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111. CONCLUSION 
We demonstrated how the Sherman-Morrison identity for inver- 

sion of the symmetric matrices can be utilized to develop a new 
fast algorithm for optimal linear interpolation. We demonstrated 
that the proposed algorithm has lower complexity with respect to 
the other proposed schemes such as [4]. It is also possible to de- 
velop lattice type structure for linear interpolation based on the 
proposed algorithm. 
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Binary Partition Algorithms and VLSI Architectures 
for Median and Rank Order Filtering 
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Abstract-A class of selection algorithms by binary partition is very 
efficient for median and rank order filtering. A unified discussion of 

Manuscript received November 23, 1991; revised November 6 ,  1992. 
The associate editor coordinating the review of this correspondence and 
approving it for publication was Prof. Gonzalo Arce. This work was sup- 
ported by the National Science Council, Taiwan, Republic of China, under 
Grant NSC 79-0404-E009-27. 

C. L. Lee was with the Institute of Electronics Engineering, National 
Chiao Tung University, Hsinchu 30050, Taiwan, Republic of China. He 
is now with the Video Signal Processing Department, CCL/ITRI, Taiwan, 
Republic of China. 

C.-W. Jen is with the Institute of Electronics and Department of Elec- 
tronic Engineering, National Chiao Tung University, Hsinehu, Taiwan, 
Republic of China. 

IEEE Log Number 9210117 

these algorithms is presented. Binary partition algorithms have better 
time-area complexity than sorting methods. Counting, firing, and up- 
dating are three basic steps. A generic structure is proposed to realize 
these algorithms. They can be implemented by simple and regular 
modules in VLSI. 

I .  INTRODUCTION 

Rank order filtering is a nonlinear filtering technique which picks 
up an output according to the order statistics of elements in a slid- 
ing window. Maximum, minimum,, and median filters are some 
frequently used examples. Median filters are robust, and can re- 
move impulse noise while preserving some essential features [ I] .  
They are widely applied in many signal and image processing ap- 
plications, such as seismic data [2], medical images [3], or  video 
signals [4]. Maximum and minimum selections can be found in 
gray-scale morphological dilation and erosion [ 5 ] .  Since the rank 
order and median filtering processes have played important roles in 
many signal and image applications, fast realizations of them are 
necessary. 

The implementation of median or rank order filters can be di- 
vided into two categories. The first category realizes them in soft- 
ware on general-purposes sequential or parallel computers. The 
second one implements the filters on VLSI hardware. In the soft- 
ware category, the basic procedure for order statistic calculation is 
comparison and sorting. However, if only a specific rank order is 
required, selection algorithm will be more effective. This is be- 
cause sorting can be constructed by selection [6], [7] and the se- 
lection algorithms are linear in complexity [SI. In addition to these 
computer science methods, there are some fast algorithms which 
take advantage of the running window where only a minor portion 
of the elements are deleted and replaced by the same number of 
new elements. An updated histogram method in [91 and a moving 
border method in [ 101 were based on this concept for two-dimen- 
sional median filtering. Some heap-based methods have been pro- 
posed in I l l ]  and [12]. Parallel implementation of median filters 
can also be found in [I31 and [14]. 

The hardware category has several approaches. The first one is 
to implement order statistic filtering by systolic algorithms with a 
linear array of identical processing elements [15]. The next ap- 
proach is to realize median filtering by a regular sorting network, 
such as bubble sort or odd-even transposition sort [16]-[18]. The 
third approach is a class of “radix methods” which calculate the 
result based on the binary representation of data. Many algorithms 
[19]-[22] and VLSI architectures [23]-[26] belong to this ap- 
proach. An interesting method takes binary median on a stack of 
threshold decomposed signals and then sums up the result at each 
threshold level as the final output 1271. This method is not practical 
because of its exponential hardware complexity. An m-array method 
has also been implemented on VLSI circuits [28]. It performs bi- 
nary search on an accumulated histogram. 

In this correspondence, we propose a unified representation for 
the “radix method.” All these methods stem from a binary parti- 
tion algorithm which is discussed in Section 11. The unified de- 
scription and comparison of thcse algorithms is presented in Sec- 
tion 111. A generic architecture is presented in Section IV with 
considerations of tradeoffs. Also in Section IV, word-parallel bit- 
pipeline VLSI architecture designs are discussed for high-speed 
signal processing. Applications and extensions of the binary par- 
tition algorithms are discussed in Section V. 
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11. ORDER STATISTIC CALCULATION BY PARTITION 

Selection is a conventional problem in computer algorithms. It 
is to find the kth largest element in a set of elements, S = {xlr 
. . .  , xN } . A brute-force approach is to sort the elements in S to a 
decreasing order and then pick up the value of the kth position. 
However, there is a more efficient way which uses the idea of di- 
vide and conquer [ 8 ] .  We call it the partition-selection approach. 

A. Arbitrary Partition 

The idea of partition is to divide the original set S into two sub- 
sets, So and s,, by arbitrarily choosing an element xb in S as the 
boundary. Those elements which are equal to or greater than xb are 
put in SI, otherwise they are put in So. A conceptual diagram is 
shown in Fig. 1. If the number of elements in SI, denoted as (SIJ 
= q,  is greater than k ,  that is q > k ,  then the original problem size 
will be reduced to a smaller one which is to select the kth largest 
element in the subset SI. If q < k, then the new problem is to select 
the ( k  - q)th largest element in the subset So. Repeat the partition 
process until q = k ,  that means the desired output xd is equal to the 
boundary element x b .  In the worst case, it will not stop until q = 
k = 1. This is arbitrary partition for selection. 

s o  SI 

P d = N - q  P d = 4  

Fig. 1 .  Partition the set S into two subset So and S, . Number of elements 
in SI is 4. (denoted as (SI( = 4).  The magnitude of elements in SI are 
greater than those in So. 

B. Binary Partition 

The partition of set S can be more than two. However, our in- 
terest is in the two-subset case. We assume the data to be non- 
negative integers because most of the gray-scale images and signals 
are positive. They can be either normalized or shifted to be non- 
negative without loss their generality. Suppose the word length of 
binary representation is L,  then the value of data can be no more 
than 2L - 1. A special case of two-subset partition chooses the 
boundary element to be the power of 2 (2,, j = 1 . . . L - l ) ,  or 
their linear combinations. We consider this as binary partition. 

Arbitrary and binary partition are similar. The major difference 
is that xb of the former method is one of the element in  set S, but 
xb of the latter one is determined externally. The number of itera- 
tions for arbitrary partition is not fixed. However binary partition 
approach needs L iterations at most to get an output. A conceptual 
description shown in Fig. 2 demonstrates the idea of binary parti- 
tion. Because we are selecting the kth largest element in S, the data 
profile is monotonously decreasing. The finding of desired output 
is equivalent to performing a binary search along the vertical axis 
and check of matching along the horizontal axis. 

111. BINARY PARTITION ALGORITHMS FOR HARDWARE 
IMPLEMENTATIONS 

Basically this method obtains the result with one bit at a time. It 
needs a mask vector to define the candidate subset where possible 
targets are lying in. That is either SI or So. The candidate subset 
will shrink as the investigation proceeds from MSB’s to LSB’s. At 
last, the only element left is the answer. If more than one element 
is left, their magnitudes must be the same. Many of “radix meth- 
ods” or bit-level algorithms are based on this idea [19]-[26]. The 
major difference is the counting schemes they perform. We will 
unify these algorithms after we define some notations. 

A.  Binary Representation 

The set of elements in a sliding window is defined as W = {xI , 
. , x N } ,  where N is the size of the window. The binary . . .  , x i ,  

representation of an element x i  is as 
L 

xi = C a, , ,2L-J,  u t ~ j  E 10, I }  
j =  I 

Fig. 2 .  Two possible sorted data profiles of set S to demonstrate the con- 
cept of binary partition. The choosing of new partition boundary depends 
on the subset where the desired kth largest element stays. 

where L is the word length, ai, , is the MSB, and ai ,L is the LSB of 
xt. 

Now we collect j th bits of all elements to form a column vector 
a, = [ a , . ,  . . .  u ~ , , ] ~ .  Two additional column vectors m, = 

[ml, ,  . . . mN,,]‘and si = [sl,, . . .  should be defined cor- 
responding to a,. Mask vector m, specifies the candidate subset dur- 
ing the selection process. Setting vector s, defines a set of setting 
values. Both mi. , and s,, , E {0, 1 } . 

B. Algorithms 

Generally speaking, the binary partition algorithms generate an 
output value from MSB to LSB by inspecting the data in the can- 
didate set from MSB column a ,  to LSB column aL, sequentially. 
Counting the number of bit “ONE” or “ZERO” indicated by the 
mask vector in the j t h  bit-column can determine the j t h  output bit 
of result. From a common point of view, this kind of algorithms 
consist of three major parts. i) Scoring is to count the number of 
bit “ONE” or “ZERO” in the candidate subset of a,, and denote 
it as z,. ii) Firing is to compare the counting value z, with a thresh- 
old value k, to determine the current binary output. iii) Updating is 
to shrink the candidate subset and determine the new threshold value 
for the next inspection. The candidate set is reduced through the 
modification of mask vectors. Repeating these steps L times will 
get a complete output. 

1) Counting “ONE” scheme: The method reported in [191 is 
probably the first algorithm that selects a median from the radix-2 
representation of data. This algorithm wants to find the kth largest 
element in the window. Thus the algorithm counts bit “ONE” in 
each inspection. The following steps are repeated from MSB to 
LSB. 

i) The scoring value z, is the number of bits which are “ONE” 
in t h e j t h  bit position within the candidate subset. It can be cal- 
culated as the inner product of mask vector m, and column vector 
a, : 

z ,  = mla, .  (1) 
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ii) Fire the output bit by comparing z, with the rank value k, : 

This expression can be rewritten as 

where sgn ( x )  = 1 i f x  2 0, otherwise sgn (x) = 0. 

iteration are as follows: 
iii) Updating of the threshold value and mask vector for the next 

I f d  = 1, then k j +  = kJ and mj+ I = diag [m,af]. 

If$ = 0, then k, , ,  = kj - zj and 

mi + = diag [mJ (e - u ~ ) ~ ] .  

A column vector with all its N entries equal to “ONE” is e = 

[ 1 1 . . . 1IT and the diagonal elements of matrix D form a col- 
umn vector by diag [D]. The updating equations can be revised and 
merged into 

kj+l kj + (6 - 1)zj and (3) 

mi+ I = diag [mj((l - & ) e  - (-l)JaJ)T]. (4) 

The new rank value, k, + I ,  of the desired output may be decreased 
because of (3). 

2)  Counting “ZERO” scheme: This scheme has been reported 
in two places, [21] and [22], with different style of descriptions. 
This algorithm finds the kth smallest element in the window. So 
they counted bit “ZERO” instead of bit “ONE”.  The formulation 
is as follows: 

i) The scoring value is the number of bit “ZERO” in column 
vector aj. Thus zj is calculated as 

z j  = mf(e - all. ( 5 )  

This can be interpreted as the total number of nonzero elements in  
the mask vector minus the number of nonzero elements in the data 
vector which are flagged by the mask vector. 

ii) Firing is done by 

iii) Updating of threshold value and mask vector are derived in 
the same way as in the counting “ONE” scheme. Modification of 
rank value can be expressed as 

(7) 
The updating of mJ + I is the same as (4). 

3)  Counting both “ZERO ” and “ONE” scheme: The main idea 
of this algorithm 1261 is to keep the threshold value k constant, and 
calculate the scoring value until both values are the same at last. 
The algorithm is as follows: 

kJ+ I = ‘J - 4 zJ’ 

i) Scoring is as 

z, = z J - l  + m f ( A _ , e  - a,). (8) 

This expression states that if the previous firing value 4 I is 
“ONE,” then it accumulates the number of bit “ZERO” in the 
candidate subset for the present scoring process, otherwise it sub- 
tracts the number of bit “ONE” in the subset from the previous 
scoring value. 

ii) The firing is as simple as 

This algorithm also searches for the kth smallest element in the 
window. 

iii) The updating of the next mask vector m,+ I is the same as 

4) Mask-and-set scheme: The mask-and-set concept was pre- 
sented in 1261. It is different from the previous schemes in several 
aspects. The desired rank order is fixed at the design stage. No 
counting is performed. The function of updating threshold is re- 
placed by modifying setting vectors s,. Firing is done through a 
threshold gate [31]. A similar method has been proposed in 1251. 
The procedures are as follows. 

i) A composite vector dJ = [ d , .  , d2 .  , . . . d N ,  J ] T  is formed as 

(4). 

d, = diag [mJaT] + diag [(e - mJ)sf].  

This operation is equivalent to 

if = 1 

if mi,j = 0 
fori  = 1 to N. (9) 

ii) Firing is by 

J = Tk(d , , , ,  i = 1 . * * N) (10) 

where Tk stands for a threshold logic function which will be true if 
the number of bit “ONE” in the vector dJ exceeds rank order k. 

iii) Modification of the next mask vector mJ + is the same as in 
the previous three schemes and the next setting vector is updated 
as s, + I = d, . 

A special feature of this method is that threshold rank is pro- 
grammed and fixed in the threshold logic function. Although the 
candidate set is shrunk as usual, the scope of consideration remains 
to be the entire entries of vector d, . The advantage of this algorithm 
is the simplicity of threshold logic functions rather than arithmetic 
operations. This will benefit hardware implementations. 

IV. A GENERIC ARCHITECTURE FOR HARDWARE 
IMPLEMENTATION 

A .  The Generic Architecture f o r  Binary Partition Algorithms 

The binary partition algorithms presented in the previous section 
consisted of three major steps. They are also the building blocks 
for a generic architecture as shown in Fig. 3. A scoring unit cal- 
culates scoring output by inspecting input data with reference to 
the mask-in and control-in signals. A firing unit generates resulting 
bit by comparing the desired rank value with the scoring one. The 
new rank value is also obtained. An updating unit modifies the 
mask-out and control-out signals for the next stage depending on 
the current output result. 

For the scoring function in counting “ONE” scheme, the inner 
product of (1) can be easily accomplished by performing entry-wise 
logic AND function on vectors mj and ai followed by a bit-sum 
counting. The hardware requirements are N A N D  gates and a par- 
allel counter. Similar scoring function in (5) and (8) can be accom- 
plished in the same way. The only difference is that the input data 
must be inverted for counting “ZERO.” 

The firing block can be easily realized by a subtracter and the 
sign bit of result is the output bit 6. For updating block, simple 
multiplexing-type logic gates are enough. Table I shows the func- 
tional units used for the three major steps in different schemes. 
Note that the mask-and-set scheme uses the multiplexer in (9) for 
scoring and threshold logic gate for firing. The signals used in the 
generic architecture for different schemes are also listed in Table 
11. 
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rank-in 

N dj 

n Zj 
Scoring result 

I Updating b+’ 
mj+ I 

mask-out control-out rank-out 

Fig. 3. A bit-sliced generic architecture for binary partition algorithms. 

TABLE I 
FUNCTIONS USED I N  DIFFERENT BINARY PARTITION SCHEMES FOR THE 

GENERIC ARCHITECTURE WITH AREA-TIME COMPLEXITY INCLUDED 

Scheme Scoring Firing Updating 

Counting Logic gates and 

Counting Logic gates and 

Counting Logic gates and 

Mask +set Logic gates 

“1” counter O(Nn) 

“0” counter O(Nn) 

“0” & “1” counter O(Nn)  

O W )  

Subtracter 
0 (Nn) 

Subtracter 
O W )  

Subiadd 
O W )  

Threshold logic 
O W )  

Logic gates 

Logic gates 

Logic gates 
O W )  

Logic gates 
00“ 

O W )  

TABLE 11 
SIGNALS USED I N  THE GENERIC ARCHITECTURF FOR DIFFERENT BINARY PARTITION SCHEMES 

Mask Control Rank 
Scoring Resulting 

Scheme Data In out In out out In out Bit 

Counting 

Counting 

Counting 

ZJ k, k ,  + I f ,  

ZJ kJ kJ i I f, 

kJ k, + I f, 
f ,  

- - “1” 3 m] m/+ 1 

“0” a1 m1 mJ + I 

“0” & “1” a, m1 q +  1 4 -  I f; ZI 

Mask+set a1 m1 m,+ 1 SI SJ + I 4 

- - 

- - 

B. Implementation and Tradeoffs 

The implementation of a one-bit generic architecture involves a 
parallel counter, an adder, and some logic gates. The best area- 
time complexity of an n-bit adder is AT = O ( n  log n )  [29]. The 
optimal area-time complexity of an N-bit parallel counter is AT = 
O(N . n )  [30], where n = log2 N a n d  N is the window size. The 
hardware cost of masking and updating logic is O(N) with constant 
time delay. Thus the total area-time complexity for realizing 
counting schemes would be AT = O(N . n ) .  

The speed of scoring block can be improved to 0 ( 1 )  with O ( N )  
of gates if the mask-and-set scheme is used. However, the critical 
problem is how to realize the threshold logic function. This func- 
tion can be realized by combinational logic gates, but it costs a lot 
of gates when N is large. A lookup table is an alternative [25]. 
However, the ROM size increases exponentially with N. An inter- 
esting design of threshold gate in [26] can perform median selec- 
tion in constant time with linear area complexity. Thus in the best 
case, the mask-and-set scheme can be realized in A T  = O(N).  The 
area-time complexity is also included in Table I. 

The flexibility of using counter and adder is on the changeable 
rank value; arbitrary rank order can be realized in the same hard- 
ware. The penalty, however, is a longer cycle time. The advantage 
of threshold gate design is the constant cycle time. The drawback 

is that the rank value is fixed at the design stage and is not modi- 
fiable during run time. When we have to determine which structure 
or function to take, we are trading speed of performance with flex- 
ibility during application. 

C. Word-Parallel Bit-Pipeline VLSI Designs 

In order to have the highest throughput rate for real-time appli- 
cations, both pipeline and parallel processing techniques are needed 
in VLSI designs. Thus the word-parallel bit-serial generic archi- 
tecture should be cascaded into pipeline stages as shown in Fig. 4. 
Some delay elements and delay banks are assigned at both input 
and output sides for skewing data bits into their correct pipeline 
schedules [16], [17], [21], [23]. We call this a word-parallel bit- 
pipeline design. It receives the whole data set in a window simul- 
taneously and produces one result per clock cycle. The latency from 
dumping a window into the filter to receiving its output is L cycles. 

A large number of implementations for the median filter are based 
on the odd-even transposition sort [16]-[18]. The basic cell is a 
compare-and-swap unit for a single bit. Their final sorting network 
architecture is also in a word-parallel bit-pipeline style. Their hard- 
ware complexity is O(N2L) and latency is (N + L )  pipeline cycles. 
The advantage of the odd-even sorting network is its good regu- 
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- a2 * 
i 

b m ,  SI$ p l  

a1 Single Stage 
Binary Partition 

one-bit delays fi 
Single Stage 

Binary Partition 

aL 

larity for VLSI implementation. However, the binary partition ap- 
proach can preserve the computational efficiency while improving 
speed and latency. Simpler and faster implementation is possible. 

V.  APPLICATIONS 

The word-parallel bit-pipeline VLSI designs are very suitable for 
real-time image and signal processing applications. During the pro- 
cessing, all data in the working window are dumped into the filter 
in parallel. Though the corresponding output is generated after L 
cycles, the output sequence proceeds once every clock period. This 
is because the word-parallel bit-pipeline design can explore the 
maximum parallelism and meet the high throughput rate require- 
ment of video signals. 

In spite of the square window median filter, changeable window 
shape is also very desirable in many applications. This can be done 
through masking vector m, = [ m l , l  . . . m N , I ] T .  At the initial 
stage, the ith element in the current window may be marked by 
m,,, = 1 to indicate that it is a possible candidate. Hence we can 
change the length or shape of a filter window by selectively as- 
signing “ONE” to m,, in the beginning. The shape of window can 
be chosen as square, cross, x, or others 1181, [26]. 

The recursive median filter is one of the major variations of 
standard median. It can be easily implemented by the generic ar- 
chitecture working in the bit-serial manner. The current output re- 
sult is pulled back to the input register directly for the next selec- 
tion. Neither hardware overhead nor speed degradation is observed. 
However, this technique is not workable for bit-pipeline designs. 
One possible solution is to interleave L independent image se- 
quences into one input sequence, then the recursive operation is 
possible. The number of interleaved sequences depends on the 
number of pipeline stages or latency. 

The proposed generic structure can be also applied for separable 
median filters or multistage median filters (median of medians). On 
the other hand, this generic structure can support morphological 
processing as well. Since the dilation and erosion of a signal or 
image by the structuring element is equivalent to the maximum or 
minimum selection in the structuring window. Using threshold logic 
as the firing function would be more effective because the rank 
value is fixed at the first or last rank. Complex morphological im- 
age processing are combinations of dilation and erosion. Thus the 
cascaded multistage technique is also usable. 

- - 
Single Stage fL - - -  

-@ BinaryPartition 
d i -  

VI. CONCLUSION 

In this correspondence, we have unified some algorithms for 
ranking into a binary partition algorithmic description. This ap- 
proach help us to understand the relationships between these sim- 

ilar algorithms and compare their advantages and drawbacks in re- 
alization. A generic architecture is proposed to implement these 
algorithms and consider their design issues. A word-parallel bit- 
pipeline design is desired for the high performance implementa- 
tions. This architecture has explored the maximum parallelism of 
the algorithms into bit level. Binary partition algorithms have bet- 
ter area-time complexity than the sorting networks. The perfor- 
mance depends upon the realization of counter, adder, or threshold 
logic functions. The implementation cost may be similar, but a 
mask-and-set scheme may have faster speed and simpler hardware. 
The tradeoff is taken between the simplicity of hardware and flex- 
ibility of application. Such a binary partition approach for the im- 
plementation of rank order and median filters can be chosen to con- 
struct a customized VLSI building block in various digital image 
and signal applications. It can also be a component in the design 
library of a synthesis system for real-time video signal processing 
applications. 

The binary partition algorithm is a very good tool in the real- 
ization of selection problems. It is believed that this approach can 
be applied to many other similar algorithms such as morphological 
filtering or nonlinear digital filters. 
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Uniqueness of a Two-step Predictor Based Spectral 
Estimator that Generalizes the Maximum 

Entropy Concept 

Theodore I. Shim, S. Unnikrishna Pillai, and Won Cheol Lee 

Abstract-Given a finite set of autocorrelations, it is well known that 
maximization of the entropy functional subject to this data leads to a 
stable autoregressive (AR) model. Since maximization of the entropy 
functional is equivalent to maximization of the minimum mean square 
error associated with one-step predictors, the problem of obtaining ad- 
missible extensions that maximize the k-step minimum mean square 
prediction error subject to the given autocorrelations is meaningful, 
and it has been shown to result in stable ARMA extensions (see the 
work by Pillai et d.). The uniqueness of this true generalization of the 
maximum entropy extension is proved here through a constructive pro- 
cedure in the case of two-step predictors. 
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I. INTRODUCTION 

Given a finite set of autocorrelations ro, r l r  . . . , r,,, from a 
zero-mean wide-sense stationary discrete-time stochastic process, 
the solution to the problem of obtaining the entire class of spectral 
extensions that match the given autocorrelations subject to certain 
mild restrictions is well known [2]-[4]. Among the infinite possi- 
bilities that include both rational as well as nonrational extensions, 
the particular one that maximizes the entropy functional results in 
a stable AR(n) model that is uniquely specified by the Levinson 
polynomial associated with the given autocorrelations [5]. Since 
maximization of the entropy functional is equivalent to maximi- 
zation of the minimum mean square prediction error associated with 
one-step predictors that make use of the entire past data samples 
[6], the general problem of obtaining spectral extensions that max- 
imize the multistep minimum mean square prediction error is 
meaningful. In this context, it has been shown that [l] ,  given the 
autocorrelations ro, r , ,  . . . , r,, maximization of the k-step mini- 
mum mean square prediction error results in stable ARMA (n ,  k - 
1 )  extensions, and in this sense, this is a direct generalization of 
the maximum entropy solution. Further, details of this particular 
extension have been worked out in the case of two-step predictors 
(k = 2) by making use of the general formulation regarding the 
class of all extensions, and it was shown that at most two distinct 
minimum phase extensions exist that could maximize the two-step 
minimum mean square prediction error [ 11. 

In this correspondence, we proceed to show that, in fact, there 
is always one and only one extension that maximizes the two-step 
minimum mean square prediction error and the details of this unique 
minimum phase ARMA(n,l) extension are worked out here. 

11. UNIQUENESS OF AN ARMA(n, l )  EXTENSION 

Consider a discrete-time zero-mean wide-sense stationary sto- 
chastic process x(n7 ‘ )  with autocorrelation coefficients rk = 
E [ x ( n T ) x * ( ( n  + k ) T ) ]  = r?,., k = 0 --t CO and power spectral 
density 

that satisfies the integrability condition 

1 “  
2K --* 

ro = - 3 S ( 0 )  d0 

and the causality criterion [31, [41, 161 

It is well known that [6] such a power spectral density function can 
be factorized in terms of its unique Wiener factor B ( z )  such that 
S ( 0 )  = JB(efo)l2 a.e ,  where 

m 

B ( z )  = c b,zk, bo > 0 (3) 
h = O  

is analytic together with its inverse in Iz1 < 1 (minimum phase 
factor that is free of zeros in ( z I  < 1 )  and it satisfies the square 
summability condition lbkI2 < W .  Moreover, the constant 
term in the Wiener factor is related to the entropy of the process 
through the relation [3], [6] 
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