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Next-to-leading-order power correction to photon-pion transition form factor
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We propose an approach to calculate the next-to-leading-order power corrections to the photon-pion transi-
tion form factorFpg(Q2). The effects of the next-to-leading-order power corrections are analyzed.
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I. INTRODUCTION

The photon-pion transition processg* p→g provides a
good example for tests of QCD. The amplitude for the tra
sition process can be expressed asM (g* p→g)5
2 ie2emablP1

aP2
belFpg(Q2), where P1 denotes the pion

momentum andP2 andel represent the momentum and p
larization of the real photon. All information on QCD for th
process is contained in the form factorFpg(Q2), with Q2

52(P22P1)2 being the virtuality of the virtual photon. In
this paper, we would like to investigate the effects of t
next-to-leading-order~NLO! power corrections for the tran
sition form factor. For sufficiently high energies,Q2

@LQCD
2 , the transition form factor can be calculated in p

turbative QCD~PQCD! to have the form

Fpg~Q2!54CpE
0

1

dx
f2~x!

Q2x~12x!
, ~1!

whereCp5A2/6 is the pion charge factor andf2(x) repre-
sents the leading twist~twist-2! pion distribution amplitude
~DA!. In the high energy limitQ2→`, the nonleading
anomalous dimension contributions to the pion DA can
ignored and the pion DA approaches its asymptotical fo
f2(x)53x(12x) f p /A2. It implies that the transition form
factor Fpg also has an asymptotical limit@1#

Fpg~Q2!uQ2→`5
2 f p

Q2
, ~2!

where f p593 MeV is the pion decay constant. Th
asymptotic of the form factor is about 15% larger than
upper end of the CLEO data@2#. Many proposals, such as th
inclusion ofO(as) corrections into the transition form facto
@3–7# and the introduction of the transverse structure for
pion DA @8,9#, have been suggested to solve this discrepa
between theory and experiment. It has also been shown@2#
that the data can be described by the Brodsky-Lepage in
polating formula@10# for both Q2→` andQ2→0 limits of
Fpg(Q2):

Fpg
BL~Q2!5

2 f p

s01Q2
, ~3!
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wheres058p2f p
2 '0.68 GeV2. This implies that the NLO

power corrections, i.e. theO(1/Q4) corrections, might be
important.

In this paper, we shall present a perturbative calculat
for the NLO power corrections to the photon-pion transiti
form factorFpg(Q2). The method of calculation is related t
the terminology of the collinear expansion@11,12#. The col-
linear expansion has the following features:~1! it preserves
individual gauge invariance of the soft function and the ha
function; ~2! it can systematically separate the leading-ord
~LO! contributions from the next-to-leading-order~NLO!
power corrections;~3! it can simultaneously derive differen
kinds of higher twist contributions from the sources: the no
collinear partons, the wrong spin projection and the hig
Fock states;~4! it is a twist-by-twist expansion and also fre
from the twist mixing problem;~5! it is a Feynman diagram
approach such that the partonic picture for higher twist c
tributions can be preserved.

Our main results are summarized as follows. We sh
employ collinear expansion to evaluate the NLO power c
rections for the processg* p→g. The NLO power correc-
tions to Fpg(Q2) involve four twist-4 pion DAs. Two of
them are due to nonvanishing masses of the valence qu
of the pion. With the help of equations of motion, the numb
of independent twist-4 DAs is reduced from four to two. T
remaining two twist-4 DAs are assumed to be asympto
The theoretical prediction for the scaled form fact
Q2Fpg(Q2) is in good agreement with the CLEO data.

The organization of the remaining text is as follows. W
describe the collinear expansion for the processg* p→g in
Sec. II. The NLO power corrections to the transition for
factor Fpg(Q2) are calculated in Sec. III. Section IV is de
voted to conclusions.

II. COLLINEAR EXPANSION

We sketch the procedures of collinear expansion
g* p→g.

Let M5sp(k) ^ f(k) represent the lowest order ampl
tude forg* (q)p(P1)→g(P2) as depicted in Figs. 1~a! and
1~b!. The sp(k) denotes the amplitude for partonic subpr
cess and thef(k) represents the pion DA. Thê represents
the convolution integral over the loop momentumk and the
traces over the color indices and spin indices. The amplit
M is expressed as

M5E d4k

~2p!4
Tr@sp~k!f~k!#, ~4!
©2002 The American Physical Society02-1
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where the trace Tr is run over fermion and color indices, a
the pion DAf(k) takes the form

f~k!5E d4yeik•y^0uq̄~0!q~y!up~P1!&. ~5!

If we assign the momentum of the final state photon in
minus light-cone direction,P25Q2n/2, and the momentum
of the initial pion in the plus light-cone direction,P15p, the
leading configuration for the process is then construc
from the collinear momentumk̂5xp with x5k•n the frac-
tion of the momentum of the pion carried by the partons. T
vectorsp and n represent lightlike vectors in the1 and 2
directions, respectively, and satisfy conditionsp25n250
and n•p51. The first step of the collinear expansion is
make a Taylor expansion for the partonic amplitudesp(k)
with respect tok̂5xp:

sp~k!5s̄p~k5 k̂!1~ s̄p!a~x,x!wa8
a ka81•••, ~6!

where we have assumed the low energy theorem

]

]ka
sp~k!uk5 k̂5~ s̄p!a~x,x!, ~7!

and have employed notationswa8
a ka85(k2xp)a and wa8

a

5ga8
a

2pana8 . Sinces̄p(x) is only dependent on the frac

tional variablex, we can recast the convolutions̄p^ f into
the form

s̄p^ f5E dx Tr@s̄p~x!f~x!#, ~8!

with

f~x!5E d4k

~2p!4E d4yeik•yd~x2k•n!^0uq̄~0!q~y!up&.

~9!

The leading terms̄p^ f contains leading, next-to-leadin
and higher order power contributions. To separate the co
butions of different power order, we can investigate the s
structures of the leading partonic amplitudes̄p . The s̄p has
terms proportional ton” and p” . The terms proportional ton”
would project out a collinearqq̄ pair from the parent pion
and those terms proportional top” would not vanish only
when theqq̄ pair carries noncollinear momentum. The se

FIG. 1. The leading order Feynman diagrams forg* p→g. The
cross symbol represents the vertex of the virtual photon.
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ond step is to substitute the leading partonic amplitudes̄p

into the convolution integral withf to extract the termss̄p
^ f1:

s̄p^ f5s̄p^ f01s̄p^ f11•••, ~10!

where f0 and f1 denote the leading and subleading pi
DAs, respectively. However, this is not the final answer. T
f1 contains both short distance and long distance contr
tions. The short distance part off1 arises from the noncol-
linear components of the loop momentumk. By the equa-
tions of motion, the noncollinear components ofk will
induce one quark-gluon interaction vertexiga and one spe-
cial propagatorin” /(2k•n) @11#. Because the special propa
gator is not propagating in the minus light-cone direction,
quark-gluon interaction vertex and the special propaga
should be included in the leading partonic amplitude,s̄p . In
this way, we may factorizef1 asf1'(f1

H)awa8
a (f1

S)a8 and

absorb the short distance piece (f1
H)a into s̄p . It leads to the

third step

s̄p^ f15s̄p^ „~f1
H!a•wa8

a
~f1

S!a8
…

5~ s̄p•f1
H!a ^ wa8

a
~f1

S!a8, ~11!

where (f1
S)a8 containing covariant derivativeDa85 i ]a8

2gAa8 is implied. Notice that the light-cone gaugen•A

50 assureswa8
a Aa85Aa. It is useful to write the above

equation in a concise form

s̄p^ f15E dxdx1Tr@~ s̄p•f1
H!a~x,x1!

3wa8
a

~f1
S!a8~x,x1!#, ~12!

with • being the matrix product. The new soft functio
(f1

S)a8(x,x1) has the expression

~f1
S!a8~x,x1!5E d4k

~2p!4E d4k1

~2p!4

3E d4yE d4zeik•yei (k12k)•z

3d~x2k•n!d~x12k1•n!

3^0uq̄~0!Da8~z!q~y!up&, ~13!

and the hard function (s̄p•f1
H)a(x,x1) is defined as

~ s̄p•f1
H!a~x,x1!5~ iga!

2 in”

2x
s̄p~x!

1s̄p~x!~ iga!
in”

2~12x!
. ~14!
2-2
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The contribution from the second term of Eq.~6! should
be considered, too. Similar to the treatment for terms rela
to s̄p , the terms related to (s̄p)a(x,x)wa8

a ka8 are necessary
to be substituted into the convolution integral withf0, where
we have made the approximationf'f01•••. The momen-
tum factorka will be absorbed byf0 to become a coordinat
derivative acting on the quark field. That is we make t
transformationkaf0[f1,]

a which has the expression

f1,]
a [E d4yeik•y^0uq̄~0!i ]aq~y!up&. ~15!

Consider another contributionM1'(s̄p)a ^ wa8
a f1,A

a8 from
Figs. 1~c! and 1~d!, wheref1,A

a contains gauge fields

f1,A
a [E d4yd4zeik•yei (k12k)•z

3^0uq̄~0!„2gAa~z!…q~y!up&. ~16!

Note that we have employed the approximation that (s̄p)a

^ f1,A
a is the leading term ofM1. This comes to the fourth

step:

~ s̄p!a ^ wa8
a f1,]

a81~ s̄p!a ^ wa8
a f1,A

a8 [~s̄p!1^ f1
S , ~17!

wheref1,]
a 1f1,A

a [f1
S . We write the new quantities as

~ s̄p!1^ f1
S[E dxE dx1Tr@~ s̄p!a~x,x1!

3wa8
a

~f1
S!a8~x,x1!#, ~18!

with f1
S as defined before. However, it will become cle

later that (s̄p)1 vanishes as it convolutes with twist-4 DAf1
G

~see below definition!. Up to O(1/Q4), we may drop the
(s̄p)1 term and arrive at the result

M1M1's̄p^ f01~ s̄p•f1
H! ^ f1 , ~19!

wheref1 representsf1
S . This involves only one subleadin

DA f1 for the NLO power correction.
To proceed, we need to consider the factorizations of

spin indices and the color indices. For factorization of s
indices, we expand the pion DAs into their spin compone
by means of Fierz transformation

f0,15(
G

f0,1
G G, ~20!

where G means Dirac matrixG51, gm, gmg5 , smn. The
factorization of the color indices takes the convention t
the color indices of the partonic amplitude are extracted fr
the partonic amplitude and attributed to the correspond
pion DA. The choice of the lowest twist componentsf0,1

G of
f0,1 is made by employing the power counting. Assume t
the pion DAfm1•••mF ;a1•••aB has the fermion indexF and
the boson indexB. The fermion indexF arises from the spin
index factorization for 2F fermion lines connecting the pio
01400
d

e

e
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ts
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g

t

DA and partonic amplitude and the boson indexB denotes
the nD power of momenta in previous collinear expansi
and thenG gluon lines asB5nD1nG . Because we have
attributed the large scale factor 1/Q into the partonic ampli-
tude, the pion DA can only contain small scaleL'LQCD .
Therefore, we may write

fm1•••mF ;a1•••aB5(
i

Lt i21ei
m1•••mF ;a1•••aBf i . ~21!

The spin polarizersei are composed of vectorspm, nm and
g'

m , whereg'
m has superscriptm51,2. The variablet i rep-

resents the twist associated withf i . The restrictions over the
polarizerei

m1•••mF ;a1•••aB are

na j
ei

m1•••mF ;a1•••a j •••aB50. ~22!

This is because the polarizersei are always projected by
wa8

a . The dimension offm1•••mF ;a1•••aB is determined by
dimensional analysis

d~f!53F1B21, ~23!

and the maximum of the dimension ofei can be found as

max@d~ei !#5F2
1

2
@12~21!B#. ~24!

By equating the dimensions of both sides of Eq.~21!, we can
obtain the minimum value oft i

t i
min52F1B1

1

2
@12~21!B#. ~25!

It is obvious from Eq.~25! that there are only finite number
of fermion lines, gluon lines and derivatives for a give
power of 1/Q2.

III. O„1ÕQ4
… CONTRIBUTIONS OF g* p\g

The lowest order diagrams are displayed in Fig. 1.
applying the collinear expansion, we can write the result

M ~g* p→g!52 ie2emablP1
aP2

belFpg~Q2!, ~26!

where el denotes the polarization vector of the final sta
photon. The leading-order power contribution ofFpg(Q2) is
calculated from Figs. 1~a! and 1~b! as

Fpg
LO~Q2!54CpE

0

1

dx
f2~x!

Q2x~12x!
, ~27!

where the charge factorCp5(eu
22ed

2)/A2 with eu anded the
charges ofu andd quark in units of the elementary charg
The NLO power correction part ofFpg(Q2) is evaluated
from Fig. 2 to take the form as
2-3
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Fpg
NLO~Q2!5216CpE

0

1

dx
@G~x!1G̃~x!~122x!#

Q4x~12x!
.

~28!

The relevant DAs are expressed explicitly as follows:

f2~x!52 i
1

4E0

` dl

~2p!

3eilx^0uq̄~0!g5n”q~ln!up~P1!&, ~29!

G~x!52
1

8
e'

abE
0

1

dx1E
0

` dl

~2p!

dh

~2p!
eih(x12x)eilx

3^0uq̄~0!gaDb~hn!q~ln!up~P1!&, ~30!

G̃~x!52
i

8
d'

abE
0

1

dx1E
0

` dl

~2p!

dh

~2p!
eih(x12x)eilx

3^0uq̄~0!g5gaDb~hn!q~ln!up~P1!&. ~31!

The tensorse'
ab andd'

ab are defined ase'
ab5eabglpgnl and

d'
ab5panb1napb2gab.

The nonvanishing valence quark mass can also contri
to the NLO power corrections. We employ the scheme t
the partons involved in the partonic amplitude are massl
This does not affect the final result. By taking into accou
the contributions from the quark mass operatorm, we get the
result

Fpg
NLO~Q2!umÞ0528CpE

0

1

dx
@H~x!1H̃~x!~122x!#

Q4x~12x!
,

~32!

where two new twist-4 DAsH and H̃ are expressed as

H~x!52
i

16
e'

abE
0

` dl

~2p!

3eilx^0uq̄~0!msabq~ln!up~P1!&, ~33!

H̃~x!52
i

4E0

` dl

~2p!

3eilx^0uq̄~0!mg5q~ln!up~P1!&. ~34!

FIG. 2. The Feynman diagrams contribute to the next-
leading-order power corrections. The propagator with one bar is
special propagator.
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Note that H(x) and H̃(x) are related to the conventiona
twist-3 pion DAsfs(x) andfp(x) @13# by a factorm0, the
average quark mass.

The four twist-4 DAsG, G̃, H andH̃ are not independent
They are related to each other by equations of motion. A
employing equations of motion, we obtain the remaining
dependent twist-4 DAsG8 andG̃8:

G8~x!52
1

16
e'

abE
0

1

dx1E
0

` dl

~2p!

dh

~2p!
eih(x12x)eilx

3^0uq̄~0!gaD” ~hn!gbq~ln!up~P1!&, ~35!

and

G̃8~x!52
i

16
d'

abE
0

1

dx1E
0

` dl

~2p!

dh

~2p!
eih(x12x)eilx

3^0uq̄~0!g5gaD” ~hn!gbq~ln!up~P1!&. ~36!

As a result, we can recast Eq.~28! as

Fpg
NLO~Q2!5216CpE

0

1

dx
@G8~x!1G̃8~x!~122x!#

Q4x~12x!
.

~37!

Because of the factor (122x) associated withG̃8, G8 be-
comes dominant. The normalization off2(x) is fixed from
the pion weak decayp→mn such thatf2

AS(x)53 f px(1
2x)/A2 for the asymptotic ~AS! model and f2

CZ(x)
515f px(12x)(122x)2/A2 for the Chernyak-Zhitnitsky
~CZ! model @14#. The normalization forG8(x) is, in prin-
ciple, unknown. However, we can assume that it can be
termined from the axial anomalyp→2g to yield G8AS(x)
53A2p2f p

3 x(12x) for the AS model and G8CZ(x)
515A2p2f p

3 x(12x)(122x)2 for the CZ model. We ex-
press this normalization forG8 in more detail. It is known
that the amplitude forp0→2g is fixed by axial anomaly as

M ~p0→2g!52 ie2emablem~q!P1
aP2

bel~P2!A, ~38!

where

A5
1

4p2f p

,

ande(q) ande(P2) represent the polarization vectors for th
final state photons. We first consider the AS model. Supp
that G8(x)53 f pNx(12x)/A2 with an unknown factorN.
Substituting G8(x)53 f pNx(12x)/A2 into Eq. ~37! and
completing the integration overx, we obtain

Fpg~Q2!56A2 f pCp

1

Q2 F12
4N

Q2G . ~39!

By extrapolatingFpg(Q2) to all orders inQ2, we then obtain

-
e

2-4
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Fpg
all ~Q2!5

6A2 f pCp

Q214N
. ~40!

The form factorFpg
all (Q2) approaches a constant asQ2→0:

Fpg
all ~Q2!uQ2→0→

3 f pCp

A2N
. ~41!

We then compare the amplitudeM (g* p→g) under the limit
Q2→0 and the amplitudeM (p→2g) to find that N
52p2f p

2 . The normalization for the CZ model can be de
with in the same way. The above assumption that the am
tudeM (g* p→g) and the amplitudeM (p→2g) are identi-
cal in the limit Q2→0 will be tested by comparing the the
oretical prediction and the experimental data. If t
comparison appears to be not good, this only implies that
assumption should be modified, or wrong. But our appro
for deriving the NLO power correction is still applicable. U
to O(1/Q4), we write the photon-pion transition form facto

Fpg
AS~Q2!5

2 f p

Q2 F12
8 f p

2

Q2 G , ~42!

for the AS model, and

Fpg
CZ~Q2!5

10f p

3Q2 F12
8 f p

2

Q2 G ~43!

FIG. 3. The prediction of the photon-pion transition form fact
Q2Fpg(Q2) with NLO power corrections is compared with the e
perimental data@2#. The solid and dash lines correspond to t
transition form factor with the asymptotic~AS! and the Chernyak-
Zhitnitsky ~CZ! distribution amplitudes, respectively. The leadin
twist transition form factor withO(as) correction and asymptotic
distribution amplitude is also displayed as a point line.
01400
t
li-

e
h

for the CZ model. As shown in Fig. 3, the predictions of Eq
~42! and ~43! are compared with the CLEO data@2#. The
pion decay constantf p593 MeV has been used. The predi
tion from the AS model is in good agreement with the CLE
data.

As mentioned in the Introduction, the leading twist tra
sition form factor withO(as) correction can also explain th
CLEO data. TheO(as) correction is available and the co
rected form factor is expressed as~see e.g.@15#!

Fpg~Q2!5
2 f p

Q2 S 12
5

3

as~mR
2 !

p D , ~44!

where the Brodsky-Lepage-Mackenzie~BLM ! scale setting
mR

2'Q2/9, the AS model for the leading twist pion DA, an
the usual one-loop formula for the QCD running coupli
constant:

as~Q2!5
4p

b0ln
Q2

LQCD
2

~45!

have been used withLQCD50.2 GeV andb051122/3nf .
We compare Eq.~44! with Eq. ~42! in Fig. 3. The difference
between Eqs.~42! and ~44! is very small forQ2>3 GeV2.

IV. CONCLUSIONS

We have shown that the collinear expansion forg* p
→g can be systematically performed. TheO(Q24) power
corrections forFpg(Q2) have been evaluated in terms
four twist-4 DAs. The effects of the NLO power correction
have been estimated.

The other sources of power correction may also be imp
tant, such as the renormalon. The investigation of this kind
power correction is beyond the scope of this paper.

We have also limited ourselves to tree amplitudes. T
factorization theorem for the NLO power corrections shou
be proven in order to have a confident PQCD formalism. T
work for the proof of the factorization theorem is in prep
ration.
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