
Journal of Quantitative Spectroscopy &
Radiative Transfer 73 (2002) 571–582

www.elsevier.com/locate/jqsrt

Non-Fourier heat conduction with radiation in an absorbing,
emitting, and isotropically scattering medium

Hsin-Sen Chua ; ∗, Senpuu Linb, Chia-Hui Lina

aDepartment of Mechanical Engineering, National Chiao Tung University, 1001 Ta Hsueh Road,
Hsinchu 30010, Taiwan, ROC

bDepartment of Mechanical Engineering, National Lien Ho Institute of Technology, Miaoli 360, Taiwan, ROC

Received 23 April 2001; received in revised form 5 June 2001; accepted 5 June 2001

Abstract

This article numerically analyses the combined conductive and radiative heat transfer in an absorbing,
emitting, and isotropically scattering medium. The non-Fourier heat conduction equation, which includes
the time lag between heat 3ux and the temperature gradient, is used to model the conductive heat transfer
in the medium. It predicts that a temperature disturbance will propagate as a wave at 6nite speed. The
radiative heat transfer is solved using the P3 approximation method. In addition, the MacCormack’s
explicit predictor–corrector scheme is used to solve the non-Fourier problem. The e:ects of radiation
including single scattering albedo, conduction-to-radiation parameter, and optical thickness of the medium
on the transient and steady state temperature distributions are investigated in detail. Analysis results
indicate that the internal radiation in the medium signi6cantly in3uences the wave nature. The thermal
wave nature in the combined non-Fourier heat conduction with radiation is more obvious for large values
of conduction-to-radiation parameter, small values of optical thickness and higher scattering medium. The
results from non-Fourier-e:ect equation are also compared to those obtained from the Fourier equation.
Non-Fourier e:ect becomes insigni6cant as either time increases or the e:ect of radiation increases.
? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The analysis of heat transfer by simultaneous conduction and radiation in an absorbing, emit-
ting, and scattering medium has been of considerable practical importance in many engineering
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applications involving 6re protection, manufacturing of glass, 6brous and foam insulation, crys-
tal growth, laser processing of semiconductors, etc. It has thus been the subject of numerous
investigations [1–14]. Most of the previous studies dealt with the conduction heat transfer us-
ing the classical heat conduction theory, Fourier’s law, which postulates that a local change
in temperature causes instantaneous temperature perturbations at all regions in the medium. In
other words, heat propagates at in6nite speed. However, in situations dealing with cryogenic
temperature, extremely short times, high-rate change of temperature or heat 3ux, the validity of
in6nite heat-propagation speed is restricted. Several investigations have indicated that the 6nite
heat-propagation speed becomes dominant [15–23]. FOzisik and Tzou [15] gave an excellent
review on the research emphasizing engineering applications of the thermal wave theory. The
6nite speed of heat propagation may have to be considered in modeling the conduction heat
transfer with radiation in an absorbing and emitting medium. Due to the complexity of radia-
tive heat transfer phenomenon and the numerical instability of hyperbolic system, the combined
e:ect of non-Fourier heat conduction and radiation is rarely investigated. Glass et al. [24] exam-
ined combined conduction and radiation using non-Fourier law with hyperbolic heat conduction
model in an absorbing and emitting medium for the cases of a constant and a pulsed heat 3ux
boundary. For optically thin, the wave nature gave rise to a thermal front propagating from
the back surface which resulted from the heating of the back surface by radiation through the
medium. While, the scattering e:ect was not taken into account in their investigation.

It is well known that the scattering of thermal radiation by real particles or impurities in a
medium can play a signi6cant role in the overall heat transfer [4–6,9,10,12,14]. The present
work is focused on the transient interaction of non-Fourier heat conduction and radiation in
an absorbing, emitting, and gray medium with the e:ect of isotropic scattering. The e:ects
of radiation including single scattering albedo, conduction-to-radiation parameter, and optical
thickness of the medium on the transient and steady state temperature distributions are examined
in detail. The results from non-Fourier heat conduction equation are also compared to those
obtained from the corresponding Fourier equation.

2. Physical model and theoretical analysis

Consider an absorbing, emitting and isotropically scattering planar medium that is initially
at a uniform temperature T0, con6ned to the domain 06 x6L as illustrated in Fig. 1. For
times greater than zero, the two boundary surfaces are kept at a speci6ed temperature of TL
and TR, respectively. To consider the 6nite speed of heat propagation for non-Fourier heat 3ux
qc, a damped-wave model has been proposed by Joseph and Preziosi [25] that uses a variety of
reasonings and derivations. Cattaneo [26] and Vernotte [27] independently suggested a modi6ed
heat conduction model in the form of

qc(x; t +�)=− k∇T (x; t); (1)

where � is the mean relaxation time of the conductive heat carriers, k the thermal conductivity,
x the position vector, and t the physical time. Eq. (1) implies that the temperature gradient
established at time t, due to insuNcient response time, results in a heat 3ux vector at a later
time t+�. This means that the heat wave model of non-Fourier heat conduction allows a time
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Fig. 1. Physical model and coordinate system.

lag between the heat 3ux and the temperature gradient. Based on the ideas from the collision
theory of molecules, �= 
=C2, where C is the thermal wave velocity in the medium and 
 the
thermal di:usivity of the medium. Obviously, as C → ∞ we have � → 0, and the Fourier heat
3ux equation is obtained.

After applying Taylor’s series expansion to heat 3ux qc in Eq. (1) with respect to �, the
linearized non-Fourier constitutive conductive equation is written as

qc(x; t) +�
@qc(x; t)

@t
=− k∇T (x; t): (2)

The energy equation for combined conduction and radiation in a participating medium with
constant properties is given as

�dcp
@T (x; t)

@t
=−∇[qc(x; t) + qr(x; t)]; (3)

where qr(x; t) is the net radiation heat 3ux, �d the density and cp the constant-pressure speci6c
heat of the medium.

The intensity of radiation I , depends only on x and �, satis6es the radiative transfer equation

�
�
@I(x; �)

@x
=− I(x; �) + (1−!)Ib(x) +

!
2

∫ 1

−1
I(x; �′)p(�; �′) d�′; (4)

where �=cos �; � is the extinction coeNcient, ! is the single scattering albedo, and p(�; �′)
is the phase function.

The boundary conditions for the intensities of di:use boundaries are

I+(0)= �LIb(TL) + 2�L

∫ 1

0
I−(0; �′)�′ d�′; 1¿�¿ 0; (5a)

I−(L)= �RIb(TR) + 2�R

∫ 1

0
I+(L; �′)�′ d�′; −16�¡ 0; (5b)
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where � and � are the emissivity and re3ectivity, respectively. Assuming the boundaries are
under thermal equilibrium and opaque, that is 
j = �j and �j + 
j =1, where j=L;R represent
the left and right boundary, respectively.

Since Eq. (4) is an integral-di:erential equation, a closed-form solution is not available. Ratzel
and Howell [7] concluded that for one-dimensional planar problems, the P3 approximation
method yields results in close agreement with ‘exact’ solutions. By using P3 approximation
method, the intensity of radiation I(x; �′) and the phase function p(�; �′) can be assumed to
represent as a series of Legendre polynomials. After rearranging, a set of di:erential equations
is obtained

d 1(�)
d�

+ (1−!) 0(�)=4�(1−!) T 4(x); (6a)

2
d 2(�)
d�

+
d 0(�)
d�

+ 3 1(�)=0; (6b)

3
d 3(�)
d�

+ 2
d 1(�)
d�

+ 5 2(�)=0; (6c)

3
d 2(�)
d�

+ 7 3(�)=0; (6d)

where  is the Stefan–Boltzmann constant, �=�x is the optical variable, and  0;  1;  2 and  3
are the incident radiation, the radiative heat 3ux, the second, and third moments of the incident
radiation, respectively.

Applying the Marshak’s boundary conditions yields the following set of equations for the
boundaries:

(1− �L) 0(0) + 2(1 + �L) 1(0) +
5
4
(1− �L) 2(0)=4�L T 4

L ; (7a)

(1− �L) 0(0) +
12
5
(1 + �L) 1(0) +

5
2
(1− �L) 2(0)

+
8
5
(1 + �L) 3(0)=4�L T 4

L ; (7b)

(1− �R) 0(�0)− 2(1 + �R) 1(�0) +
5
4
(1− �R) 2(�0)=4�R T 4

R ; (7c)

(1− �R) 0(�0)− 12
5
(1 + �R) 1(�0) +

5
2
(1− �R) 2(�0)

− 8
5
(1 + �R) 3(�0)=4�R T 4

R : (7d)

For convenience in the subsequent analysis, the dimensionless schemes are de6ned as follows:

�=
T − T0

T0
; !=

Ct
L

; "=
x
L
; Qc =

qc

 T 4
0
; Qr =

qr

 T 4
0
;
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N =
�dcpT0C

 T 4
0

; M =
LC



; d�=� dx; �0 =�L;

 ̃ 0 =
 0
 T 4

0
;  ̃ 1 =

 1
 T 4

0
;  ̃ 2 =

 2

 T 4
0
;  ̃ 3 =

 3

 T 4
0
: (8)

The energy equation (3) and non-Fourier heat conduction equation (2) are expressed in terms
of the above dimensionless variables as

@�("; !)
@!

+
1
N

@Qc("; !)
@"

+
1
N

@Qr("; !)
@"

=0; (9)

@Qc("; !)
@!

+ N
@�("; !)

@"
+MQc("; !)=0: (10)

The initial condition is expressed as

!=0; �= �0; Qc = 0; Qr = 0; (11)

and the boundary conditions are written as

�= �L at "=0; (12a)

and

�= �R at "=1: (12b)

The dimensionless forms of the coupled ordinary di:erential equations (6a)–(6d) are

d ̃ 0

d"
=− 3�0 ̃ 1 +

14
3
�0 ̃ 3; (13a)

d ̃ 1

d"
=4�0(1−!)� 4 − (1−!)�0 ̃ 0; (13b)

d ̃ 2

d"
=

−7
3

�0 ̃ 3; (13c)

d ̃ 3

d"
=

−8
3

�0(1−!)� 4 +
2
3
�0(1−!) ̃ 0 −

5
3
�0 ̃ 2; (13d)

and the corresponding dimensionless radiative boundary conditions (7a)–(7d) are:

(1− �L) ̃ 0(0) + 2(1 + �L) ̃ 1(0) +
5
4
(1− �L) ̃ 2(0)− 4�L�4L =0; (14a)

(1− �L) ̃ 0(0) +
12
5
(1 + �L) ̃ 1(0) +

5
2
(1− �L) ̃ 2(0)

+
8
5
(1 + �L) ̃ 3(0)− 4�L�4L =0; (14b)

(1− �R) ̃ 0(�0)− 2(1 + �R) ̃ 1(�0) +
5
4
(1− �R) ̃ 2(�0)− 4�R�4R =0; (14c)
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(1− �R) ̃ 0(�0) +
12
5
(1 + �R) ̃ 1(�0) +

5
2
(1− �R) ̃ 2(�0)

− 8
5
(1 + �R) ̃ 3(�0)− 4�R�4R =0: (14d)

Here �0 =�L is the optical thickness, and N = �dcpT0C
 T 4

0
is so called conduction-to-radiation pa-

rameter.
For the Fourier law of conduction, the dimensionless energy and 3ux equations (9) and (10),

when combined, reduce to
@�("; !)

@!
− 1

M
@2�("; !)

@"2
+

1
N

@Qr("; !)
@"

=0; (15)

where the initial, boundary conditions, and radiation heat 3ux equations remain the same as
those given by Eqs. (11)–(14), respectively.

3. Numerical method

The non-Fourier problem considered above involves a discontinuity at the wave front. Mac-
Cormack’s predictor–corrector scheme has been shown to handle moving discontinuities quite
well [20–24,28,29] and is thus chosen for the present study. The scheme can be characterized
as an explicit second-order accurate predictor–corrector sequence for the integration of partial
di:erential equations and coupled with the P3 approximation method to solve the combined
non-Fourier heat conduction problem with radiation in the participating medium. In order to
apply MacCormack’s scheme, Eqs. (9) and (10) are written in vector form as

@E
@!

+
@F
@"

+H =0; (16a)

where

E=
[

�
Qc

]
; F =

[
(Qc +Qr)=N

N�

]
; H =

[
0

MQc

]
: (16b)

Then, Eq. (16a) is expanded by the 6nite di:erences and explicit method, we have
Predictor

Ê
n+1
i =En

i −
S!
S"

(Fn
i+1 − Fn

i )−S!Hn
i ; (17a)

Corrector

Ê
n+1
i =

1
2

[
En

i + Ê
n
i −

S!
S"

(F̂
n+1
i − F̂

n+1
i−1 )−S!Ĥ

n+1
i

]
: (17b)

Here, the subscript i denotes the grid points in the space domain, superscripts n and n + 1
denote the time levels, the tilde refers to the predicted value at the time level n+ 1, and S"
and S! are the space and time steps, respectively.

Eqs. (16), along with the initial, boundary conditions, and radiation heat 3ux equations,
Eqs. (11)–(14), constitute the complete non-Fourier mathematical formulation of heat transfer
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problem. The BVPFD subroutine of the commercially available IMSL software library can be
used to solve the system of coupled ordinary di:erential equations with boundary conditions
at two points, using a variable order, variable step size, 6nite-di:erence method with deferred
corrections. The subroutine has been employed to solve the coupled di:erential equations of
intensity of radiation, and then one of the solutions,  ̃ 1("), is the net radiative heat 3ux, Qr("),
that we need in the temperature-computing processes. First, the temperature is calculated by
inserting the initial conditions into Eqs. (17a) and (17b). Then substitute the new tempera-
ture distributions into Eqs. (13a)–(13d), and obtain the radiative heat 3ux at each time step.
Subsequently, they are then substituted into Eqs. (17a) and (17b) to obtain new temperature
distributions and conduction heat 3uxes at the next time step. The above procedure is repeated
until the system reaches the steady-state convergence criterion

max
∣∣�n+1

i − �n
i

∣∣∣∣�n+1
i

∣∣ 6 10−5: (18)

For the Fourier heat conduction with body radiation, the Crank–Nicolson method is used
to integrate the parabolic heat conduction equation, Eq. (15), while the radiative heat transfer
is still solved using the P3 approximation method to ensure accurate solutions. The BVPFD
subroutine is also used to solve the system of coupled ordinary di:erential equations.

4. Results and discussion

Following the work of Glass et al. [24], the dimensionless variable M =LC=
 is set to be
2, and the refractive index of the medium is taken as unity. For all cases considered, we have
taken �L = �R =1:0; �L =�R =0:0 (for black surfaces), maintaining the left boundary at �L =1:0
and the other side at �R = �0 =0:0.
Grid re6nement and time step sensitivity studies were performed for the physical model to

ensure that the essential physics are independent of grid size and time interval. Fig. 2 presents
the temperature distributions with three di:erent grid sizes of uniform 201, 501, and 801,
for conduction-to-radiation parameter N =10:0, optical thickness �0 =1:0 and single scattering
albedo !=0:0 at three di:erent times, respectively. The hyperbolic wave nature of non-Fourier
heat conduction is clearly shown by the sharp wave front displayed. The results from 201 grids
exhibit a high degree of dispersion, but without oscillations near the wave front. In contrast,
a minor degree of dispersion, but with oscillations near the discontinuities are present in the
results from 801 grids. Yang [29] suggested that the oscillations near discontinuities could not
be avoided when the 6nite-di:erence scheme was used to solve the hyperbolic heat conduction
equation. Glass et al. [28] suggested a way to decrease the oscillations: increase the mesh size,
i.e., decrease the computation grids. In all the cases studied, 501 grids were found to exhibit
small degree of dispersion and no oscillations near the wave front. Uniform 501 grids system
with Courant number of +=S"=S!=0:98 were used to generate the presented results (with
small value of +, oscillations near discontinuities are enlarged [24]).

The e:ects of single scattering albedo !, conduction-to-radiation parameter N , and optical
thickness �0 of the medium on the transient and steady-state temperature distribution are inves-
tigated in detail. For all the 6gures, the hyperbolic solutions of non-Fourier heat conduction are
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Fig. 2. Temperature distributions with three di:erent
grid sizes for N =10:0, �0 = 1:0 and !=0:0.

Fig. 3. Temperature distributions for a purely scattering
medium of single scattering albedo !=1:0.

shown by solid lines, while the Fourier and steady-state (same for non-Fourier and Fourier heat
conduction) solutions are shown by broken lines.

Fig. 3 shows the transient and steady temperature distributions for a purely scattering medium
(single scattering albedo !=1:0). A purely scattering medium cannot absorb radiative heat
3uxes. Therefore, the temperature pro6les are the same as those for purely conductive case in
transient history and also in the steady state. This phenomenon is similar to what happened
in another combined parabolic heat conduction and radiation case [1]. Without considering the
internal radiation, the hyperbolic equation of non-Fourier conduction, di:erent from the di:usion
equation of Fourier conduction, predicts that a thermal wave disturbance tends to propagate in
a given direction at a given propagation speed until its course is impeded by a wall or barrier.
Since the dimensionless wave speed is unity, the wave front located at position "=0:3 (0:6)
at time !=0:3 (0:6), and an undisturbed region is found ahead of its front. Obviously, the
thermal waves propagate toward the right boundary by time !=0:6, when the time passes,
the re3ection waves from the right boundary propagating toward the left boundary will appear
until a smooth temperature distribution that steady state has been reached. The non-Fourier
e:ect on heat conduction is a short-time behavior. The steady-state temperature distribution for
non-Fourier conduction is the same as that for Fourier conduction.

Figs. 4(a) and (b) illustrate the e:ects of the single scattering albedo ! on the transient and
steady-state temperature distributions for N =1:0 and �0 =1:0 with !=0:0 and 0.5, respectively.
Note that the temperature pro6les for purely scattering case !=1:0 are the same as for pure
conduction just discussed above in Fig. 3, while, the temperature pro6les for !=0:0 are the
same as those for a pure absorbing, emitting medium. When radiative e:ect is taken into
accounted, the radiation is found to enhance the heat transport in the medium. Because of
low scattering (a smaller value of !), a larger amount of radiation energy is absorbed in
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Fig. 4. E:ects of single scattering albedo ! on temperature distribution for N =1:0, �0 = 1:0 with (a) !=0:0 and
(b) !=0:5.

the medium, in both Fourier and non-Fourier cases, decreasing the value of ! increases the
temperature pro6les. For non-Fourier heat conduction, due to a smaller scattering albedo, the
medium is heated by the larger amount of radiation, resulting in a smaller temperature front
propagating from the right surface. The sharp wave front of hyperbolic nature from non-Fourier
e:ect has been smoothened by the strong radiative e:ect by decreasing the value of scattering
albedo !. The wave nature of combined non-Fourier heat conduction and radiation is more
obvious in a more highly scattering medium. In other words, the e:ects of radiation on thermal
wave propagation are more pronounced in a non-scattering medium. As time passes, the e:ect
of scattering on temperature pro6les becomes less evident since heat conduction is dominated
by di:usion. This resembles the results in Fig. 3 mentioned above.

Figs. 5(a) and (b), along with Fig. 4(b), display the e:ects of conduction-to-radiation param-
eter N on the transient and steady-state temperature distributions for !=0:5 and �0 =1:0 with
N =0:1, 10.0 and 1.0, respectively. The conduction-to-radiation parameter is taken as N =0:1,
1.0 and 10.0, which can represent the radiation e:ects from the strong to the weak radia-
tion. As expected, both Fourier and non-Fourier cases, decreasing the value of N increases the
temperature pro6les. The non-Fourier e:ects become insigni6cant as either time increases or
conduction-to-radiation parameter N decreases.

Figs. 6(a) and (b), along with Fig. 4(b), demonstrate the e:ects of optical thickness �0 on
the transient and steady-state temperature distributions for !=0:5 and N =1:0 with �0 =0:1,
10.0 and 1.0, respectively. The di:erent values of optical thickness studied include �0 =0:1,
1.0 and 10.0, which characterize the cases from optically thin to optically thick. An optically
thin medium absorbs a relatively smaller amount of radiation than an optically thick one. Thus,
increasing the value of �0 increases the temperature pro6les for both Fourier and non-Fourier
cases, and the non-Fourier e:ects become insigni6cant as either time increases or the optical
thickness �0 increases. Due to a larger optical thickness, the medium is heated by the larger
amount of radiation, resulting in a smaller temperature front propagating from the right surface.
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Fig. 5. E:ects of conduction-to-radiation parameter N on temperature distributions for !=0:5, �0 = 1:0 with
(a) N =0:1 and (b) N =10:0.

Fig. 6. E:ect of optical thickness �0 on temperature distributions for !=0:5, N =1:0 with (a) �0 = 0:1 and
(b) �0 = 10:0.

The sharp wave front of hyperbolic nature from non-Fourier e:ect has been smoothened by
increasing the value of optical thickness �0. The wave nature is more obvious for optically
thin medium. In other words, the e:ects of radiation on thermal wave propagation are more
pronounced in an optically thin medium. The radiative heat 3ux vanishing in both limits at zero
and in6nite optical thickness implies that the highest radiative heat loss occurs somewhere in
the intermediate optical thickness. This lead temperature pro6les in steady state decreases with
increasing optical thickness until one critical value of �0 is reached, and then diminishes beyond
that point.
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5. Conclusion

Transient and steady behavior of non-Fourier-e:ect in heat conduction with radiation in a
gray, absorbing, emitting, and isotropically scattering one-dimensional medium has been pre-
sented. Boundary surfaces were considered to be black, di:usely emitting, di:usely re3ecting
and isothermal. The P3 approximation method was employed to treat the equation of radiative
heat transfer, while MacCormack’s explicit predictor–corrector scheme was used to solve the
hyperbolic heat conduction equation.

The e:ects of radiation on the thermal wave propagation in the medium were examined
using three radiation parameters: single scattering albedo, conduction-to-radiation parameter, and
optical thickness. The radiation e:ect is more pronounced at small values of single albedo, small
values of conduction-to-radiation parameter, and large values of optically thickness. Analysis
results demonstrate that the hyperbolic sharp wave front of non-Fourier conduction becomes
smoother when radiative heat transfer is taken into account. The wave nature is more obvious in
a highly scattering, a larger conduction-to-radiation parameter, and an optically thin medium. In
a purely scattering medium, the thermal behavior is reduced to that of pure conduction. These
three parameters more signi6cantly a:ect transient temperature distribution than steady-state
temperature distribution. The results from non-Fourier-e:ect equation are also compared to those
obtained from the Fourier equation. Non-Fourier e:ect becomes insigni6cant as either time
increases or the e:ect of radiation increases.
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