-4.9), and finally conclude the
existence of a weak solution of (1.1)—(1.12). We define

o)™ | (TN () - T(—6)de, for z € (—00,0],
0
pe Ly (se),
def ’ vil —z 71}71 — or 2 —00
0(2) /0< (—2)— v (—E))de,  for z € (—o00,0], o
wa déf _U(SE)7

def
pe =

TH(s),

def
e del e
Uy = _Pc,b'

(4.1)2,45 are well-defined by (3.14). (3.15) implies p®lopm = S° in QT. O(z) and
0(z) are non-negative functions on (—o0, 0], and, for any z1, 2z <0,

O(21) = O(22) < (Y (—21) = T (=22))21, (42)
0(z1) — 0(22) < (v (=21) — v~ (—22))21 - '
X, B C QT is a characteristic function defined as
1, forzeB,
X, = 4.3
5(2) {(), otherwise. (43)

Let us find two non-negative smooth functions g; and gy defined on [0, 1] such that
g1 (resp. g2) is decreasing (resp. increasing), g1(0) = g2(1) = 1, g1(0.6) = g2(0.4) =
ef

0, and g1 +g> > 0 in [0,1]. Let &, 8 (s1,5] — R by (&) & g1 (771(9)),
82(6) ¥ g2 (771(¢)). By A6, we define € : (0,1] — R by
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Tim
Aw (T
if 570

Tim
PRGN

dv

\/_

J(0.5)

if

lim

Tim
d

Y if

lim

£—1 o

dY
Ao E‘gl“i’ \/ w

J(0.5)

dv

§—0 W

‘g2+ \/

J(0.5)

Tim

Aw (&)

(€
Ao(€)
&

Ao(T(6))
dm TR

AT (6)
{%ﬂ% A <%

< 00,

;< 00,

< 00,

MG
e (T <%0

T2 (8)
A S

hm% < 00,
Al
g1 (T (©))

(4.4)

€ in (4.4) may have more than two options. If so, one selects the foremost possible
one in (4.4) so that £ is well-defined. £ is a strictly increasing function, so it has a
bounded and strictly increasing inverse function £~!. We extend £~! to R so that

it is bounded, continuous, and strictly increasing in R. Let us define
Pe def £(5°),
6" = E(p7).

Lemma 4.1. Solutions of Theorem 3.1 satisfy

Y (VA Ve Pillzary + [V Aa(5%) Vil n2om))

ae{w,o}
+1PE | 20,751 () < €,

IR(S%)1 20,7302 (@) + Vo D(5%) | z2(@my + 19| 2o msmr o)
+ 120,70y < ¢,

where ¢ is a constant independent of €. See (2.1) for R, D.
Proof. Set (; = P° — Pf in (3.17) to obtain, by A4 and (3.12),
| Pl 220,711 ()) < ¢ (independent of ¢) .
By (4.2);, for all ¢, w > 0,
(Y5 (1)) — O(¥*(t — @) < (§°(t) — S°(t — @))¥* (1),

where ¥¢(t) = ¥¢(0) for —w < t < 0. Integrate (4.8) over Q7 to obtain

(4.5)

(4.6)
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W/T w/ O(Te) / (TF — )= 5° + /@(mf(o))
/Tw/ S50 awwg+w/7w/ 0)UE. (4.9

See (2.1); for time differentiation. Similarly, by (4.2)2, one obtains

S Lewa< [ -wio= st [ o)
T s L [T [ - w0 @)
ok =),

Summing (4.9) and (4.10) as well as letting w — 0, by boundedness of S¢ and s,
we get, for almost all T € (0,7,

e+ [ow i < [ @ -wpost [ - was

+ (1% (0) [l 1) 15 o 0,521 () 1965 L1 (r)) - (4.11)
Letting (o = Pg — P54, 1o = p, — P5 for a € {w, 0} in (3.22)-(3.25), one obtains
/ (W 00+ Y / (S VP2 + / (F — T5)d,s°
" ac{w,o} T
£ 2 [ ANV S VP VB VPl linn) - (412)
ac{w,o}

By (3.11), (4.7), (4.11)—(4.12), and A4, A5, we obtain (4.5). Clearly (4.5) implies
/ Aoy (59)[ V.1 (57) 2 +/ Moda(5°)| V(5 2 < o, (4.13)
QT QT
where ¢g is independent of €. (4.6) is due to A5, (4.4) and (4.13). O

Lemma 4.2. Suppose 2 < wy € N and 22%}) < min{J (ﬁ) — 81,8 — T (1 kl)},

where ki is the one in A5. For any 7(< T'), w(> 2+wy) € N, and ¢ (< 0= Lf kl) ,

solutions of Theorem 3.1 satisfy the following results: If A7(a) holds, then
sup([{z € : 5°(t) < p}t| + [{(z,y) € Q: p°(t) < pil)

t<t

+ §1<1P(|{1‘ €Q:1—p<SOH+H(xy) € Q:1—pn<p(t)})
Co|CoT|w7wO

4.14
- (w — wO)(w_WO)fw ( )

)
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if A7(b) holds, then
sup({z € Q: G°(t) < p+sip| + [{(z,9) € Q:s7()) <p+ si})

t<t

+sup({z € Qisr —p <G (O} + [{(2,y) € Q:sr — p <5°(1)}])

t<t

coleoT|® 0

- (w — WO)(wfw(J)fw ’

if A7(c) holds, then
sup(|{z € 2 :5°(t) < pi + {(2,9) € Q: p°() < p})

t<t

(4.15)

+sup({z € Q:s, —p <G (O} + {(2,9) € Qi s —p < s°(D)}])

t<t

coleoT|® 0
~ (@ — @) (@T=m0)f

and finally if A7(d) holds, then
igp(l{af €Q:G°(t) <p+sitl+ {(x,y) € Q:s7(t) < p+si}])

(4.16)

+ igp(l{w €Q:1—p<S W} + {(z,y) € Q:1—p < p*(t)}])
C()|C()T|w7w0

4.17
- (w — wO)(w_wﬂ)fw ( )

)

where limg o fo = 1 and ¢y is a constant independent of T, w, €, p.

Proof. Case 1. We claim (4.14). A7(a); is assumed here. Define ., K ,, as

0, for 2u < z,
Ku(z) def z2—=2u, forpu<z<2u,
—u, for z < u,
0, for ¢(2u) < z,
Ken(z) € < 2 —(2p), for ¢(u) <z <<(2n),

s(n) —<(2p), for z < <(p),

where
o(z) & / ﬁ(g)dg, z€(0,1). (4.18)
0.5 A€

Define

)?#(z) det 1, forpu<z<2u,
0, otherwise.
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Then ¥, (2) = £Ku(2) = £Kc,u(s(2)), Le(z) = 5(2). By 20 < ¥ and (3.15),

(1 Goom) = (G (57), K s(59)), K () — K (5%)) € L0, T; W) . (4.19)
Employ ((1,2,n) of (4.19) in (3.16)—(3.18) to obtain, by A4,
/Ticu(sa)atsmr/m AW(SE)XM(SE)VQB\I/EVQCSE+/T/cu(p6)atsa
< cl/TAE ACHIAT MR (4.20)
where constant ¢; is independent of e, u. Suppose

/ K,.(S°)0,5° +/ K, (pF)dss® >0, (4.21)
QT T

(4.20)—(4.21) imply

o AEX
/ RE2,(59) |V, 58|<\// (5 \// Re. 0, (59) |V, 0|V, 57|
ar - |as|
< 02\/ () \// Re &, (59) |V 5e] (4.22)
_S

where constant ¢y is independent of e, p. (4.20)—(4.22) imply

AE
| rusas e [ unnst < [ S, (4.23)
T T T _S
Define Z, def . (S%) + Z%H(sa) where
S def ¢ def ¢ —1
Z,(&) = Ku(z)dz, Z.(€) :/ K. (T (2)dz
2u (2)

(4.23) implies

OZS = / K,.(S%)0,5° + / Ko (p°)0rs° < c3 / w?
QT QT T Q |E|

(3.9)2, (4.24), and AT(a); yield that, if 0 <t; <t < T,

/t?'/ BES < e /t/ ) (4.25)

where ¢4 is independent of ¢y, t2, i, €. Define

of 1
fE(MaT) d:f _qup/;zi(at)

e ot<r



Math. Models Methods Appl. Sci. 2002.12:1075-1107. Downloaded from www.worldscientific.com
by NATIONAL CHIAO TUNG UNIVERSITY on 04/27/14. For personal use only

1090 L.-M. Yeh

(4.25) implies that, for 0 <t; <ty < T,
.7:6(/,6, tg) — .7:6(/1, tl) S C5(t2 — tl)fE(Z/,L, tg) y (4.26)

where c¢5 is independent of 1, t2, i, €. By induction and (3.10)2, one obtains, for
JEN, jR<T,

k . k
Fe (—l,jh) < (@ — wo + 1) Y esh|Z =0 F* ( ! jh) . (4.27)

2w 9w0

If j = —==20 - and 7 = jh in (4.27), then

= log(wo—wo)

k1 |05T|w7w0 k1
e [ X1 €
7 <2w ’ T) < (w — wo)(‘lﬂ—wo)fw F 9wo ’ T (428)

where f, — 1 as @w — oo. Define

Bi(t) def {ZEGQ:SE(I‘,t) <p= ;{—;} ,

def kl

Ba(0) = {(e0) € Qs (o) = 12}

A7(a)1, (3.11) and (4.28) imply

k, 66|C5T|w_w° k;
= €
ilglg (/ Ol /XBZ(U> = coF (2_’”’7) = (w — wo)(w*w‘))f*ﬂ}— PER

where constant cg is independent of 7, w, €, u. See (4.3) for X, (i = 1,2). So the
proof of the first part of (4.14) is complete.

Proof of the second part of (4.14) is similar to that of the first part, so we just
sketch the proof. For comparison with proof of the first part, some notations above
will be used again. Define KC,,, K¢ ., as

0, for 2 <1-2u,
ICM(z)d:ef z2—1+2pu, forl—-2u<2<1-u,
W, forl—pu<z,
0, for z < (1 —2u),
def
Keu(z) = {2 =<1 —2p), for (1 —2u) <z < (1 —p),

s(l—p)—c(l=2p), forc(l—p)<z,

where ¢ is the one in (4.18). Define

B (n)de )b forlmns sl
g 0, otherwise.
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Then X, (2) = £K,(z) = LK. .(s(2)). By 2u < %t and (3.15),
(G, Gosm) = (Ku(S%), K, (s(S%)), Ku(p%) — Kiu(S%)) € L*(0, T3 W) . (4.29)
Employ (¢1,¢2,n) of (4.29) in (3.16)—(3.18) to get

/icu(sa)atsw/ AO(SE)QPM(SE)vwa/vasw/ I, (p°) 0,5

S R EACS (4.30)
Q7
where constant c; is independent of €, p. Then following the proof of the first part,
one can complete the proof of the second part.

Case 2. We assume A7(b); and claim (4.15). Proof of this case is similar to that of
Case 1. Define K,,, K¢ ,, as

0, for 2u+ s; < z,
Ku(2) L 2= @ut ), forpts <z<2uts,
-, for z < pu+ s,

0, for ¢(2u+s1) < z,
Ken(2) 2= s+ 50, for s+ 1) < 2 < o2+ 51),
s(u+s) —<@u+s), forz<c(p+si),

S(z) = / Aiv(Jfl(ﬁ))déﬂ z € (s, sr)-

705 As
Let

I e
By 2u < J(¥') — s and (3.15),

(G Gosm) = (Ku(G®), K, u(s(G9)), Kpu(5°) = Ku(G9)) € L2H0,T5W1) . (4.31)
Set (¢1,C2,7n) of (4.31) in (3.16)—(3.18) to obtain

/ ’Cu(ge)atsw/ AW(Ss)zéu(gf)vxmfvwgw/ ICou(5%)0;5°

-

<o [ RUS)AG)V.0, (4.32)
(9ks
where constant ¢; is independent of ¢, u. As Case 1, (4.32) implies

£ 3 € € Asv(sa)_)éu(gs)
/T/Cu(g )0:S +/QT Ku(s%)0s® < C3/T —Z—Z(gsﬂ . (4.33)
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Define Z, e Z,(8%) + Z,,(s°) where
Y def ¢ S def ¢
20" [ Tz, 200 [ K.
T~ H(2p+s1) 2p+s;

(3.9)2, (4.33), and A7(b); yield that, if 0 <¢; <t2 <T,

to ta
/ /atzljgc4/ /Z;M, (4.34)
t1 Q t1 Q

where ¢4 is independent of t;, t2, u and €. Then following the proof of Case 1,
one can show the first part of (4.15). The second part of (4.15) can be shown by a
similar argument as the first part of (4.15). By tracing proofs of Case 1 and Case 2,
one can see that (4.16) and (4.17) also hold. m|

Lemma 4.3. Suppose 2 < wy € N and 221;}] < min {J(%) — 81,8 — J(l — %)}
where ki is the one in A5. If 1 <r <2 and e < QZE—;O, then
Z (IPEl 2o, msmrr () + ||p3||Lr(o,T;W;”(Q))) <c, (4.35)
ae{w,o}

where ¢ is a constant independent of €.

Proof. We assume A1-A5 and A7(a); 2 hold. Suppose Qu,k—lﬂ <e< 21;1* < 225—;0
Due to (3.14), we define

Bwodef{(gc,t)EQT' ki gse},

. 22+WQ

e k k
l’)’wd:f{(gc,zf)EQT:2731+1 SS’E<2—;}, for 2+ wo <w < w, — 1,

b et Ty <ess <)

: 2w.+1 — Pi=p

Lemmas 4.1, 4.2, (3.7) and Holder inequality imply

r/2 . (2—7)/2
/ |vfoV|f“s(/ M(SEMP@F) (/ |AW<SE>|W)
QT QT QT
N2
s(/ |AW<SE>|M)
QT

. (2—1)/2
=c (/ A (897 Y Xsw>
QT

W=

< ¢z (independent of ). (4.36)

See (4.3) for X. By (3.11), || P || - (0,7;w 1.~ (0)) is bounded independently of €. By a
similar argument, one can show the rest of (4.35). Furthermore, a similar argument
will show (4.35) if one of the conditions A7(b), A7(c), and A7(d) holds. m|
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Lemma 4.4. For f € C§°(Q) and sufficiently small w, solutions of Theorem 3.1
satisfy

/ / F@)(S5(t) — S5t — @))(@° () — B°(t — @) < e[ flwr~(ey »

where ¢ is independent of €, w.

Proof. Let f € C§°(€2). One can see

dof min(t+w,T)
Gz, t) = f(:z:)/ w "7 (x, 7)dr € L*(0,T;V),

max(t,w)

min(t+w,T)
n(xvyat) d:ef f(l‘)/ w 8_w(¢6 - q)E)(xa va)dT € L2(07T7u0) .

max(t,w)

See (2.1); for time differentiation. Employ ¢; and n above in (3.16) and (3.18)
respectively to obtain, by Fubini’s theorem and Lemma 4.1,

LT/Qf(x)w26wS€ 9" (z, 7) +/:/Qf(x)w28ws€ 0= ¢% (z,y,7)

_ / 9,5% (2, )G + / Bes® (2,5, ) (0 + C1)
QT QT

- A A AwA
_ 7/ (Aivvx(PE _E,) - °vmr(56)> V.01 +/ °V,u(s)V,1

QT A or A
< co| fllwre) (4.37)
where c is independent of €, w. So the proof is complete. O

Let m €N, § = L, 7,5 = [(i — 1)5,i). We define A° : L'([0,T]) — L*([0,T])
by

1
A0 / C(r)dr, forteTs. (4.38)
L5
Lemma 4.5. As§ — 0, ||®° — A°(®°)||p2(qr) converges to O uniformly in €.
Proof. Let 0 # f € C§°(£2). Define

B(e,w,n) & {t € (@, T) : ||| ey () + || @ | sy (¢ — )

1 wa(.’E) e o }
— TS 0 =% d o
i w /Q [ £l (e (1) (z,t)dz >n (4.39)

By Lemmas 4.1, 4.4 and (4.39), fB(s o) 11 dt < ¢, where ¢ is independent of ¢, w.
So

|B(e,w,n)| < ¢/m, foralle w. (4.40)
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Next we claim: If n is fized, then as w — 0,
[®°(-t) — @°(-,t —@)||z2() = 0, wniformly in e and t, (4.41)

where t € (w,T) \ B(e,w,n).
Proof of claim: If not, there is a constant ¢; > 0 and a sequence {{, &} such
that, as w — 0,

t’w € (W,T) \ B(SW7w7n) )
125 (|10 (b)) + |2 (|51 (@) (b — @) <m0,

) 4.42
/ =) 5w ge (,t)0" 72 (2, t5)dr < nw, -
a [[fllwre (o)

[@°= (t) — = (tw — @)l|L2() = €1 -

By (4.42); and compactness principle, there is a subsequence (not be relabelled)
of {®°= (ty), = (t — w)} converging to {gi1, g2} strongly in L?(2) and pointwise
almost everywhere. By (4.42)4,

g1 — g2llL2) > 1. (4.43)
Since £~ is bounded on R, by (4.42)3,

/Q (€ (g1) — £1(g2)) (91 — 92) =L

I llwo ()

2
= lim / TS g gen (44000 (2t )dr = 0. (4.44)
@=0 Jo [[fllwr=(a)
Since £7! is strictly increasing on R and because f can be any non-negative smooth
function, (4.44) implies g1 = g2 almost everywhere, which contradicts (4.43). So the
claim is true.
(4.40) and (4.41) imply, as w — 0,

T
/ [|D°(- ) — D°(-,t — w)||%2(ﬂ)dt — 0, uniformly in €. (4.45)

w

By (4.38) and (4.45), if § = T'/m, then

T m
/ |05 — A8 |2yt = 3 /
0 i—1 Y Zi,s

2
! / (@ (2, 1) — D (z,7))dr|  at
0 Zis

L2(Q)

IN

m 1 [t—G-1)8
i=17Zi,s 0Ji is
9 5 T

Right-hand side of (4.46) converges to 0 uniformly in € as § — 0. So the lemma
follows. O
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Lemma 4.6. There is a convergent subsequence of {S¢,G¢} in L2(QT).

Proof. By Lemma 4.1, ||®°||z2(0,7;m1(Q)) < c1, which is independent of . So for
all g,

||A6(¢8)||L2(O’T;H1(Q)) < ¢o (independent of ). (4.47)

By Lemma 4.5, (4.47), and diagonal process, one can find a subsequence of {®¢}
converging to ® in L?(2T) strongly and pointwise almost everywhere. By bound-
edness and continuity of £ as well as convergence of {®¢} in L?(Q7T), it is not
difficult to find a convergent subsequence for {5¢}. Convergence of {G*} is due to
the convergence of {S¢} and boundedness of J. m|

For convenience, it is assumed that S¢ converges to S in L%(Q7T) and pointwise
almost everywhere.

Lemma 4.7. 0< S < 1.

Proof. Suppose A7(a); holds. By Theorem 3.1 and Lemma 4.6, 0 < S < 1. We
claim b {(z,t) € QT : S = 0}| = 0. If not, by Egoroff’s theorem!® and
Lemma 4.6, there is a set B C QT such that (i) |B| < b/3 # 0 and (ii) S° converges
uniformly to S in QT \ B.

Take wg, w; large enough so that

2<wy<w; —2,

2k1 . k1 kl
e <min {7 () e s (%) (4.48)

|COT|W17WQ+1

(wl — wo)(wl _w())fw1

b
<_a
-3

where kj is the one in A5 and cg, f, are those in Lemma 4.2. By Lemma 4.2 and
(4.48), for all e < o =
|COT|w1—wo+1

<
(w1 — wo) (=1 7=0)f=n ™

(4.49)

b
{(a,t) € QT 57 < )| < 2.
Since S¢ converges uniformly to S in QT \ B, there is a g9 < (: 21‘711) such that,

for any € < €o,
|S¢ — S|(x,t) <, for (z,t) € QT \ B. (4.50)
However, (4.49) and (4.50) imply, for any & < &g,

2b b

5 <H@te QT\B:S =0} <|{(z,t) €QT\B: S <u}| < 3, (451
that is in contradiction to b # 0. So 0 < S. By a similar argument, one can prove
S < 1. Moreover, a similar argument will show the lemma if one of the conditions
A7(b), A7(c), and A7(d) holds. So proof of this lemma is complete. m|
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Lemma 4.8. {D(G®)} is a Cauchy sequence in L*(QT). See (2.1) for D.
Proof. Case 1. Suppose A7(a) or A7(c) holds. If D is a bounded function on (s;, s,],

the lemma is obvious by Lemmas 4.6 and 4.7. If not, for any § > 0, one can find
wo, w1 € N and a positive number b such that, by A7(a)s or A7(c)s,

2<wog<w —2,

2 cfo(5)-ne o1 5)}
o(o(8) .
oo

(oo () o) 2o

(w1 — wo)(wl @0)fw;
where k1 is the one in A5 and ¢y, f, are those in Lemma 4.2. Suppose 2,;,1‘—1“ <e<

2 |COT|w7w0+1

<4,

(w _ wo)(wfwo)fw

21;1* < le Because of (3.14), we define
e wq def T ae k;
B YW1 — (I,t) c Q . S < 271 s

k k;
deéf{(a:,t)eQT 5 i1_55<2—}, forw <w<w.—1,

k
1 - 1
2w*+1§5§5 <2w*}.

s

B, & {(x,t) et

Then B&®t = JZ* _ B,. Lemma 4.2 and (4.52)4 imply

W=TwW1

| D@m= [ DIEDE Y A

w=w1

kl 2 |COT|w7w0+1
D (j <2w+1>) ‘ (@ — o) (== =0)E= <9é.

(4.53)

T =

<3

wW=w1

See (4.3) for characteristic function Xj.
Let both ¢;, €; < k1 /2%, Define

- K e
jid def {(m,t) e 0T 2711 < min{Ssl,Ssi}} ,

)

o .k _
/Cijd:f{(a:,t) e Qs < gsaa}.
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Consider the following

| 1D ) =D < [ D@ (57) = DI ()Pt

OT

+ [ DTS, + [ D@,

.
+ [ DI Xsrm + [ DT (S s (454)
By (4.53),
| DTS )P R+ [ DTS <28, (4.55)
By Lemmz;2 4.2 and (4.52)s, "
[ D@ R, + [ (s PR, < s (4.56)

Lemmas 4.6 and 4.7 imply that D(J(S¢)) converges to D(J(S)) pointwise almost
everywhere. By Egoroff’s theorem,!5 one can select a set B such that (i) |B] < b
(b is the one in (4.52)5) and (ii) D(J(S¢)) converges to D(J(S)) uniformly in
QT \ B. By (4.52)s,

[ 1P (5) = DT (5%) P cisrs < b, (457
and there is a €9 < 21‘711 such that, for both ¢;, £; < €,
[ 1D (5) = DT (5%) P < 5. (4.58)
Therefore, by (4.54)—(4.58), for any § > 0, there is a ¢ such that, as ¢;, ¢; < &y,
1D (5% = DI (S < e, (4.59)

So convergence of {D(J(5¢))} (i.e. {D(G*)}) is proved.
Case 2. If A7(b) or A7(d) holds, the convergence of {D(G®)} can be shown by
a similar argument as Case 1. O

Lemma 4.9. There is a convergent subsequence of {s°} in L?(QT).

Proof. Step 1. By (3.11), Theorem 3.1 and Lemmas 4.1, 4.6, 4.8, there is a subse-
quence (not be relabelled) of {S¢, s} such that, as ¢ — 0,

S¢,G5 — S,G, in L*(Q7T) strongly,
D(s°) - D, in L?(0,T;U) weakly
s = s, in L?(Q7T) weakly,
(") wealdy (4.60)
0;s€ — O;s, in dual L2(0,T;Up) weakly,
s$(T) — 8, in L?(Q) weakly,
s£(0) — so, in L?(Q) strongly .
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Suppose v; (i € N) is a smooth function in Q and {v;}$2, forms a basis of Uy. For
each i and f € C1[0,T], one obtains, by (2.1) and (3.18),

- [ o+ /Q VD) S Tyvi = /Q (s°(0)£(0) = * () F(T))vi.
(4.61)
As e — 0, (4.60) implies
- /Q s O+ /Q VD ()i = - /Q 5 F(T)vi + /Q so fO)vi.  (4.62)

Applying Green’s theorem for (4.62) in the ¢ variable yields

/ By F(t)vi + / V,D f(6)V,v;
oT oT

- /Q (5 — s(T) F(T)vi + /Q (50— 5(0)) F(0)v; (4.63)
Since {v;}2, is a basis of Uy, (4.63) implies
§=s(T), s(0)=so, (4.64)
and
/T Dys 1+ /QT V,D V=0, forne L2(0,T;l). (4.65)

Step 2. We claim D~!(D) = s. See Remark 2.1 for D=1, Let us find ¢°, ¢ €
L2(0,T;Uy) by solving, for all (x,t) € QT,

—Ayp° = s, eM, —Ayp=s, eM,
Ve Y Ve Y (4.66)
©*lom =0, @loam =0.
(3.18), (4.66), and Green’s theorem imply
D) = [ D@~ [ (D) - DG
= D(G%)s" — Ops®o° . (4.67)
QT or
Note that
12 12
— | a5 = f/ M(T) +/ M(o), (4.68)
or o 2 o 2

By (4.60)5 and (4.64), s°(T") converges weakly to s(T) in L?(Q). (4.66), Holder
inequality, and Green’s theorem imply

/ V,0l(T) < lim / IV, (T (4.69)
o) e—=0J9Q
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Take limit supremum on both sides of (4.67) to obtain, by (4.60) and Lemma 4.8,
— Vyl? Vyol?
m [ D(s%)s* < / Vel )+/ Vel ). (4.70)
e—0 QT Q 2

Set n = ¢ in (4.65) to obtaln

07/ [yl )/Q%(OH/QT@D(@)S, (4.71)

By (4.70) and (4.71),
lim D(s%)s® < Ds. (4.72)
e—0 QT QT

Since D! is strictly increasing on R, for any f € L?(Q7T),
0< [ @D - DO - ). (4.73)

By (4.60), (4.72) and (4.73), and monotonicity argument,'® one can easily obtain
D YD) =s. (4.74)

Step 3. We claim that {s°} is a convergent sequence in L?(QT). By (4.60), (4.72)
and (4.74),

lim [ (D(s°) —D)(s°—s)=0. (4.75)
e—0 QT
Define Fi . ef (D(s°) — D)(s° — s). By (4.74) and (4.75), F1. converges to 0 in
LY(QT). So there is a subsequence (not be relabelled) of {F; .} converging to 0
pointwise almost everywhere.
Let us consider a point (zo, Yo, to) € QT which satisfies lim._,o Fi1.« (w0, yo, to) =
0. It is not difficult to see that {D(s*(xo,y0,t0))} is a bounded set. For any ac-
cumulation point Dy, 4.4, of {D(s°(x0,Yo,%0))}, one may find a subsequence (not
be relabelled) of {D(s(xo,Yo,%0))} such that lim._o D(s°(x0, Y0,%0)) = Dao.yo.to-
Since D~ is continuous,

0= Eli_I>T(l)(D(SE($07yo,to)) — 75(9007yo,to))(sa(ﬂﬂo,yo,to) — s(z0, Yo, to))

= (Dl’o,yo,to - ﬁ(:l?o, Yo, tO))(IDil (Dﬂﬂo’yo,to) - 5(1:07 Yo, tO)) . (476)

(4.74) and (4.76) imply Do yorte = D(xo, Yo, to). So {D(s°(x0,Yo0,t0))} has only
one accumulation point D(zg,yo, o). Since Fi . converges to 0 pointwise almost
everywhere, D(s°) converges to D pointwise almost everywhere. By continuity of
D=1 and boundedness of {s°} in QT, s° converges to s in L?(QT). O

By Lemma 4.9 and a similar argument as Lemma 4.7, one can obtain the
following result:

Lemma 4.10. s; < s < s,.
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Proof of Theorem 2.1. By Theorem 3.1 and integration by parts,
ostc+ [ awicrm= [ (55-5900+ [ (si- s+,
QT Qr QT QT

for ¢ € L2(0, T; V)NHY(QT),n € L2(0, T;Uo)NH(0,T; L*(Q)), and ¢(T) = n(T) =
0. By (3.11) and Lemmas 4.6, 4.9, we obtain (2.6). Indeed, Theorem 2.1 is a direct
consequence of Theorem 3.1, Lemmas 4.1, 4.3 and 4.6-4.10.

5. Existence of the Auxiliary Problem

Now we prove Theorem 3.1, which is done by Galerkin’s method. Let I = (0, T,
LeN, h=T/L t,, = mh, and I}, = (t;m—1, tm]. For a Banach space X,

I;,(X) def {f € L>0,T;X) : f is constant in time on each I, C I'}. (5.1)

If felh(X),f

12 = f(tm) for m < € =T/h. For f € L=(QT),

1
o(N@y.t) < + | fayndr, fortel;. (5.2)
I
One approximates G;, Pf, E, for a € {w,0} by
GG, BN er), B e(E). (5:3)
By A4 and (3.11)—(3.12), it is not difficult to see, for a € {w, o},
G" =G,
PP = pe, in L2(0,T; H*(Q)) as h — 0. (5.4)
E'" - E,,

Suppose that {e;}32; (resp. {v;}$2;) is a basis of V (resp. Up), and v; satisfies

—Ayvi = C;Vji, in Q, (5 5)
vilaxom =0, .

for some constant c;. Let V" (resp. U}') denote the linear span of {e;}{_, (resp.

{vi}¢_,) where £ = T/h. W} LEPh » Ph x Upr. By (3.10)4, one may find G5 such
e,h def

that gé’h — g,f’h(()) is the L? projection of G§ — Gi (0) on V". Let 55" = Qé’h.
A discretized scheme for (3.13)—(3.19) is to find {S=", G5 P=h 5%k} such that
(Go" = Gt Pl — Pl stk — GEh) € T, (WD), (5.6)
SEh0) = To7HGM0),  GMO) =Gy, sh(0)=s",  (5.T)

and if {S=", = s5} (ty_1) is given, then (G5 — G, PSR — POM 550 —G=h)(t,,)
is a zero of the mapping H=" : R3¢ — R3 ¢ = T/h defined by

Hs’h(fl,la ) 51,@7 52,15 ) 52,@ 53,17 ) 53,[) = (51,17 ) 51,27 52,15 ) g?,@a 5_3,17 ) EB,Z) 5 (58)



Math. Models Methods Appl. Sci. 2002.12:1075-1107. Downloaded from www.worldscientific.com
by NATIONAL CHIAO TUNG UNIVERSITY on 04/27/14. For personal use only

On Two-Phase Flow in Fractured Media 1101

where
‘

(Geh — gsh peh — Pbs’h, sh_ gehy(t Z €180, o€, E3,vi) EWP L (5.9)
=1

S () = T HG " (tm)) (5.10)

i / 08 (k) Yes + / RE(SEMYVo (P — BR) (1) Ve
Q Q

A& AE(SEh dv® (oe,h
7/ ad O( )ds (g ) gsh m a:ez /a h Eh eza (511)
Q

AE(Sa,h)
52,1':65/ AZ(SEMVo P () — D AL(ST"(tm))VLEL | Vaes,  (5.12)
Q
ac{w,o}
_ AE )\E vt dv® ( ah)
- —h e,h L w0 ds_ e,h . 1
53,1 /Qa S (tm)vz /; )\57(85 h) Vys (tm)Vyvz (5 3)

See (3.9) for 75~ and (2.1); for time differentiation. 3. in (5.12) is a constant
satisfying 3. > sup 28, (2)
£ z€R AE z)|d'u5 Je z))|

Theorem 3.1 is proved by the following steps: First we show that zeros of (5.8)—
(5.13) exist and are bounded independently of h (see Lemma 5.1), next prove a
subset of these zeros forms a convergent sequence (see Lemmas 5.2 and 5.3), and
finally conclude the existence of a weak solution of (3.13)—(3.25) (see Lemmas 5.4
and 5.5). Let us define a non-negative function I' : R — R by

def _ _
1) [ - g @)e.
0
By (3.9), 757! is a strictly increasing function. As Remark 1.2 of Ref. 2,

['(z1) = T(22) < (J5 Hz1) = T Y(22))21, forz1,20 €R,

|T7571(2)| < wl(2) + |§\S<ulI; |77 (6], for ze R,w > 0.

(5.14)

Lemma 5.1. Under (3.7)—(3.11), (5.6)—(5.13) are solvable for all h(= T/¢), and
solutions satisfy, for (C1,C2,m) € WE, in I,

S5 (tm) = T=HG (t)), (5-15)

0= / oSS ()¢ + / A (S5 (P — EMY(t,,) VG
Q Q

- [ BRI s )+ [0 g, 616)
o A Q
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():/QAE(SE’h)VxPE’h(tm)ng‘gf > /QAg(SE’h)vng(tm)vw@, (5.17)

ae{w,o}

A \E
0= / 0N (1) — / 220 (MY 0% (550 (t) V1 (5.18)
) o A°
Moreover,
sup 5" () 20y + 195" | 20,711 () + I1PT" | L2 (0,710 ()

+ 5" L2 0, 700) < €0, (5.19)

where cy s a constant independent of h.

Proof. The solvability of (5.6)-(5.13) is done by induction. {S%" G=" s="1(0)
is given in (5.7). Suppose {S", G=" 55} (t,,_1) is solved. Since HE" of (5.8) is
continuous, (5.4) and (5.9)—(5.13) imply

H(Enny e &80 (Ens -5 E30) > /Q(Qs’h — GO ()

e,h|2
+a (/ MJr/ |ng€’h|2+/ |VxP€’h|2+/ |Vys€’h|2> (tm) — C2,
o h Q Q )

(5.20)
where ¢, ¢o are positive constants. By (5.14)1,
0TGN () < (G — GO S (b) + GOSN (t) . (5:21)
(5.20), (5.21) and (5.14)2 imply

HE (& &30)(Ey e, E30)

T &h e,h|2
= (/ (gh L4 Vg2 4+ [0, PR + / %Hvysf’hf) — e
@ 5)

(5.22)

If norm of (&1, - - -, &3,¢) is large enough, right-hand side of (5.22) is strictly positive.
So H®" has a zero for t = t,,. By induction, it is easy to see that (5.6)—(5.13) are
solvable. Clearly the zero of (5.6)—(5.13) satisfies (5.16)—(5.18).

If (G=h — g,f”‘, peh — th, s&h - goh) = 2521(51,161, &2.:€i, &34V;) is a zero of
(5.8), then

Ha’h(ﬁl,h o &80)(€ats e, 630) =00 (5.23)
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Integrating (5.23) over [0, t,,], one obtains, by (5.4),

/ / gs N g th h / / hss,h
tm tm tm
+es (/ / |ngs’h|2 +/ / |V$P5’h|2 +/ / |Vyss,h|2> S ¢,
0 Q 0 Q 0 Q

(5.24)
where c¢s5, ¢ are constants independent of h. By (5.14)1,
O7MD(GM) (1) < (G — GEMOT NS (1) + G oS (1) (5.25)
Integrate (5.25) over Q x [0, t,,] to get
1 tm tm
_/ / I‘*(gs,h) < / /(gs,h . g;,h)afhss,h + / F(gs,h(o))
hJe,,—nJa 0 Q Q
tm—h
/ / Ssh Ssh 8hg / / Ssh Ssh ))g ;
—h
(5.26)

where S5 (t) = §5"(0) for —h < t < 0. Similar to (5.26), we have

L[t 552 b eh ehya—h &h |s="(0)?
TN /Q“ RO */QT
tm—h
e
—h

(5.27)

where s5"(t) = s5"(0) for —h < t < 0. Note ||6hg§7h||L1(07T;Loo(ﬂ))mL2(QT) and
||g§’h||Loo(QT) are bounded by a constant independent of h. (5.24), (5.26)—(5.27),
(5.14)2, and discrete Gronwall’s inequality imply (5.19). O

Lemma 5.2. For any small w(> 0), solutions of (5.15)—(5.18) satisfy

T
/./wmwfgmawaSmw,
w Q

where ¢q is a constant independent of w, h(=T/¥).

Proof. For fixed u, we add (5.16) (resp. (5.18)) for m = 5+ 1,...,j + u, and
test the resulting equation by (; = h2ud—h#(Geh — gg’h)(tﬁ#) (resp. m; =
R2ud="r(s&h — GEMY(ti4,)), where i, = (j + p)h. Then we sum above two
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equations for j = 1,...,/ — u to obtain, by Lemma 5.1,

L—p

> {/Q P20~ (84 )0~ MG (tj ) + /Q Ihua_h“ss’h(mu)P}

j=1

- Z{/ hp|*6~ et o~ hug (tj+n) / \hp|*0~ Meg= I o™ hugsh( ]+M)}

- i ]ff {/ (AE (S5MV,(PSh — Bl — AiAVA (85M)V v (geh))(tm)vmgj

j=1m=j+1

- [ BT )V (5.29)

By Lemma 5.1 and rearranging the indices j and m, right-hand side of (5.28) is
bounded by cu. So

T
/ / (b2~ SER (1D -MEGER (8) < chy. (5.29)
hp JQ

Since G5" is a step function in time, inequality (5.29) is also satisfied if one replaces
hu by any positive constant w. So the lemma is complete. O

Arguing as Lemmas 4.5 and 4.6, one obtains:

Lemma 5.3. There is a subsequence of {G=" S} converging to {G, S} point-
wise almost everywhere and in L?(QY) strongly.

Remark 5.1. Let us define D* : R — R by

def z )\sv)\i dv
D(z) & / vl |2
J(0.5) S

€

(£)de -

By (3.9); and Lemma 5.3, D°(G*") converges to D¢(G?) in L?(Q7T), and D (s°")
is bounded in L2(0,T;U).

Lemma 5.4. There is {S°,G¢, P?,s°} such that, for ((1,¢2,n) € L*(0,T; W),
0,5° + / Oys° € dual L*(0,T;V), 0;s° € dual L*(0,T;Up), (5.30)
M
ga:ja(sa)’ (gsiggvpafpbaassiga)€L2(07T;W1)7 (531)

/ 0, S°C1 +/ ([\;(sa)vx(Pf — Ey) — AiAE (S5)V, TE(55)> V(i
foxs 0T

+ [ asa=0, (5.32)
QT



Math. Models Methods Appl. Sci. 2002.12:1075-1107. Downloaded from www.worldscientific.com
by NATIONAL CHIAO TUNG UNIVERSITY on 04/27/14. For personal use only

On Two-Phase Flow in Fractured Media 1105

/ A*(S5)VoPoValo — > / A2 (S5)V o Eo V(o =0, (5.33)
QT ac{w,o}
A NS
/ Osn — / V)V\E 2V,v°(s%)Vyn =0, (5.34)
G°(x,0) =G5, s°(z,9,0) =sj. (5.35)

Proof. By (5.7) and Lemmas 5.1, 5.3, there is {5°¢, G¢, P¢, 55, D7, §°} such that, as
h—0,

Seh geh 5 Ge Ge in L2(Q7T) strongly,

Seh Geh peh _y g Ge pe in L2(0,T; H(2)) weakly,

s9h De(s5h) — 55, DF in L2(0,T;U) weakly,

sSMT) — 5, in L?(Q) weakly, (5.36)

s5h(0) — 55, in L?(Q) strongly, .

g~hgeh +/ o~ 5 9,5¢ +/ 0;s°, in dual L?(0,T;V) weakly,

M M
07 "sSh 5 9,s° in dual L2(0,T;Uy) weakly .
If one can show

§E = 88 (T) B (5 37)
D= = De(s°), .

then (5.15)—(5.18) imply the lemma as h — 0.
For each i > 1 and f € C'[0,T], (5.18) implies

T—h
_ / / S o F)(E)vi + / T, D (5o £)(£) Vv
0 Q Qr

_ 1" o v, o .
- h/Th/Q (D)e(£)(E) z+/g (0)£(0)v;. (5.38)

See (5.2) for p(f). Letting h — 0 and following the argument in Step 1 of
Lemma 4.9, one obtains (i) §° = s°(T) (i.e. (5.37)1), and (ii) for n € L%(0,T;Up),

dps°n + / V,D°V,n=0. (5.39)
QT QT

To show D¢ = D¢ (s%), one follows the argument in Step 2 of Lemma 4.9 and employs
(5.5). O

Lemma 5.5. e <S5 <1—¢cand J(e) < s < J(1—e).

Proof. By (3.6), (3.10) and (5.31), ¢ % max{Gs — J5(1 — ¢),0} € L2(0,T; V).
Let (1 = (2 = ¢ in (5.32) and (5.33) and n = max{s®* — J°(1 —¢€),0} — (1 in



Math. Models Methods Appl. Sci. 2002.12:1075-1107. Downloaded from www.worldscientific.com
by NATIONAL CHIAO TUNG UNIVERSITY on 04/27/14. For personal use only

1106 L.-M. Yeh

(5.34). By (3.9)4 and (5.35), we see S <1 —¢, s°* < J(1 — €). Similarly, letting

¢ = max{—G° + J°(¢),0} in (5.32) and n = max{—s° + J°(¢),0} — (3 in (5.34),
one gets S€ > ¢, s > J(e). O

Based on Lemmas 5.4, 5.5 and Theorem 3.1 is proved below.

Proof of Theorem 3.1. (3.13)—(3.19) is a direct result of Lemmas 5.4 and 5.5.
Define

def 1 TS /A 1y A -1
pe ¥ pe_~ | ve(ge Zo(vs, _ W (s
: 2( s+ [ (e - e e

P S TA(S) + Py

Te(S°9) € € € €
e def ¢ 1 Ao g,—1 Aw g,—1 >‘0 g,—1 >‘w g,—1
b p 2(/ (G- e - et + ) ae)

v (s%) € e
v Sy (v%ss) [ (e - e ) d&) ,

A CORSTS
Clearly {S¢,G®, P¢,s°, P, p;, (o = w,0)} satisfies (3.20)—(3.25).
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