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There is a phase difference between s and p polarizations when a circularly polarized heterodyne light
beam is reflected from a birefringent crystal. It can be measured accurately with a common-path
heterodyne interferometric technique. We have derived an equation that describes the relationship
between the phase differences and ne, no, and �. Two groups of solutions for �ne, no� can be obtained
from this equation by the phase measurements performed at three incident angles under moderate
conditions. Each group consists of three pairs of solutions for �ne, no�. Finally, by justifying with
physical conditions, we obtained the correct solution for �ne, no�. Azimuth angle � of the birefringent
crystal optical axis can also be determined. And the feasibility of this method is demonstrated.
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1. Introduction

Birefringent crystals have been used to fabricate
polarization optical components for a long time.
Recently, some birefringent devices such as bire-
fringent laser cavity filters,1 poled-polymer electro-
optic devices,2 liquid-crystal spatial light
modulations,3 and magneto-optic recording media4

have been used for many applications. To enhance
their quality and performance, it is necessary for
one to determine the optical axis and to measure
the extraordinary index, ne, and the ordinary index,
no, accurately. Several methods have been pro-
posed to measure the �ne, no� of a birefringent crys-
tal. These measurement methods are generally
divided into two types: transmission5–7 and
reflection.8–13 In the transmission type the phase
variations of the light beam transmitted through a
birefringent crystal are measured, which necessi-
tates the need for accuracy in the thickness, flat-
ness, and parallelism of the two opposite sides of
the birefringent crystals. Hence, the measure-
ment processes become tedious. In addition, the
estimated data are only for the index difference �ne
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� no� and not for the individual data of ne and no.
Huang et al.7 obtained the data for �ne, no� with a
specially designed transmission-type measurement
method, but it is suitable only for a wedge-shaped
birefringent crystal and is displaced by a linear
translator with high resolution. Although the re-
flection type method, such as the ellipsometric tech-
nique, can be used to obtain the data �ne, no�, it is
related to the light intensity variations. Conse-
quently, it can be easily influenced by the stability
of the light source, the scattering light, the internal
reflection, etc., and its resolution decreases. More-
over, almost all the above methods cannot be used
to determine the optical axis of the birefringent
crystal.

We present a simple method for determining the
optical axis and �ne, no� of a birefringent crystal. The
method uses a common-path heterodyne interfero-
metric technique and Fresnel equations. When a
light beam from a circularly polarized heterodyne
light source14 is incident on a birefringent crystal, a
phase difference � occurs between the s- and the
p-polarization components. From Fresnel equations
it is known that � depends on ne, no; incident angle
�; azimuth angle � of the transmission axis of the
analyzer, which causes the necessary polarization
components to interfere; and azimuth angle � of
the optical axis. The phase difference can be mea-
sured accurately with a common-path heterodyne
interferometric technique under certain conditions.
First, let � � 0° and condition � � 0° or 90° is
identified by � � 0°. Next, � changes to a nonzero



angle, and three phase differences, �1, �2, and �3,
are obtained under three incident angles �1, �2, and
�3. Substituting the data of ��1, �1�, ��2, �2�, and
��3, �3� into the special equation derived from
Fresnel equations results in three equations. Any
two of the equations with � � 0° or 90° yield two
groups of solutions for �ne, no�. Each group has
three pairs of solutions for �ne, no�. After justifica-
tion, only one group of solutions is correct, with
average values for indices �ne, no� of the birefringent
crystal. Its corresponding � value is the azimuth
angle of the optical axis.

2. Principle

The schematic diagram of this method is shown in
Fig. 1. A linearly polarized laser light passes
through an electro-optic �EO� modulator and quarter-
wave plate. The EO modulator is driven by a function
generator. A sawtooth signal with angular fre-
quency 	 and the half-voltage amplitude V
�2 is ap-
plied to the EO modulator. The light beam is

incident at � on a birefringent crystal, of which the
optical axis is at � with the incidence plane, as shown
in Fig. 2. The light reflected from the air–crystal
interface passes through an analyzer and enters a
photodetector. If the amplitude of the light is Et,
then Dt measures the intensity It � �Et�

2. Here, It
acts as a test signal.

For convenience, the �z axis is chosen along the
propagation direction and the y axis is along the ver-
tical direction. Let the laser light be horizontally
linearly polarized, the fast axis of the EO modulator
and the transmission axis of Q be 45° and 0° with
respect to the x axis, respectively, then the Jones
vector of the light that is incident on the birefringent
crystal can be written as

Ei � Q�0°�EO�	t�E0 � � cos�	t
2 �

�sin�	t
2 ��

�
1
2 �1

i �exp�i
	t
2 � �

1
2 � 1

� i�exp��i
	t
2 � . (1)

From Eq. �1�, an angular frequency difference 	 can
be seen between the left and the right-circular polar-
izations. And a linearly polarized laser, an EO mod-
ulator driven by a function generator and a quarter-
wave plate form a circularly polarized heterodyne
light source. If the transmission axis of ANt is lo-
cated at � with respect to the x axis, we then have

Et � AN���SEi � AN����rpp rps

rsp rss
�Ei

� ��rpp cos � � rsp sin ��cos
	t
2

� �rps cos � � rss sin ��sin
	t
2 � �cos �

sin �� , (2)

where S is the Jones matrix for the birefringent crys-
tal, rpp and rss are the direct-reflection coefficients,
and rps and rsp are the cross-reflection coeffi-
cients.8,15,16 And they can be expressed as

rpp �
A1 A6 � A2 A5

A1 � A2
, (3a)

rps �
A1 A2� A4 � A3�

A1 � A2
, (3b)

rsp �
A6 � A5

A1 � A2
, (3c)

rss �
A1 A3 � A2 A4

A1 � A2
, (3d)

Fig. 2. Reflection at the surface of a birefringent crystal.

Fig. 1. Schematic structure for the measurement of phase differ-
ences owing to reflection at a birefringent crystal: EO, electro-
optic modulator; Q, quarter-wave plate; BC, birefringent
crystal; ANt, analyzer; Dt, photodetector; FG, function gener-
ator; PM, phasemeter.
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where

A1 �
C

�sin2 � � C cos ��tan �
, (4a)

A2 �
no tan ��B � no cos ��

Bno cos � � C2 , (4b)

A3 �
cos � � C
cos � � C

, (4c)

A4 �
no cos � � B
no cos � � B

, (4d)

A5 �
no

2 cos � � C
no

2 cos � � C
, (4e)

A6 �
Bno cos � � C2

Bno cos � � C2 , (4f)

B2 � no
2ne

2 � sin2 ��no
2 sin2 � � no

2 cos2 �� , (4g)

C2 � no
2 � sin2 �. (4h)

Hence, we have

It � �Er�2 � I0�1 � cos�	t � ��
, (5)

where

I0 �
�rpp cos � � rsp sin ��2 � �rps cos � � rss sin ��2

2
,

(6)

On the other hand, the electric signal generated by
the function generator is filtered and acts as the ref-
erence signal. Both the test signal and the reference
signal are sinusoidal signals, which are sent to a
phasemeter, where � can be measured accurately.

From Eqs. �3�–�5� and �7�, it can be seen that �
depends on ne, no, �, �, and �. In practical measure-
ment processes, � and � can be obtained from the
direct angle readouts of the division mark of the ro-
tatory stage. Consequently, only three factors, ne,
no, and �, should be solved. That is, we have

� � ��ne, no, ��. (8)

Theoretically, the data of �, which corresponds to
three different conditions, should be measured. If
we substitute the data of � into Eq. �8�, ne, no and �
could be obtained. But these equations are compli-
cated, and it is difficult to solve them directly. For
easier operations and estimations, � and � could be

chosen to simplify Eq. �7�. When we choose � � 0°, Eq.
�7� can be rewritten as

� � tan�1� 2rpprps

rpp
2 � rps

2� . (9)

It is obvious from Eqs. �3� and �4� that either rps or rsp
equals zero when � equals either 0° or 90°, respec-
tively. Hence, when � � 0°, the optical axis of the
birefringent crystal can be rotated until � � 0° is
satisfied. Then the optical axis is located at either 0°
or 90° with respect to the incidence plane.

Next, when ANt is rotated so that � is nonzero, Eq.
�7� can be rewritten as

� � tan�1� sin 2� rpprss

rpp
2 cos2 � � rss

2 sin2 �� . (10)

We now consider two particular conditions:
�i� If � � 0°, then

rpp �
no ne cos � � �no

2 � sin2 ��1�2

no ne cos � � �no
2 � sin2 ��1�2 , (11a)

rss �
cos � � �no

2 � sin2 ��1�2

cos � � �no
2 � sin2 ��1�2 . (11b)

�ii� If � � 90°, then

rpp �
no

2 cos � � �no
2 � sin2 ��1�2

no
2 cos � � �no

2 � sin2 ��1�2 , (12a)

rss �
cos � � �ne

2 � sin2 ��1�2

cos � � �ne
2 � sin2 ��1�2 . (12b)

Since three unknowns �ne, no, and �� are to be solved,
we need three equations, which we obtained by mea-
suring � at three incident angles: �1, �2, and �3.
We obtained three corresponding phase differences,
�1, �2, and �3, that can be represented as

�1 � �1�ne, no, ��, (13a)

�2 � �2�ne, no, ��, (13b)

�3 � �3�ne, no, ��. (13c)

Any two of Eqs. �13a�–�13c� can be combined to form
a set of simultaneous equations, and we obtained
three sets. Any set of the simultaneous equations
can be solved under either condition �i� or �ii�, result-
ing in two corresponding pairs of solutions for �ne, no�.
Therefore, there are six pairs of solutions for �ne, no�.
Among them, three pairs are derived under condition
�i� and form a group of solutions. The other three
are derived under condition �ii� and form another-

� � tan�1 � 2�rpp cos � � rsp sin ���rps cos � � rss sin ��

�rpp cos � � rsp sin ��2 � �rps cos � � rss sin ��2� . (7)
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group of solutions. Then the justification of correct
solutions can be achieved by the following approaches:

�1� Rationale of the solution. In general, both ne
and no are within the range of 1 and 5. If any esti-
mated data of ne and no is not within this range, it is
obvious that the estimated data could be incorrect.

�2� Comparison of ne and no. Either a positive or a
negative crystal is tested, and all three pairs of solu-
tions of either group should meet with only ne � no or
ne � no. If not, that group is incorrect.

Hence, only one group of solutions is correct, and the
corresponding data of � are the azimuth angle of its
optical axis.

3. Experiments and Results

To demonstrate the feasibility of this method, we
used a 632.8-nm wavelength He–Ne laser to measure
the refractive indices of calcite and quartz. The fre-
quency of the sawtooth signal that is applied to the
EO modulator is 800 Hz. We used a high-resolution
rotation stage �PS-�-90� with an angular resolution of
0.005° �Japan Chuo Precision Industrial Company,
Ltd.� to mount and rotate the test material and a
high-resolution phasemeter with an angular resolu-
tion of 0.01° to measure the phase difference. In
addition, we used a personal computer to record and
analyze the data. The data of the three incident an-
gles and their corresponding phase differences are
listed in Table 1. These simultaneous equations are
solved with the two dimensional Newton method17

and the Mathematica software. And two groups of
solutions are calculated and summarized in Table 2.
The rightmost column lists the results according to
the above approaches; the O and x, respectively,
represent correct and incorrect solutions. The mea-
sured data of �ne, no� and their averages for calcite
and quartz are listed in the first two rows in Tables 3
and 4, respectively. And � � 90° where we tested
these two crystals.

Table 1. Experimental Conditions and Measurement Results

Material

Incident
Angles �deg� Phase Differences �deg�

�1 �2 �3 �1 �2 �3

Calcite 55 60 65 24.52 �6.85 �25.85
Quartz 55 60 65 17.46 �24.40 �62.56

Table 2. Calculated Solutions and Results

Material �

�ne, no�

Justification��1, �2� ��2, �3� ��3, �1�

Calcite 0° �1.6695, 1.5453� �0.5041, 1.0007� �580.71, �22.545� x
90° �1.4333, 1.6233� �1.4267, 1.6144� �1.4333, 1.6233� o

Quartz 0° �1.5522, 1.5627� �1.5128, 1.4638� �1.5293, 1.5132� x
90° �1.5552, 1.5449� �1.5560, 1.5243� �1.5647, 1.5195� o

Table 3. Estimated Results and Their Average for Calcitea

Factors

Phase Differences

Average��1, �2� ��2, �3� ��3, �1�

ne 1.4333 1.4267 1.4333 1.4311
no 1.6233 1.6144 1.6233 1.6203
��ne� 9.977 � 10�4 1.196 � 10�3 6.178 � 10�4 9.371 � 10�4

��no� 1.947 � 10�4 3.69 � 10�4 2.248 � 10�4 2.628 � 10�4

���� 0.0043° 0.0076° 0.0043° 0.0162°

aValues from Ref. 18: �ne, no� are �1.4852, 1.6559� at 627.8 nm.

Table 4. Estimated Results and Their Average for Quartza

Factors

Phase Differences

Average��1, �2� ��2, �3� ��3, �1�

ne 1.5552 1.5560 1.5647 1.5586
no 1.5449 1.5243 1.5195 1.5295
��ne� 1.626 � 10�3 1.9763 � 10�3 1.046 � 10�3 1.549 � 10�3

��no� 2.14 � 10�4 5.90 � 10�4 2.18 � 10�4 3.406 � 10�4

���� 0.1454° 0.0243° 0.0373° 0.069°

aValues from Ref. 19: �ne, no� are �1.5518, 1.5428� at 627.8 nm.
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4. Discussions

From Eq �7� we get

���� �
1

�d��d��
����, (14)

���1� �
��1

�ne
��ne� �

��1

�no
��no�, (15)

���2� �
��2

�ne
��ne� �

��2

�no
��no�. (16)

Equations �15� and �16� can be rewritten as

��ne� �

	��2

�no
	 ���1� � 	��1

�no
	 ���2�

	��1

�ne

��2

�no
�

��2

�ne

��1

�no
	 , (17)

��no� �

	��1

�ne
	 ���1� � 	��2

�ne
	 ���2�

	��1

�ne

��2

�no
�

��2

�ne

��1

�no
	 , (18)

where ��, �ne, and �no are the errors in �, ne, and no,
and ��i and ��j are the errors in the phase differ-
ences at incident angles �i and �j. Either i or j is an
integer between 1 and 3, and i � j. If we take into
consideration the angular resolution of the phaseme-
ter, the second-harmonic error, and the polarization
mixing error, �� � ��i � ��j 
 0.03° can be esti-
mated with our experiments.20 Substituting these
data and the experimental conditions into Eqs �14�,
�17�, and �18�, we were able to calculate the corre-
sponding data of ��, �ne, and �no for three sets of
simultaneous equations. We list their averages in
the last three rows in Tables 3 and 4.

5. Conclusion

A novel method for determining the optical axis and
�ne, no� of a birefringent crystal has been presented
with a common-path heterodyne interferometric
technique and Fresnel equations. Our method does
not have the drawbacks of conventional methods. It
does, however, have the advantages of a common-
path interferometer and a heterodyne interferome-
ter, which include simple optical setup, high stability,
easier operation, and better resolution.

This study was supported in part by the National
Science Council, Taiwan, under contract NSC 89-
2112-M-009-022.
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