
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 18, 541-561 (2001)

541

An Efficient and Stable Ray Tracing Algorithm
for Parametric Surfaces

SHYUE-WU WANG*, ZEN-CHUNG SHIH*

AND RUEI-CHUAN CHANG*+
*Department of Computer and Information Science

National Chiao Tung University
Hsinchu, 300 Taiwan

+Institute of Information Science
Academia Sinica

Taipei, 115 Taiwan

In this paper, we propose an efficient and stable algorithm for finding the

ray-surface intersections. Newton’s method and Bézier clipping are adapted to form
the core of our algorithm. Ray coherence is used to find starting points for Newton itera-
tion. We introduce an obstruction detection technique to verify whether an intersection
point found by using Newton’s method is the closest one. When Newton’s method fails
to achieve convergence, we use Bézier clipping as the substitution to find the intersec-
tion points. This combination achieves significant improvement in tracing primary rays.
A similar approach also successfully improves the performance in tracing secondary
rays.

Keywords: ray tracing, Newton’s method, Bézier clipping, parametric surfaces, ray co-
herence, Bézier surface

1. INTRODUCTION

Ray tracing is one of the most important techniques for realistic image generation. It
is capable of producing very impressive images for highly specular scenes. The kernel
of the ray tracing algorithm is an intersection finding routine for computing the
ray-surface intersection points. Whitted [1] estimated that a ray tracing algorithm will
spend up to 95% of its computation time on intersection tests for scenes of moderate
complexity. It takes plenty of time during the whole process, efficient intersection finding
is one of the greatest challenges in ray tracing.

Newton’s method is a popular numerical method because of its efficiency and
convenience in implementation. The critical task when using Newton’s method is finding
a good initial point. Toth [2] proposed an elegant theoretical results to locate the initial
points. Lischinski and Gonczarowski [3] also proposed an improved technique based on
Toth’s results [2]. Other researchers [4-10] subdivided surfaces into flat patches and lo-
cated the initial points from the intersections of rays and tighter bounding volumes that
enclosed the patches. However, the primary shortcoming of these methods is that they do
not use the ray coherence property finding the ray-surface intersection points. Taking the
intersection point of a previous adjacent ray as the initial point, Joy and Bhetanabhotla

Received December 6, 1999; revised May 22, 2000; accepted November 16, 2000.
Communicated by Tomoyuki Nishita.

SHYUE-WU WANG, ZEN-CHUNG SHIH AND RUEI-CHUAN CHANG

542

[11] concluded that the computation cost can be reduced by taking the ray coherence
property into consideration. Unfortunately, native utilization of ray coherence may lead
to an incorrect closest intersection point [3, 11]. We call this problem as the incorrect
solution problem. A very interesting but difficult phenomenon induced from this issue is
that how can we verify whether an intersection point is the closest one or not without
checking every single one of the ray-surface intersection points.

The basic idea of subdivision methods is based on the prune-and-search technique,
surface subdivision, and convex hull property. These methods [1, 12, 13] are stable but
slow in calculating intersections. Bézier clipping is a well-known subdivision method
which was proposed by Nishita et al. [13] and has been applied in many topics [14, 15].
The novel achievement of this method is that the subdivision process can be performed
in a 2D space instead of a 3D space. However, the main drawback of subdivision meth-
ods is that ray coherence property cannot be used to assist calculation of ray-surface in-
tersection points. Campagna et al. [16] recently pointed out that the use of Bézier clip-
ping might lead to incorrect intersection points, so they have proposed a modification
scheme to solve this problem.

Kajiya [17] proposed an algebraic algorithm that reduces the ray-surface intersec-
tion problem to that of finding the exact roots of a high-degree polynomial. Manocha and
Demmel [18, 19] transformed the problem of finding ray-surface intersections into the
problem of finding the eigenvalues of high-order matrices. Both of these methods suffer
from high computation cost in dealing with high order matrices. The computation cost of
finding eigenvalues for such a matrix is quite high.

Since the performance of ray tracing parametric surfaces is dominated by the way of
calculating the ray-surface intersections, various methods have been proposed to improve
performance. The first one involves changing the computation base. Transforming the
computation base from a 3D space into a 2D space can effectively reduce the computa-
tion cost to a certain degree. As for Newton’s method, the number of arithmetic opera-
tions can be reduced by 33%. As pointed out by Nishita et al. [13], the number of arith-
metic operations needed to subdivide a non-rational patch is reduced by 33% and that
needed for a rational patch is reduced by 25%. The other consideration is that the method
use to find ray-surface intersections should be as simple as possible. Numerical methods,
especially Newton’s method, could be considered as the simplest ones for finding inter-
sections. However, two problems remain to be solved.

The first one is selection of suitable initial points. Ray coherence is often an effec-
tive method, but it leads to the incorrect solution problem. The second one is that New-
ton’s method is somehow unstable on finding the intersection point. In our practical ex-
periments, it unveils that Newton’s method fails to converge even if the initial point that
we take is quite near to the intersection point. That is, we may miss some intersection
points [7]. Fortunately, subdivision methods, especially Bézier clipping, can solve this
problem.

Based on the above considerations, we propose an efficient algorithm based on
combining Bézier clipping and Newton’s method. To verify whether an intersection point
is the closest one, we propose an obstruction detection technique. A regular grid with
uniform space subdivision [20] is constructed for each surface. The regular grid is an
axis-aligned parallelepiped, which encloses the surface and contains all of the patches
obtained by subdividing the surface. We construct the oriented-slab boxes [6] for each

EFFICIENT AND STABLE RAY TRACING ALGORITHM

543

patch. Once an intersection point using Newton’s method has been found, a ray is traced
from the intersection point toward the traced ray’s origin through the tested surface’s
regular grid. According to the intersections between the ray and the oriented-slab boxes
of the intersected patches, we can either verify whether an intersection point is the closest
one or we can use Bézier clipping to find the true closest intersection point.

An overview of the proposed algorithm is as follows. For a surface that will be
tested along a scan line, Bézier clipping is used to locate the first ray (along the scan line)
that intersects the surface and to find the closest intersection point between them. Then,
Newton’s method with ray-to-ray coherence is used to find the other intersection points
between the surface and the remaining rays along the scan line. That is, we take the in-
tersection point found by previous ray as the initial point. After an intersection point is
found in this way, we use the obstruction detection technique to verify whether this point
is the closest one or not. When Newton’s method fails to converge, Bézier clipping is
applied to find the intersection points instead.

In addition, the regular grid can also be used to improve efficiency in tracing sec-
ondary (reflected, refracted and shadow) rays. Since the origin of a secondary ray lies on
a surface, the computations for finding the intersections between them should be per-
formed in order to detect self-shadowing or self-reflection. However, if the secondary ray
does not intersect the surface except at the origin of the ray, it is not necessary to perform
this computation. In this paper, we present a method based on the regular grids to avoid
this intersection computation. The idea is as follows. When tracing a secondary ray, we
first trace this ray through the regular grid. By examining the intersection conditions be-
tween the secondary ray and the intersected patches, we can verify whether or not the
secondary ray along the tracing direction will intersect the surface.

Experimental results show that the performance of our algorithm is 2 to 2.8 times
faster than that of Bézier clipping [13] on tracing primary rays. The method we use to
select the initial point for Newton’s method can result in rapid convergence. Furthermore,
by reducing the computation needed for secondary rays, our algorithm can reduce the
total rendering time by 20% to 50%.

The rest of this paper is organized as follows. In section 2, we review the projec-
tion process, Bézier clipping, and Newton’s method. The obstruction detection tech-
nique used to solve the incorrect solution problem is presented in detail in section 3.
Our hybrid algorithm is described in section 4. The improvement achieved in tracing
secondary rays is presented in section 5, and experimental results are given in section 6.
Finally, conclusions are shown in section 7.

2. PROJECTION, BÉZIER CLIPPING AND NEWTON’S METHOD

Transforming the computation from 3D space to 2D space is important technique to
reduce the computation cost of finding ray-surface intersection points. Bézier clipping
[13] is a well-known method based on this technique. In this paper, we use Newton’s
method to solve a two-dimensional nonlinear system reduced by means of the projection
process. In this section, we will first introduce the projection process and then review the
Bézier clipping approach. Finally, we will present our method, which applies Newton’s
method to solve the two-dimensional nonlinear system.

SHYUE-WU WANG, ZEN-CHUNG SHIH AND RUEI-CHUAN CHANG

544

2.1 Transformation of Ray-Surface Intersections

Let P(u, v) be a rational Bézier surface [21] in three-dimensional Euclidean space,

defined as

,
)()(

)()(
),(

0 0

0 0

∑ ∑

∑ ∑
=

= =

= =

n
i

m
j ij

m
j

n
i

n
i

m
j ijij

m
j

n
i

wvBuB

CwvBuB
vuP (1)

where iinn

i
n
i uusB −−=)1)(()(denotes the Bernstein basis functions and Cij = (xij, yij, zij),

for i = 0,..., n and j = 0 ,..., m, represents Bézier control points with corresponding
weights wij. A ray L is defined by the intersection of two orthogonal planes, P1 and P2,
and its implicit equation is as follows:

L: ak x + bk y + ck z + ek = 0, (2)

where ,1222 =++ kkk cba k = 1, 2. In order to find the intersections between ray L and P(u,
v), we substitute Eq. (1) into Eq. (2) and clear the denominator. The resulting equation is
written as follows:

,2,1,0)()(

0 0
=∑ =∑

= =
kdvBuB

n

i

m

j

k
ij

m
j

n
i (3)

where

).(kijkijkijkij

k
ij ezcybxawd +++= (4)

Since akxij + bkyij + ckzij + ek is the distance from the control point Cij to the plane Pk, we
can now project the rational Bézier surface into a two-dimensional space by taking the
projected control point as).,(),(21

ijijijijij ddyxp == Note that the distances are signed
values. From Eq. (3) and Eq. (4), the projected surface is defined as follows:

∑ ∑=
= =

n

i

m

j
ij

m
j

n
i pvBuBvuP

0 0
.)()(),((5)

In this projection, the two-dimensional coordinate system is formed by these two

orthogonal planes, where plane P1 corresponding to the X axis and plane P2 correspond-
ing to theY axis. The origin O of the coordinate system is corresponding to the ray L. For
example, a three-dimensional Bézier surface with 9 control points and a ray L defined by
planes P1 and P2 are shown in Fig. 1(a). The corresponding projected surface is shown in
Fig. 1(b).

By Eq. (3) and Eq. (5), we can transform the ray-surface intersection problem into
the following two-dimensional nonlinear system:

.0),(=vuP (6)

That is, we need to find all of the (u, v) pairs such that ,0),(=vuP where 0 ≤ u, v ≤ 1.

EFFICIENT AND STABLE RAY TRACING ALGORITHM

545

 (a) (b)
Fig. 1. The projection of a Bézier surface. (a) shows a surface and a ray in three-dimensional space.

(b) shows the corresponding projected surface.

2.2 Bézier Clipping

The idea behind Bézier clipping is to subdivide the parameter space of the

non-linear system (Eq. (6)) into regions that may contain solutions and regions that do
not contain solutions. All of the intersection points can be found by recursively applying
the process to the regions that may contain the solutions.

The first step in solving the problem is to define a line Ls that extends through the
origin O parallel to the vector V0 + V1. The vectors V0 and V1 are constructed using the
boundary control points of the projected surface).,(vuP For example, Fig. 2(a) illus-
trates these two vectors with the projected surface in Fig. 1(b). Let Ls be defined as ax +
by + c = 0, where a2 + b2 = 1.

 (a) (b)
Fig. 2. (a) The projected surface with vector V0, V1, and line Ls. (b) Control point distances.

The projected surface),(vuP can now be transformed into an explicit surface [13]

by replacing the control points pij with the corresponding distance from pij to Ls (see Fig.
2(b)). Since this explicit surface is also a Bézier surface, the convex hull of the explicit
surface bounds the explicit surface and the intersections between the convex hull and the

SHYUE-WU WANG, ZEN-CHUNG SHIH AND RUEI-CHUAN CHANG

546

parametric space can be found. Hence, the parametric space can be classified into regions
that may contain the solutions and regions without solution. Then, the de Casteljau sub-
division algorithm [21] is applied to clip away the regions without solution. This is the
subdivision process of Bézier clipping. All of the solutions of the non-linear system (Eq.
(6)) can be found by recursively applying the process to the regions that may contain the
solutions.

2.3 Newton’s Method

The ray-surface intersection problem, as in the above discussion, can be rewritten as

a two-dimensional nonlinear system (Eq. (6)). We apply Newton’s method to solve this
two-dimensional nonlinear system instead of a three-dimensional nonlinear system, like
Toth [2], Lischinski and Gonczarowski [3], and Barth and Stürzlinger [7].

Let f(x) = 0 be a nonlinear system in n-dimensional Euclidean space (in practical, n
= 2 or 3) and Y be a nonsingular matrix; the Newton iteration is presented using

xk+1 = xk − Yf(xk). (7)

The vector −Yf(xk) denotes the Newton step and Y is the inverse Jacobian matrix of f at xk.
For example, consider n = 2 and apply Newton’s method to solve Eq. (6). Let f(X) =

,0),())(),((21 == vuPXfXf where ∑ ∑ == = =
n
i

m
j

k
ij

m
j

n
ik kdvBuBXf 0 0 ,2,1,)()()(and X = (u,

v). The Jacobian matrix J(X) for f can be written as:

,
/),(/),(

/),(/),(
)(

22

11









∂∂∂∂
∂∂∂∂

=
vu

vu

vufvuf

vufvuf
XJ (8)

and Y = J-1(X). Then the Newton iteration can be rewritten as:

.
),(

),(

/),(/),(

/),(/),(

2

1

1

22

11

1

1

















∂∂∂∂
∂∂∂∂

−







=








−

+

+

kk

kk

vu

vu

k

k

k

k

vuf

vuf

vufvuf

vufvuf

v

u

v

u
 (9)

Newton’s method yields quadratic convergence while the matrix Y is updated at

each iteration. If the matrix Y is fixed during Newton’s iterations, then Newton’s method
is referred to as simple Newton’s method [22] with only linear convergence.

3. INCORRECT SOLUTION PROBLEM

As pointed out by Joy and Bhetanabhotla [11], we can use ray coherence to acceler-
ate the speed of locating a suitable initial point for Newton’s method. Unfortunately, we
will face the incorrect solution problem during applying this property. Taking the entire
view of the incorrect solution problem into our consideration very carefully, we find out
that the key to solving this problem is to determine whether there do exist obstructions
(intersection points) between the intersection point found by Newton’s method and the
origin of the traced ray. If we use any known algorithms to calculate the ray-surface in-
tersections, the computation time can be no more be reduced.

EFFICIENT AND STABLE RAY TRACING ALGORITHM

547

To solve this problem efficiently, we use regular grids to enclose the flat patches
obtained by subdividing the surfaces and the construct the oriented-slab boxes [6] for
each patch. By examining the intersections of a ray and the oriented-slab boxes of the
tested patches, we can either verify whether an intersection point is the closest one or use
Bézier clipping to find out the exact closest intersection point. This is the core idea be-
hind the obstruction detection technique. In the following, we shall first introduce the
property of intersections between a ray and an oriented-slab box. Secondly, we will dis-
cuss the criterion of deciding whether there exists one (or more) intersection point(s)
between a ray and a patch. Finally, we will discuss the details of the obstruction detection
technique.

3.1 Intersection With an Oriented-Slab Box

The oriented-slab box was proposed by Yen et al. [6]. The main feature of the ori-

ented-slab box is a very tighter bounding volume for flat patches. This property is very
informative and necessary for us to determine the intersection conditions between a ray
and a patch. This is why we take the oriented-slab boxes as the bounding volumes.

Let a Bézier surface be adaptively subdivided into flat patches. Each patch belongs
to two parameter intervals].v,v[]u,u[× The oriented-slab box is constructed by calcu-
lating the min-max bounding volume along each of the three orthogonal slab normals n1,
n2, and n3, as shown in Fig. 3.

(a) (b)
Fig. 3. An example of the oriented-slab box. (a) Shows the three orthogonal slab normals. Slab

normal n1 is equal to .21 vv
rr

+ u is equal to 21 uu
rr

+ and slab normal n2 is obtained from
the equation of cross product of n1 and u. Slab normal n3 is obtained from the cross product
of n2 and n1. These three vectors are then normalized. (b) Shows the corresponding ori-
ented-slab box.

Let the oriented-slab box be defined by

E1 + β1n1 + β2n2 + β3n3, (10)

where E1 is a control point of the patch. The coefficients β1, β2 and β3 are intervals.
These three intervals can be obtained by transforming the control points onto the local
coordinate system formed by these three slab normals. A traced ray intersected with the
oriented-slab box yields an interval along the ray. Let a traced ray be defined by

SHYUE-WU WANG, ZEN-CHUNG SHIH AND RUEI-CHUAN CHANG

548

,dtO
r

+ (11)

where O is the origin and d
r

is the direction vector. To compute this interval, we intersect
the ray with the two planes containing opposite faces of the box. The solution of this in-
tersection in terms of the ray parameter t is computed by using Eq. (10) and Eq. (11).
After some transformations were performed, we obtain

,
)(1

k

kk
k

nd

βnOE
t

⋅
+⋅−

= r for k = 1, 2, 3 (12)

The intersection of the three intervals tk states the parameter subspace that the ray

may intersect with the patch. If this subspace is empty, the ray misses the oriented-slab
box completely. If the denominator in Eq. (12) is zero, the ray is parallel to the pair of
opposite faces. Instead of using complicated rules for distinguishing the cases that the ray
lies either between or outside these two opposite faces, we use a very small value for the
denominator. If the ray is between these two faces, we get a very large interval tk con-
taining the interesting domain of t. In another case, tk is far away and intersection of the
three intervals tk will yield an empty subspace.

There are three main reasons for us to adopt the oriented-slab box. First of all, we
can pre-calculate the numerator of Eq. (12) during the preprocessing stage for the cause
of all the primary rays starting from the view point. During the rendering step, there are
only 3 dot product operations needed for the denominator, 6 division operations for the tk
intervals, and the comparisons for Eq. (12) will be performed when the ray intersects the
oriented-slab box. Secondly, it is easily found that the computation will save three arith-
metic operations of dot product while calculating the numerator of Eq. (12) compared
with the calculation of a secondary ray and an enclosing parallelepiped [7].

Thirdly, the original purpose of the design of oriented-slab box is for parametric sur-
faces. The characteristic of oriented-slab box is a very tighter bounding volume for flat
patches. Such tighter bounding volume provides useful information to determine how
many intersection points between a ray and a patch. We can consider a critical case: a ray
is nearly tangential to the patch, as shown in Fig. 4. It is likely that more than one inter-
section point exists. This critical case can be easily recognized because it appears only
when the ray passes through the box approximately parallel to the larger face.

Fig. 4. A critical case that a ray is nearly tangential to the patch. Assume the length of each side of

the oriented-slab box are w, h, and l, where h << w ≤ l.

To provide an efficient and precise measure of when this case may happen, we issue

EFFICIENT AND STABLE RAY TRACING ALGORITHM

549

out a criterion as follows:

.tan
h

w
α ≥ (13)

That is, it is likely that more than one intersection point exists. Hence, we assume
that there are more than one intersection point of a ray and a patch when Eq. (13) holds.
Otherwise, we assume that a ray intersect with a patch at only one intersection point.
This criterion is similar to the rule proposed by Barth and Stürzlinger [7].

3.2 The Obstruction Detection Technique

The theoretical groundwork of obstruction detection technique is based on the sur-

face subdivision [7], the uniform space subdivision [20], the oriented-slab box [6], and
Bézier clipping. During preprocessing step, we construct a regular grid, which is the core
of this technique and is designed to ensure that the ray-patch tests can be done efficiently.
Each surface is adaptively subdivided into flat patches according to the rules proposed by
Barth and Stürzlinger [7]. For each patch, we construct an oriented-slab box (as men-
tioned in the previous paragraph) instead of the enclosing parallelepiped. Then a regular
grid associated with each surface is constructed to organize these patches. The regular
grid is created by applying the uniform space subdivision technique [20] on the bounding
volume of each surface. The bounding volume that we used is an axis-aligned parallele-
piped.

In rendering step, assume that P is an intersection point between the traced ray L
and the surface S. Let P be found by Newton’s method. To verify whether the point P is
the closest one, we trace a detecting ray BL through the regular grid of the surface S. The
detecting ray is started from the intersection point P toward the origin of ray L. Hence, a
list of patches will be visited by the ray BL. We could immediately locate the patch con-
taining the point P and calculate Eq. (13) for the ray BL and the patch. If this equation
does not holds, we have no need to compute the intersection points between BL and the
patch for any further. Otherwise, we use Bézier clipping to find the intersection points
between them.

For other patches in the visited list, we use Bézier clipping to find the intersection
points between the ray BL and the patches whose oriented-slab boxes are intersected with
BL. Using this detecting process, we can either determine whether an intersection point
is the closest one or find out the closest intersection point for current traced ray.

For example, as shown in Fig. 5, the dotted grids represent the uniform space
subdivision and the curve segments represent the patches. Assume that P1 is the point
found by Newton’s method. The detecting ray BL1 starting at P1 is traced and SP2 is the
tested patch. We can conclude that P1 is the closest intersection point because BL1
intersects the patch SP2 at only one intersection point and BL1 does not intersect with
other patches’ oriented-slab boxes. No matter what, if P4 is the intersection point found
by Newton’s method, we will obtain the closest intersection point P3 by applying Bézier
clipping on BL2 and SP0, because of the intersection of BL2 and oriented-slab box of the
patch SP0. On tracing ray L3, we will obtain that Eq. (13) does hold no matter what P6 (or
P7) is found by Newton’s method. The closest intersection point P6 will be obtained by
applying Bézier clipping on BL3 and SP10.

SHYUE-WU WANG, ZEN-CHUNG SHIH AND RUEI-CHUAN CHANG

550

Fig. 5. The demonstration of obstruction detection technique.

The major problem of implementing the obstruction detection technique is the exe-

cution efficiency when tracing the detecting rays. The number of ray-patch intersection
tested and the number of voxels traveled play important roles in efficiency. The voxel
size is the dominating factor because large voxels will induce more ray-patch tests and
small voxels will increase the voxel traveling time. In our implementation, the voxel size
is chosen as follows.

Given a regular grid, let Pnum be the number of patches of the surface. Xlen, Ylen, and
Zlen are the length of the regular grid in X-axis, Y-axis, and Z-axis respectively. Our crite-
rion is that the number of patches should be less than or equal to the number of voxels.
Let Vlen be the length of voxel width. We obtain the following inequality.

.
len

len

len

len

len

len
num V

Z

V

Y

V

X
P ××≤

Solving for Vlen in the above equation, we have

.3

num

lenlenlen
len P

ZYX
V

××
≤

In our implementation, the voxel width that we used is .3

num

lenlenlen

P

ZYX ××

4. AN EFFICIENT RAY TRACING ALGORITHM

The basic idea of our approach is to combine Bézier clipping and Newton’s method
to find the ray-surface intersection points. Consider Fig. 6. The dash lines represent rays
passing through the current scan line. The black dots denote ray-surface intersection
points that obtained by either Bézier clipping (B) or Newton’s method (N). The crosses
represent the rays that do not intersect with the surface and)(NB denotes that the
ray-surface intersection test is performed by Bézier clipping (Newton’s method).

EFFICIENT AND STABLE RAY TRACING ALGORITHM

551

Fig. 6. The general process for finding the ray-surface intersection points.

Initially, we use Bézier clipping to locate the first ray that intersects the surface S

and to find the intersections. In this example, the closest intersection point between the
third ray and S is found by Bézier clipping. Then, we apply Newton’s method with the
previous intersection point as the initial point to find the next intersection point. After
an intersection point is found in this way, we use the obstruction detection technique to
either verify whether this point is the closest one or obtain the closest intersection point
for current traced ray. If Newton’s method fails to converge, for instance, the fifteenth
ray in this case, Bézier clipping is performed again to find another intersection point. In
the following paragraphs, we will discuss only primary rays if not noted otherwise.

Fig. 7. An improved method for selecting the initial point.

To accelerate the speed of convergence of Newton’s method, we use the previously

found intersection point as the initial point. Consider Fig. 7, given a scan line on the
view plane and a surface S that will be tested along the scan line. Assume that Li-1 is the
first ray that intersects S and the intersection point Pi-1 is found by Bézier clipping. Let Li
be the next ray along the scan line. Newton’s method with Pi-1 as the initial point is

SHYUE-WU WANG, ZEN-CHUNG SHIH AND RUEI-CHUAN CHANG

552

performed to find the intersection point between Li and S. Assume that Newton’s
method converges to point Pi. For the next ray, say Li+1, the selection rule of the initial
point will be different, since the ray coherence property provides another useful meaning:
a change of locations for adjacent intersection points on a surface will not be so appar-
ent. It seems to be a better choice that taking Pi + (Pi − Pi-1) as the initial point with the
comparison of Pi. Obviously, the advantage is that this new chosen initial point can
give rapidly convergence of Newton’s method.

In general, the selection of the initial point for the next ray Li+1 will be dependent on
the method of finding Pi. If Pi is found by Newton’s method, Pi + (Pi − Pi-1) will be the
initial point. If Pi is found by Bézier clipping, Pi is the initial point.

In order to identify the convergence of Newton’s method, two criteria should be
adopted: maximal number of iterations Mn and convergence tolerance value Cv. Ac-
cording to Eq. (7), Newton’s method will not stop until one of the following conditions is
satisfied:

(a) |uk+1 − uk| + |vk+1 − vk| ≤ Cv and k ≤ Mn;

(b) k > Mn;

(c) Y is ill-conditioned;

(d) u or v are outside the parametric intervals (i.e. u < 0 or u > 1 or v < 0 or v > 1).

If the iteration is terminated by case (a), Newton’s method will be converged and

xk+1 will be the solution. If the iteration is terminated by case (b) or (c) or (d), we do not
find any solution.

5. THE IMPROVEMENT IN TRACING SECONDARY RAYS

Plenty of computational effort has been invested in tracing secondary (reflected, re-
fracted and shadow) rays on ray tracing parametric surfaces. The more light sources in
the environment or more transparent and specular surfaces, the higher computational
work shall be offered. Since the origin of a secondary ray must lie on a surface, the
computations for finding the intersections between them must be performed in order to
detect self-shadowing or self-reflection. Here, we assume that the shadow rays are
starting from the intersection points toward the light sources. If the secondary ray along
the tracing direction does not intersect the surface at the other intersections except the
origin of the ray, we have no need to perform further computation anyway.

If we can determine this intersection condition, the unnecessary verification and
computation could be saved and performance could be improved. This is not only the
key point of this section but also the centrality of our original thought. In this section,
we present a method based on the regular grids to detect this intersection condition.
The main advantage of this method is that it can be applied to almost all the existing ray
tracing algorithms nowadays to improve their performance. The details of this method
are presented in the following.

EFFICIENT AND STABLE RAY TRACING ALGORITHM

553

Given a secondary ray L and a surface S containing the origin, we trace the secon-
dary ray through the regular grid of S. Hence, a list of patches will be visited by the ray
L. We first compute Eq. (13) of L and the patch containing the origin. If this equation
does not hold (which means there is only one intersection point between the ray and the
patch), we continue the tracing process. Otherwise, we use Bézier clipping to find the
intersection points of L and the patch.

For other patches in the visited list, we use Bézier clipping to find the intersection
points between the ray L and the patches whose oriented-slab boxes are intersected with
L. Through this process, we can obtain either the condition which the secondary ray
along the tracing direction does not intersect the surface at other intersections or the con-
ditions of self-shadowing and self-reflection.

6. EXPERIMENTAL RESULTS

We implement our proposed algorithm in C programming language. All the ex-
periments are executed on a Pentium II with a 300 MHz CPU and 128 MB RAM operat-
ing in the Windows NT 4.0 environment. We created four scenes (Figs. 8-11) to dem-
onstrate the computational efficiency for our algorithm. Each scene represents a typical
environment for testing the performance. The resolution of the image in each scene was
1024 × 1024. The number of surfaces and the number of patches are indicated in the
caption for each figure. In addition, all of the images shown in this paper are generated
using our algorithm with anti-aliasing (four rays per pixel) and ray depth three. The
spectral sampling approach [23] is also employed to produce a more realistic color in
metals. Nine spectral samples are used in our implementation.

Fig. 8. Newell’s teapot with 33 surfaces. These surfaces are subdivided into 4434 patches.

SHYUE-WU WANG, ZEN-CHUNG SHIH AND RUEI-CHUAN CHANG

554

Fig. 9. Twenty-four rings with 298 surfaces, where each ring is constructed using 12 Bézier sur-
faces. These surfaces are subdivided into 37104 patches.

Fig. 10. A highly reflective environment with 255 surfaces. Two flat mirrors and one specular floor

are perpendicular to each other. These surfaces are subdivided into 38422 patches.

6.1 Performance Comparisons

It is difficult to make quantitative comparisons with existing ray-surface intersection

algorithms, because the performance of these algorithms are dependent on programming
style and the organization data structures, for example, the dimension of arrays particu-
larly. Since Bézier clipping [13] is a well-known algorithm, we will compare the per-
formance of our algorithm with that of Bézier clipping.

In our implementation we have modified Bézier clipping according to the schemes
proposed by Campagna et al. [16] and we use simple Newton’s method to find the
ray-surface intersection points. When Newton’s method was used, a simple look-up table

EFFICIENT AND STABLE RAY TRACING ALGORITHM

555

Fig. 11. A more complex scene that contains 343 surfaces. The backdrop consists of fourteen
curved mirrors. Two mirrors perpendicular to the floor and located on opposite sides of
the floor are not visible in the rendered image. These surfaces are subdivided into 49506
patches.

scheme was employed. For each Bernstein polynomial)(uB n

i and),(vB m
j the values

of jinim
j

n
i vuuCC ,)1(,,, −− and jmv −−)1(are stored in separate arrays. Hence, the elements

in Newton’s method, such as uvuf ∂∂ /),(1 or f1(uk, vk) in Eq. (9), could be obtained with a
for-loop by using n, i and j as the indices to these arrays.

Both Bézier clipping and Newton’s method require a tolerant value to check the
convergence of their algorithm. We choose the same tolerant value (10-4 in our imple-
mentation) for both methods to provide a fair level of comparison. Moreover, we adopt
the uniform space subdivision [20] and the simple min-max bounding volume
(axis-aligned parallelepiped) for both algorithms to reduce the unnecessary ray-surface
intersection tests. Tables 1 and 2 present the statistical characteristics for the performance
of our algorithm and Bézier clipping on rendering these four scenes. The data included
are the sum of rendering a whole scene with 512 × 512 resolutions with ray depth two,
but the method for improving the secondary rays is not employed. Nevertheless, this data
does not include the computations for finding the intersection points between a ray and a
flat surface such as a floor and a flat mirror. The timing unit is given in seconds.

Table 1. The experimental results obtained when our algorithm was used to render the

test scenes.

 Fig. 8 Fig. 9 Fig. 10 Fig. 11
Algorithms Ray Depth 1st 2nd 1st 2nd 1st 2nd 1st 2nd

Conv./Call 97% 94% 92% 72% 93% 90% 95% 85%
Closest 91089 44812 129964 28878 131316 108164 223081 126121

Not Closest 1352 15967 2050 16589 1285 25238 3999 49904

Newton’s
Method

Av. Iterations/Pt. 1.7 1.8 2.2 2.9 2.2 2.3 1.9 2.4
Bézier clipping 26226 188517 68154 471200 68097 221076 349829 845348

SHYUE-WU WANG, ZEN-CHUNG SHIH AND RUEI-CHUAN CHANG

556

Table 1 presents the experimental results of our algorithm on rendering these four
scenes in ray depth two. Let sn be the number of Newton’s method terminated success-
fully and tn be the number of Newton’s method that have been called. The row
Conv./Call is the ratio of sn to tn. For the intersection points found by Newton’s method,
the row Closest indicates the number of points that are verified to be the closest points
and the Not Closest indicates the number of points are verified not the closest point. The
row Av. Iterations/Pt. indicates the average number of iterations that Newton’s method to
converge to an intersection point. The row Bézier clipping indicates the number of inter-
section points found by Bézier clipping.

According to Table 1, the method that we used to select the initial points enable
Newton’s method to converge rapidly. The most convincing finding is that an intersec-
tion point could be obtained in less than two iterations and that about 95% of Newton
iteration steps could be terminated successfully.

Table 2 presents a performance comparison between our algorithm and Bézier clip-
ping on rendering these four scenes. Our algorithm achieves a significant improvement
on tracing primary rays. The main reasons why our algorithm can achieve such signifi-
cant improvement are explained in the following. The first reason is the number of inter-

Table 2. A comparison of our algorithm and that of Nishita et. al. on rendering Figs. 7-10.

Fig. 8 Ray Depth 1st 2nd
 Algorithms Tot. Pts Times Tot. Pts Times

Newton’s method 92441 60779 Our Algorithm
Bézier clipping 26226

14.9
188517

34.6

Nishita et al. Bézier clipping 335335 32.9 288456 38.9
Speed Up 2.21 1.12

Fig. 9 Ray Depth 1st 2nd
 Algorithms Tot. Pts Times Tot. Pts Times

Newton’s method 132014 45467 Our Algorithm
Bézier clipping 68154

23.6
471200

69.7

Nishita et al. Bézier clipping 439421 66.5 585129 72.0
Speed Up 2.82 1.03

Fig. 10 Ray Depth 1st 2nd
 Algorithms Tot. Pts Times Tot. Pts Times

Newton’s method 132601 133402 Our Algorithm
Bézier clipping 68097

29.3
220176

53.5

Nishita et al. Bézier clipping 297401 61.5 443766 69.3
Speed Up 2.10 1.30

Fig. 11 Ray Depth 1st 2nd
 Algorithms Tot. Pts Times Tot. Pts Times

Newton’s method 227080 176025 Our Algorithm
Bézier clipping 349829

73.5
845348

145

Nishita et al. Bézier clipping 1170938 145 1443755 192
Speed Up 1.97 1.32

EFFICIENT AND STABLE RAY TRACING ALGORITHM

557

section points that needed to be found in our algorithm is obviously less than that of Bé-
zier clipping. The more high curvature surfaces in the environment, the more significant
improvement will be. The second reason is that if we take the computation cost of find-
ing an intersection point as a measure, Newton’s method is potentially lower in cost than
Bézier clipping. Hence, the more intersection points found using Newton’s method, the
more the execution time saved. For example, when the image shown in Fig. 9 was traced,
most of the traced rays intersected the ring surfaces at two intersection points. The num-
ber of intersection points found by our algorithm are at about half that found by Bézier
clipping. The performance of our algorithm is 2.82 times faster than that of Bézier clip-
ping. This is the most noticeable result of our algorithm.

The performance of our algorithm on tracing secondary rays depends heavily on the
coherence property. If an environment provides good coherence in tracing secondary rays,
our algorithm can achieve a very significant improvement. For example, Fig. 10 and Fig.
11 are created to provide such environments, our algorithm did improve the performance
of Bézier clipping by 25%. Mirror or highly reflection effects are used in many practical
applications, such as movie film production and music television video (MTV). To ani-
mate parametric surfaces in such environments, our algorithm will be very helpful in
improving the performance efficiency.

To determine the performance of our algorithm in tracing secondary rays, we ap-
plied it to the above four scenes. The experimental results are presented in Tables 3 and 4.
For secondary and third ray depths, Table 3 presents a comparison of the total number of
intersection points found by using Bézier clipping and Table 4 presents the execution
time spent. For shadow rays, the experimental results counted for ray depth three. Table 3
shows the percentage of ray-surface pairs that did not require the determination of inter-
section points and Table 4 presents the execution time. Note that this data does not in-
clude the computations for dealing with flat surfaces such as floors and flat mirrors.

Table 3. Statistics for before and after the improvement of tracing secondary rays. The
row Avoid/Call indicates the percentage of shadow ray-surface pairs that did
not require the determination of intersection points with our proposed method.

 Fig. 8 Fig. 9 Fig. 10 Fig. 11

Ray Depths 2nd 3rd 2nd 3rd 2nd 3rd 2nd 3rd

Before Improvement 249296 111526 516667 247669 353589 266263 1021373 622589

After Improvement 82510 11484 153661 75821 197254 110713 483597 223039

Shadow Rays Scene 1 Scene 2 Scene 3 Scene 4

Avoid/Call 91% 85% 91% 84%

The occurrence of the circumstances of self-shadowing or self-reflection is quite

seldom for the general case. Avoiding the unnecessary computation of ray-surface inter-
sections can be achieved by some simple and straight forward testing in our algorithm.
Obviously, the advantage of our proposed strategy is that the number of ray-surface in-
tersections that need to be found can be decreased. This is why our proposed algorithm
can achieve a very significant improvement on tracing secondary rays and shadow rays.

SHYUE-WU WANG, ZEN-CHUNG SHIH AND RUEI-CHUAN CHANG

558

Table 4. The speedup of our proposed method on tracing secondary rays.

Fig. Ray Depth 2nd 3rd Shadow Rays
Before Improvement 34.6 21.9 193
After Improvement 23.6 10.2 113

8

Speed Up 1.47 2.15 1.71
Before Improvement 69.7 37.6 284
After Improvement 44.8 22.6 125

9

Speed Up 1.56 1.66 2.27
Before Improvement 53.5 54.4 326
After Improvement 44.2 40.1 211

10

Speed Up 1.21 1.36 1.55
Before Improvement 145 135 1027
After Improvement 114 91.3 363

11

Speed Up 1.27 1.48 2.83

6.2 The Utilization of Newton’s Method on High Accuracy Environments

According to our experimental results, the method we used to select the initial
points enable Newton’s method to converge rapidly. In our implementation, the tested
environments are rendered by the simple Newton’s method with 10-4 as the tolerance
value. To evaluate the behavior of our algorithm when the high accuracy was require-
ment, we render the tested environments using both the simple and the original Newton’s
method with different tolerance values. Table 5 presents the results obtained when our
algorithm was used to trace primary rays with tolerance values of 10-4, 10-6, 10-8, and
10-10.

Some constructive and meaningful results reveal to us. The method we used to
select the initial points provided stable convergence for the original Newton’s method as
more significant digits are required. In addition, the performance of Newton’s method
is better than that of the simple Newton’s method. Hence, our algorithm is useful when
a very high level of accuracy is required. Under such environments, Newton’s method
is a better choice than the simple Newton’s method.

7. CONCLUSIONS

We have proposed an efficient and stable ray tracing algorithm for finding the
ray-surface intersection points. The experimental results indicate that the combination of
Bézier clipping and Newton’s method can provide faster speed in finding the ray-surface
intersections. The improvement of our algorithm on primary rays is remarkable. Another
significant contribution is that we proposed a novel method to improve the performance
for tracing secondary rays. This approach introduces a 20% to 50% reduction in total
rendering time for tracing secondary rays.

Our algorithm is very helpful in curved surface design and animation of curved sur-
faces. For curved surface designed environment [24, 25], our ray tracing algorithm can
provide true view-dependent highlights efficiently. For animation of curved surfaces,

EFFICIENT AND STABLE RAY TRACING ALGORITHM

559

our algorithm can save lots of computation time in simulating the reflections between
curved surfaces and the environment.

REFERENCES

1. T. Whitted, “An improved illumination model for shaded display,” Communications
of the ACM, Vol. 23, 1980, pp. 343-349.

2. D. Toth, “On ray tracing parametric surfaces,” Computer Graphics (SIGGRAPH ’85
Proceedings), Vol. 19, 1985, pp. 171-179.

3. D. Lischinski and J. Gonczarowski, “Improved techniques for ray tracing parametric
surfaces,” The Visual Computer, Vol. 6, 1990, pp. 134-152.

4. M. A. J. Sweeney and R. H. Bartels, “Ray tracing free-form B-spline surface,” IEEE
Computer Graphics & Application, Vol. 6, 1986, pp. 41-49.

5. C. G. Yang, “On speeding up ray tracing of B-spline surfaces,” Computer Aided De-
sign, Vol. 19, 1987, pp. 122-130.

6. J. Yen, S. Spach, M. Smith, and R. Pulleyblank, “Parallel boxing in B-spline intersec-
tion,” IEEE Computer Graphics & Applications, Vol. 11, 1991, pp. 72-79.

7. W. Barth and W. Stürzlinger, “Efficient ray tracing for Bézier and B-spline surfaces,”
Computer & Graphics, Vol. 17, 1993, pp. 423-430.

8. W. Barth, R. Lieger, and M. Schindler, “Ray tracing general parametric surface using
interval arithmetic,” The Visual Computer, Vol. 10, 1994, pp. 363-371.

9. K. Qin, M. Gong, Y. Guan, and W. Wang, “A new method for speeding ray tracing
NURBS surfaces,” Computer & Graphics, Vol. 21, 1997, pp. 577-586.

10. W. Stürzlinger, “Ray-tracing triangular trimmed free-form surfaces,” IEEE Transac-
tions on Visualization and Computer Graphics, Vol. 4, 1998, pp. 202-214.

11. K. Joy and M. Bhetanabhotla, “Ray tracing parametric surface patches utilizing nu-
merical techniques and ray coherence,” Computer Graphics (SIGGRAPH ’86 Pro-
ceedings), Vol. 20, 1986, pp. 279-285.

12. C. Woodward, “Ray tracing parametric surfaces by subdivision in viewing plane,”
Theory and Practice of Geometric Modeling, Spring-Verlag, New York, 1989, pp.
273-290.

13. T. Nishita, T. W. Sederberg, and M. Kakimoto, “Ray tracing trimmed rational surface
patches,” Computer Graphics (SIGGRAPH ’90 Proceedings), Vol. 24, 1990, pp.
337-345.

14. Y. Dobashi, T. Nishita, H. Yamashita, and T. Okita, “Modeling of clouds from satel-
lite images using metaballs,” in Proceedings of Pacific Graphics ’98, Sixth Pacific
Conference on Computer Graphics and Applications, 1998, pp. 53-60.

15. T. Nishita, H. Iwasaki, Y. Dobashi, and E. Nakamae, “A modeling and rendering
method for snow by using metaballs,” Computer Graphics Forum, Vol. 16, 1997, pp.
357-364.

16. S. Campagna, P. Slusallek, and H. Seidel, “Ray tracing of spline surfaces, Bézier
clipping, chebyshev boxing, and bounding volume hierarchy  a critical comparison
with new results,” The Visual Computer, Vol. 13, 1997, pp. 265-282.

17. J. T. Kajiya, “Ray tracing parametric patches,” Computer Graphics (SIGGRAPH ’82
Proceedings), Vol. 16, 1982, pp. 245-254.

SHYUE-WU WANG, ZEN-CHUNG SHIH AND RUEI-CHUAN CHANG

560

18. D. Manocha, “Algebraic pruning: A fast technique for curve and surface intersec-
tions,” Technical report TR93-062, Department of Computer Science, University of
N. Carolina, Chapel Hill., 1993.

19. D. Manocha and J. Demmel, “Algorithms for intersecting parametric and algebraic
curves I: Simple intersection,” ACM Transactions on Graphics, Vol. 13, 1994, pp.
73-100.

20. J. G. Cleary and G. Wyvill, “Analysis of an algorithm for fast ray tracing using uni-
form space subdivision,” The Visual Computer, Vol. 4, 1988, pp. 65-83.

21. G. Farin, Curves and Surfaces for Computer Aided Geometric Design, Academic
Press, San Diego, 1988.

22. R. L. Burden and J. D. Faires, Numerical Analysis, Prindle, Weber and Schmidt,
Boston, 1985.

23. R. Hall, Illumination and Color in Computer Generated Imagery, Springer-Verlag,
New York, 1988.

24. E. Kaufmann and R. Klass, “Smoothing surfaces using reflection lines for families of
splines,” Computer Aided Design, Vol. 20, 1988, pp. 312-316.

25. A. F. Lennings, J. C. Peters, and J. S. M. Vergeest, “An efficient integration of algo-
rithms to evaluate the quality of freeform surfaces,” Computer & Graphics, Vol. 19,
1995, pp. 861-872.

Shyue-Wu Wang (王學武) received the M.S. degree in

Computer Science from National Tsing Hua University, Taiwan,
R.O.C., in 1992, and is currently a doctoral candidate at National
Chiao Tung University. His research interests include global
illumination, real-time rendering, image-based rendering and
geometric modeling.

Zen-Chung Shih (施仁忠) was born on 10th February 1959,

in Taipei, Republic of China. He received his B.S. degree in
Computer Science from Chung-Yuan Christian University in
1980, M.S. degree in 1982 and Ph.D. degree in 1985 in Computer
Science form the National Tsing Hua University. Currently, he
is a professor in the Department of Computer and Information
Science at the National Chiao Tung University in Hsinchu. His
current research interests include procedural texture synthesis,
non-photorealistic rendering, global illumination, and virtual real-
ity.

EFFICIENT AND STABLE RAY TRACING ALGORITHM

561

Ruei-Chuan Chang (張瑞川) was born on 30th January
1958, in Keelung, Taiwan, Republic of China. He received his
B.S. degree in 1979, M.S. degree in 1981, and Ph.D. degree in
1984, all in Computer Science from the National Chiao Tung
University. Currently he is a professor in the Department of
Computer and Information Science at National Chiao Tung Uni-
versity in Hsinchu. He is also an associate research fellow at the
Institute of Information Science, Academia Sinica, Taipei. His
current research interests include design and analysis of algo-
rithms, computer graphics, and system software.

