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Abstract. Two-dimensional (2D) optical field distribution and the far-field patterns are analyzed for

semiconductor lasers with small vertical beam divergence. The discrete spectral index method is used for

the analysis and compared with other methods such as the effective index method. The discrete spectral

index method is found to be much better in terms of accuracy and computation efficiency for the laser

structures studied. Two laser structures with experimental counterparts are studied. The best beam aspect

ratio (<1.5) is achieved using the conventional ridge waveguide process. The calculated results compare

very favorably with the experimental results. Simulations also reveal the guidelines for design of symmetric

optical beam.
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1. Introduction

Semiconductor lasers with small vertical beam divergence have drawn much
interest in recent years (Temmyo and Sugo 1995; Ziari et al. 1995; Lin et al.
1996). The key to the design of such lasers is to have a wide near field
distribution in the cladding without much affecting the field confinement in
the quantum well (QW) active region (Yen and Lee 1996). With lower index
antiguiding layers inserted between the cladding layers and the graded-index
(GRIN) layers, we can reduce the vertical beam divergence down to 15� and
below with reasonable threshold current (Lin et al. 1996). The advantages of
this type of lasers are higher coupling efficiency to fibers and relaxed package
alignment tolerance (Ziari et al. 1995).
Previous designs on lasers with small vertical beam divergence are usually

based on one-dimensional (1D) simulations along the layer growth direction.
But because of the mode profiles and the far field patterns are nearly sym-
metrical, 1D simulation is not enough to adequately describe the mode
characteristics.

Optical and Quantum Electronics 34: 661–675, 2002.

� 2002 Kluwer Academic Publishers. Printed in the Netherlands. 661



In this paper, we investigate the 2D optical field distribution in narrow
beam stripe geometry lasers. Only fundamental TE mode is considered
throughout this simulation. Discrete spectral index (DSI) method (Berry et al.
1995) rather than conventional effective index method (EIM) or purely nu-
merical finite difference method (FDM) was used in the 2D simulation. In the
following section, we first discuss why EIM does not apply for lasers with
small vertical beam divergence and then the basics for DSI are reviewed. The
analytical expression for the far-field distribution is also derived in this sec-
tion. The boundary condition of finite cladding thickness is adopted in the
simulation. Then, the experimental and simulation results are given and
compared in Section 3. Simulation is also conducted for design of symmetric
beam profile. Finally, we draw a conclusion in Section 4.

2. Theoretical background

2.1. SIMULATION METHOD

For lasers with ridge waveguide structures, a quasi 2D simulation based on
EIM is usually used, for which the field solutions are assumed to be separable
in the transverse and lateral directions. Because of the discontinuities intro-
duced at the rib edges, the electric field profile is discontinuous and this leads
to a structure dependent accuracy problem. The EIM becomes inaccurate if
the rib height is large compared with the guiding layer thickness, or if the rib
height is comparable to the rib width. This is because the approximation used
in this method, namely that the waveguide can be considered as three distinct
regions, breaks down when the field values on each side of the rib are very
different. Although the EIM method, based on 1D analysis, gives approxi-
mately the correct size for the guided modes, it fails completely to describe
the shape of the mode.
The purely numerical techniques, such as finite difference (FD) and finite

element (FE) methods, can correctly model general waveguide structures. But
they are computation-intensive and are not necessarily the practical tools for
solving a particular problem. For the investigated laser structure, GRIN QW
laser with small vertical beam divergence, since the layer structure is com-
plicated and the mode index is very close to the refractive index of the
waveguide cladding, the mesh size has to be sufficiently small for accurate
calculation. The requirement of large computational resources will render
these purely numerical techniques impractical.
The semi-analytic DSI method, developed for semiconductor rib structure,

has the advantages of extremely short computing-time and high accuracy.
We found that the DSI method is extremely useful in the 2D analysis of lasers
with small beam divergence.
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2.2. THE DISCRETE SPECTRAL INDEX METHOD

The spectral index method is based on a simple axiom that if one knows the
eigenvalue equation for the propagation constant, b, one can reconstruct the
field profile, Eðx; yÞ. The spectral index method proceeds by (i) finding a
simple solution to the wave equation inside the rib, (ii) finding a Fourier
series or Fourier transform of the solution in the layered region below the rib,
and (iii) using a variational boundary condition to join the two together
(Robson and Kendall 1990). It is the latter boundary condition which con-
straints the value of b, and so leads to the eigenvalue equation.
The 2D scalar wave equation is expressed as

o2E
ox2

þ o2E
oy2

þ ðk2j ðx; yÞ � b2ÞE ¼ 0; ð1Þ

where Eðx; y; zÞ ¼ Eðx; yÞ expð�jbzÞ, with Eðx; yÞ the electric field profile, nj
the refractive index of the jth layer, k the free-space wavelength, b the
propagation constant, k0 ¼ 2p=k and kj ¼ 2pnj=k.
In order to find the solution of simple analytic form to the wave equation

inside the rib, we should first redefine the air–semiconductor interface (refer
to Fig. 1) according to the method of effective widths (MoEW) (Adams
1981). The MoEW compensates for the slight penetration of the field into air
such that the field is set to zero along the repositioned air–semiconductor
interface, i.e.,

Fig. 1. The coordinate system used for discrete spectral index method. The y origin is in the plane of the
base of the effective rib, rather than the physical rib.
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EIð�W 0; yÞ ¼ 0; EIðx;þHÞ ¼ 0: ð2Þ

The additional thickness or the decay lengths Dn and Dt for TE mode are
defined as

Dn ¼
n21
n22

1

k0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2e � n21

q ; Dt ¼
1

k0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2e � n21

q ð3Þ

with ne 	 b=k0. The solution for symmetric modes, matching the above
boundary conditions, can therefore be written in the form

EIðx; yÞ ¼
X1
m¼1

cosðSmxÞ GmðyÞ; Sm ¼ ð2m� 1Þ p
2W 0 ð4Þ

for jxj � W 0; 0 � y � H , where

GmðyÞ ¼ �Am
sinðcmðy � HÞÞ
sinðcmHÞ ; c2m ¼ ðk2 � S2m � b2Þ ð5Þ

and b is the propagation constant.
For the layered region below the rib ðy < 0Þ, the solution for symmetric

modes, vanishing at x ¼ �L, can be written in the form of the Fourier series

EIIðx; yÞ ¼
X1
q¼1

cosðSqxÞGqðyÞ; Sq ¼ ð2q� 1Þ p
2L

ð6Þ

for jxj � L; y � 0. Substituting Equation (6) into the wave equation, we
obtain the 1D Fourier-transformed wave equation for a particular spectral
component q in the jth layer below the rib, i.e.,

o2Gq

oy2
� c2j ðqÞGq ¼ 0 with c2j ðqÞ ¼ �ðk2j � S2q � b2Þ: ð7Þ

Then the solution of the slab-like Fourier-transformed wave equation obeys
the following relationship:

GqðdjÞ
G0

qðdjÞ

� �
¼

coshðcjdjÞ 1
cj
sinhðcjdjÞ

cj sinhðcjdjÞ coshðcjdjÞ

" #
Gqð0jÞ
G0

qð0jÞ

� �
	 Mj

Gqð0jÞ
G0

qð0jÞ

� �
: ð8Þ

Here, 0j and dj stand for the start and the end position (local coordinate) of
the jth layer respectively. The multiple layers below the rib are concatenated
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by the boundary conditions for quasi-TE modes and are expressed through
the transfer matrix, i.e.,

GqðdNLÞ
G0

qðdNLÞ

� �
¼ MNL 
 
 
Mj 
 
 
M2

Gqð02Þ
G0

qð02Þ

� �
	 M

Gqð02Þ
G0

qð02Þ

� �
: ð9Þ

The solution below the rib ðy < 0Þ is linked to the solution in the rib
ðy > 0Þ by the continuity of electric field, and also by the continuity of stored
power at the rib base ðy ¼ 0Þ. The field continuity gives

Gqð0Þ ¼
1

L

X1
m¼1

Gmð0Þ
ð�1Þm�12Sm cosðSqW 0Þ

S2m � S2q
ð10Þ

and the power continuity gives

L
X1
q¼1

G2
q
ð0ÞCIIðqÞ ¼ W 0

X1
m¼1

G2mð0ÞCIðmÞ; ð11Þ

where CIðmÞ and CIIðqÞ are the transfer functions at the rib base ðy ¼ 0Þ for
the region in the rib and below the rib, respectively. The transfer function
CIðmÞ in the rib is defined by,

CIðmÞ 	
G0

mð0Þ
Gmð0Þ

¼ �cm cotðcmHÞ; ð12Þ

while the transfer function CIIðqÞ below the rib is defined by,

CIIðqÞ 	
G0

qð0Þ
Gqð0Þ

¼
G0

qðdNLÞ
GqðdNLÞ

¼ M21 þM22C2ðqÞ
M11 þM12C2ðqÞ

; ð13Þ

where

C2ðqÞ 	
G0

qð02Þ
Gqð02Þ

¼
G0

qðd1Þ
Gqðd1Þ

¼ c1ðqÞ: ð14Þ

Here, y ¼ 0 stands for the plane of rib base (global coordinate), and M is
the transfer matrix defined in Equation (9). Equation (14) comes from the
boundary condition that only the outward-going wave exists in the first
layer. Combining Equations (10) and (11) with the transfer functions in-
troduced above gives the transcendental equation for b in a closed form,
which is
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CIðmÞGmð0Þ ¼
1

W 0L

X1
n¼1

Gnð0Þ
X1
q¼1

ð�1Þm�12Sm cosðSqW 0Þ
S2
m
� S2q

� ð�1Þn�12Sn cosðSqW 0Þ
S2

n
� S2q

CIIðqÞ: ð15Þ

2.3. FAR-FIELD PROFILE

If we neglect the longitudinal field component of the mode, the radiation field
amplitude at large distance is given by (Clarke 1983),

eðSx; SyÞ ¼ Wðhx; hyÞ
ZZ

X

dx dy Eðx; yÞ exp jðSxxþ SyyÞ
	 


; ð16Þ

where Sx ¼ k0 sin h cos/ 	 k0 sin hx, Sy ¼ k0 sin h sin/ 	 k0 sin hy andWðhx; hyÞ
is the obliquity factor, and where h is the polar angle to the z axis, / is
the corresponding azimuthal angle, and hx and hy are the component h
resolved along x and y. Here, the obliquity factor is assumed to be equal to
cosðhÞ for both TE and TM modes in all our numerical calculations (Clarke
1983).
The 2D integral of FFP can be reduced to two 1D integrals due to its

inherent nature of spectral analysis (Fourier transform), and therefore can be
readily evaluated analytically for the multilayer structures. Using the fields
defined in Equations (4) and (6), an analytical form for the radiated field
amplitude for DSI method can be derived.

2.4. NUMERICAL IMPLEMENTATION

The eigenvalue equation (15) is analytic in mathematical derivation but by no
means practical in numerical implementation. In practice, only finite terms of
summation are used for the expansion of the field. Let Nm be the number of
terms expanding the field in the rib, and Nq be the number of terms for the
Fourier series expanding the field below the rib. The boundary length 2L is
set to be Nw times larger than the rib width 2W . In choosing a suitable value
for L, the bound modes calculated should remain unchanged to any desired
accuracy. The set of parameters for numerical implementation is therefore
defined by ðNm;Nq;NwÞ.
Equation (15) is actually a set of Nm linear equations with variables Gmð0Þ.

To determine the propagation constant, we require the determinant of this
Nm � Nm matrix to be zero. The Muller’s method (Barrodale and Wilson
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1978) is used to locate the zeros of the function. Take a look of W 0 in
Equation (15), since W 0 is itself function of b, as could be seen from Equa-
tions (2) and (3), it is equivalent to find the roots of the transcendental
equation and therefore is free from the problem of consistency.

2.5. FINITE CLADDING LAYERS

For conventional tightly confined, large vertical beam divergence or low
threshold lasers, the thickness of the cladding layer is usually chosen so that
the optical field decay to a negligible amount. For such lasers, the thickness
of the cladding layer can be treated as infinite and the mode can be analyzed
by a simple 1D method. For small vertical beam divergence lasers, since the
transverse mode is widely spread into the cladding layer, the infinitely thick
cladding approximation can not be used. Besides, for lasers with narrow
stripe width, interaction between the transverse and lateral modes would
render the consideration of finite cladding thickness very important. Since the
optical field decay to zero at finite, instead of infinite, cladding thickness, we

Table 1. The layer structures and the refractive indices of lasers A and B
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modeled it by putting two fictitious dielectric layers on both sides of the
waveguide in the simulation.

3. Results

The DSI method is applied to our newly designed small vertical beam di-
vergence lasers. The layer parameters of the two structures investigated, refer
to Laser A and Laser B, are listed in Table 1. Laser A has a 100 nm
Al0:8Ga0:2As antiguiding layer on each side of the active region. The optical
mode can easily extend beyond these layers into the AlGaAs cladding layers
with a lower Al content. But because of these narrow but higher Al content
antiguiding layers, the confinement factor for the lasing mode can remain to
be high even when the mode is widely spread. In this way small far-field beam
divergence can be achieved without sacrificing the threshold current (Yen and
Lee 1996). Laser B is similar to Laser A except that the antiguiding layers are
replaced by two thin AlAs layers. The thickness of the AlAs layers and the
spacing between them are carefully chosen so that the effect of these layers on
the mode property is similar to the Al0:8Ga0:2As antiguiding layers in Laser

Fig. 2. The calculated (DSI and EIM) vertical far-field angle and lateral far-field angle versus stripe width

with dispersion of cladding remaining ðLhÞ for Laser A.
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A. The design wavelength is 980 nm. Finite cladding thickness of 3 lm is used
in the simulation and is modeled by putting two fictitious dielectric layers
beside the cladding layers. The indices of refraction for AlxGa1�xAs are listed
in Table 1 (Afromowitz 1974). The set of parameters for numerical simula-
tion is ðNm;Nq;NwÞ ¼ ð5; 64; 8Þ:
The calculated results are shown in Figs. 2 and 3, where the vertical far-

field angle h?, and the lateral far-field angle hk, are plotted against the stripe
width. Both DSI and EIM results are shown for comparison. These sets of
curves in the figures correspond to different etching depth for the ridge
waveguide. Lh is the thickness of the remaining cladding (measured from the
etched surface to the top of the antiguiding layer) outside the ridge. Both
laser structures are capable of providing h? smaller than 15�. From the DSI
results, we can see that the far-field angle depends on both the stripe width
and Lh. h? decreases slightly with the stripe width and also becomes smaller
when the etched depth is deeper (smaller Lh). However, hk, first increases and
then decreases with the stripe width. It is larger as Lh becomes smaller. For
best aspect ratio h?=hk, the stripe width should be kept around 3:5–5 lm.
When Lh ¼ 50 nm, the aspect ratio can be as smaller as 1.27. Although very
small Lh (or large etched depth) can result in a very small h?=hk aspect ratio,
the proximity of the etched surface to the laser active region will probably

Fig. 3. The same given in Fig. 2 for Laser B.
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Fig. 4. The near-field contour of Laser A. Contour levels are at the 10% intervels of the maximum field

amplitude. The central solid line defines the InGaAs QW, while the dashed lines besides define the

antiguiding layers.

Fig. 5. The near-field contour of Laser B. The conditions and indicators are as given in Fig. 4.
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degrade the laser performance. So in the following discussion, we will limit Lh
in a comfortable range above 150 nm. Take a look at the EIM results, h? is

Fig. 7. The far-field contour of Laser B at 10% intervals of maximum field intensity.

Fig. 6. The far-field contour of Laser A at 10% intervals of maximum field intensity.
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independent of W while hk shows little dependency at smaller stripe width.
The inherent 1D nature of EIM causes an underestimate of beam aspect
ratio, and the situation is severe especially for narrow stripe width with large
cladding remaining.
For subsequent figures and discussion, we choose ðW ;LhÞ ¼ ð3:0 lm,

3000 ÅA) for Laser A, and ðW ;LhÞ ¼ ð5:0 lm, 1500 ÅA) for Laser B. Figs. 4 and
5 show the near-field contour plot for Lasers A and B, while the far-field
contour plot for Lasers A and B are shown in Figs. 6 and 7, respectively. The
cross-sectional near-field distribution at peak amplitude and the far-field
intensity radiation pattern along the major axes are shown in Figs. 8 and 9.
For Laser A, the far-field angle, defined at half-maximum intensity, is 6:9�

laterally and 14:3� vertically, with an aspect ratio of 2.07. While for Laser B,
the far-field angle is 9:0� laterally and 13:7� vertically, with an aspect ratio of
1.52. Although the near-field distribution is quite different for vertical and
lateral modes, the widely spread transverse mode does reduce the vertical far-
field distribution.
The experimental counterparts for Lasers A and B are LM2139 and

LM2925, respectively. They have the same layer structure as shown in Table
1. For LM2139, the stripe width is around 3 lm, and the external remaining

Fig. 8. Cross-section near-field and far-field pattern of Laser A. The solid line is for lateral direction, and

the dashed line is for vertical direction.
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Fig. 9. The same as in Fig. 8. of Laser B.

Fig. 10. The measured far-field patterns for the laser sample LM2139. The vertical far-field angle is 13:5�

and the lateral far-field angle is 7�.
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cladding thickness is 3000 ÅA. For LM2925, the stripe width is estimated to be
5 lm and the external cladding thickness is 1500 ÅA.
The far-field pattern for LM2139 and LM2925 are shown in Figs. 10 and

11, respectively. For LM2139, the far-field angle is 7� laterally and 13:5�

vertically, with an aspect ratio of 1.93. While for LM2925, the far-field angle
is 10:5� laterally and 14:5� vertically, with an aspect ratio of 1.38. These
experimental results agree very well with the simulation results presented
above. So the simulation technique developed here provides us a very pow-
erful tool for designing narrow beam stripe geometry lasers. We should
mention that based on our simulation the far-field aspect ratio could be
further reduced if the thickness of the cladding layers is further increased. If
the cladding thickness is increased from 3 to 6 lm, an aspect ratio of
1:16ðh?=hk ¼ 9:8�=8:5�Þ can be achieved.

4. Conclusion

We have analyzed the 2D optical field distribution for lasers with small
vertical beam divergence. Discrete spectral index method was used for the 2D
simulation. While other simulation methods such as effective index method
and finite difference method either fail to give accurate results or are im-
practical in real calculation, the discrete spectral index method provides an

Fig. 11. The measured far-field patterns for the laser sample LM2925. The vertical far-field angle is 14:5�

and the lateral far-field angle is 10:5�.
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efficient and accurate way to simulate the mode characteristics of the lasers
with small beam divergence. Very good agreement was obtained between the
calculated results and the experimental results. Simulation also indicates that
for this type of lasers with extended cladding thickness, deeply etched ridge
and optimum stripe width, near symmetric beam for optical coupling can be
obtained.
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