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Melting of the vortex lattice in high-T . superconductors
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The precise measurements of vortex melting point towards a need to develop a quantitative theoretical
description of thermal fluctuations in vortex matter. To tackle the difficult problem of melting, the description
of both the solid and the liquid phase should reach the precision level well below 1%. Such a theory in the
framework of the Ginzburg-Landau approach is presented. The melting line location is determined, and mag-
netization and specific-heat jumps along it are calculated. We find that the magnetization in the liquid is larger
than that in the solid by 1.8% regardless of the melting temperature, while the specific-heat jump is about 6%
and slowly decreases with temperature. The magnetization curves agree with experimental results on Y-Ba-
Cu-O and Monte Carlo simulations.
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A magnetic field generates an array of vortices in type-lllength, the magnetic field can be considered constant and
superconductors. The vortices strongly interact with eacmonfluctuating (an excellent approximation in the region
other forming highly correlated configurations such as thestudied. Statistical physics is described by the statistical sum
vortex Iattipe. In hight cuprates at relatively high tempera- 7= D yD y exp(—F/T). It accurately describes thermal fluc-
tures, vortices move and vibrate due to thermal fluctuationgyations in the range of relatively large magnetic fielts (
to the extent that the lattice can melt becoming a “vorteXxss H_,=100 G in Y-Ba-Cu-Q and temperatures nedr,
liquid.”* Several recent remarkable experiments clearly de(70_110 K in Y-Ba-Cu-Q. NearT,, a(T) can be approxi-
termineq that Fhe vortex lattice meIting in h?gh-supercc_)n-' mated btaT.(1—t). In this paper, we will consider only
ductors is a first-order phase transition with magnetizatiomhigh « and temperatures nedr,. The model is, however,
jumps and spikes in specific he&fThe magnetization and  highly nontrivial even within the lowest Landau-levélL )
entropy jumps were measured using diverse techniques sugihproximation. In this approximation, which is valid when
as local Hall probes, superconducting quantum interferencg,e magnetic field is high, only lowest Landau-level mode is

45 , H 0 . . L .
device;"® torque magnetometfy and integration of the retained and the free energy simplifigster rescaling®

specific-heat spikd.Related investigations indicate that, in
addition to the spike, there is also a jump in specific Réat. 1
In spite of those precise measurements of vortex melting, a f= _f d3x
guantitative theoretical description of vortex melting is still 47r\/§
lacking. We present such a theory in the framework of the
Ginzburg-Landau approach in this work. The simplified model has only one parameter, the dimension-
Thermal fluctuations in vortex matter have attracted grealess scaled temperatueg = — (bw/4m+2) ??a;,, wherew
attention since the higfic superconductors were discovered = y2Gim?t,a,=(1—t—b)/2t=T/T.,b=B/H.,. The di-
over a decade ago. In highly anisotropic superconductors likeensionless Ginzburg numb&i characterizing the impor-
Bi-Sr-Ca-Cu-0 near the melting point vortices are quite welltance of thermal fluctuations ESWKZHC;//CDS)Z, and the
separated and the system can be approximated by an array@iisotropy parametey is ym,/m,,.
pointlike objectsl. In less anisotropic ones like Y-Ba-Cu-O, The LLL GL model was studied by a variety of different
near the melting point the vortices overlap and one has to usgonperturbative analytical methods. Among them are the
the Ginzburg-LandalGL) model. The model is defined by density functional® 1/N,!! elasticity theory? and others?

1 1
- 2 2. .14
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the following free energy: The model was also studied numerically in both
three-dimensionat (3D) and 2D*>*® However, we will not
[ s R ,. h? ) , b discuss those approaches in this paper.
F‘f d X2mab|D¢| +2_mc|‘92’z”| —a(myl +7|¢| While applying the renormalization groufRG) on the
one-loop level to this model, Brezin, Nelson, and Thiaville
+(B—H)2 ) found no fixed points of théfunctiona) RG equations and
87 thus concluded that the transition to the solid phase is not

continuous. The RG method therefore cannot provide a
whereA=(By,0) describes magnetic fieldonsidered con- quantitative theory of the melting transition. Two perturba-
stant and nonfluctuating, see beloim Landau gauge and tive approaches were developed and greatly improved re-
covariant derivative is defined b=V —i(27/dy)A, P,  cently to describe the solid phase and liquid phases, respec-
=(hc/e*)(e*=2e). When k=\/¢ is large (greater than tively. The perturbative approach on the liquid side was
10), wherex magnetic penetration depth agdcoherence pioneered by Ruggeri and Thoulé8syho developed an ex-
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pansion in which all the “bubble” diagrams are resummed. Assuming the absence of singularities on the liquid
Unfortunately, they found that the series are asymptotic andyranch allows to develop a sufficiently precise theory of the
although first few terms provide accurate results at very high.LL GL model in a vortex liquid(even including an over-
temperatures, the series become inapplicablefdess than ~ cooled ong using the Borel-Pad& (BP) method at any tem-

— 2 which is quite far above the melting lirflocated around ~Perature. After clarifying several issues that prevented its use
ar=—10). We obtained recently an optimized Gaussian@Nd acceptance previously we then combine it with the re-
seried that is convergent rather than asymptotic with radiuscently developed LLL theory of solids to calculate the

of convergence ofi;~—5, but still above the melting line. melting line and the magnetization and specific-heat jumps

On the solid side, Eilenberg@rcalculated the fluctuations ?Iﬁn% It I?arllytorj[,hRugge'rfl. aﬂd Ifgoulé%ﬂ;rleédpugsuccess{h .
spectrum around Abrikosov’s mean-field solution. Maki and ully 1o calculate the Specific heat by using ecause their

0 ) series was too short. Subsequent attempts to calculate the
Takayam@&” noticed that the vortex lattice phonon modes are . . . X . .

: : ‘melting point by using BP also ran into problems. Hikami,
softer than those of the usual acoustic phonons in atomi

crystals and this leads to infrar€lR) divergences in certain omparing the BRliquid) energy with the one-loop solid
guantities. This was initially interpreted as the destruction Oenergy and, in doing so, obtained the melting temperature
the vortex solid by thermal fluctuations and the perturbatiorbm: 7 Hc;wever their c;ne-loop solid energy was incorrect

theoEy was a?andoned. Howeve_r, the dl\_/e_zrgences resembzl;l(%d’ in any case, the two-loop correction is necessary. As
the “spurious” IR divergences in the critical phenomena jemonstrated in the following, the BP energy combined with

theory. A recent analysis demonstrated that all these IR dige correct two-loop solid energy computed recently not only
vergences cancel in physical quantifieand the series there- givesaT=—9.5, but also allows to obtain a wide range of

fore are reliable. The two-loop calculation was performed, sqyuantitative predictions within the model.

that the LLL GL theory on the solid side is now precise = Now we present the solution of the LLL GL model. The
enough even for the description of melting. liquid LLL (scaled effective free energyof the scaled
However, on the liquid side, a theory fag<—5 is re-  model defined in Eq.(2)] is written as f;,=4eYq1
quired. Moreover this theory should be extremely precise+g(x)] . The function g can be expanded ag(x)
since the internal energies of the solid and the liquid neae >c,x", where the high-temperature small parameter
melting differ by a few percents only. Developing such a=}¢"32 s defined as a solution of the Gaussian gap equa-
theory requires a better qualitative understanding of theion, £¥?—a;e¥?>—4=0 for the excitation energy . The co-
metastable phases of the model. It is clear that the overheatedficients can be found in Refs. 24 and 25. We will denote
solid becomes unstable at some finite temperature. It is na@,(x) by the[k,k—1] BP transform ofg(x) (other BP ap-
clear, however, whether the overcooled liquid becomes unproximants clearly violate the correct low-temperature as-
stable at some finite temperatutie watep or exists all the  ymptoticy. The BP transform is defined a& gy (xt)exp
way down toT=0 as a metastable state. Despite its limited(—t)dt where g, is the [k,k—1] Pade transform of
precision, the GaussiafHartree-Fock variational calcula- Eﬁ‘;‘ll(cnx”/n!). For k=4 the liquid energy already con-
tion, is usually a very good guide to the qualitative features,erges. We used in this work=5 to achieve the required
of the phase diagram. While such a calculation in the liquidyrecision (~0.1%). The liquid energy completely agrees
was performed quite some time atfoon the solid side a yith the optimized Gaussian expansion resuisove its ra-
more complicated one sampling inhomogeneous states Wagys of convergence a;=—5. In addition similar results
performed recently. The results are as follows. The solid \ye optained in the 2D GL model agree with existing Monte

state is the stable one below the melting temperature, bgai simulationd® The solid effective energy to two-loops
comes metastable at somewhat higher temperatures and;is1

destabilized att~ —5. The liquid state becomes metastable
below the melting temperature, however, in contrast to the 22
solid, it does not loose metastability all the way downTto foo= — T
=0 and the excitation energy approaches zero. 2
Meanwhile, similar qualitative results have been obtained
in a different field of physics. A variety of analytical and Comparing the solid energy to that of the liquidset in Fig.
numerical method? have indicated that liquita9 phase of 1), reveals thaat'= —9.5. This is in accord with experimen-
the classical one-component Coulomb plasma also exists ag@ results. As an example, in Fig. 2 we present the fitting of
metastable state down ©=0 with energy gradually ap- the melting line of fully oxidized YBaCu;O; (Ref. 7) that
proaching that of the Madelung solid and the excitation engives T,=88.2,H,=175.9,Gi=7.0 10 °, x=50. Melting
ergy diminishing. We speculate that the same phenomendines of optimally doped untwinnédYBa,Cu;0;_ 5 and
would appear to happen in any system of particles interactin@yBa,CuO; (Ref. 26 are also fitted extremely well. For
via long-range repulsive forces. In fact the vortices in theexample, for YBaCu;O;_ 5 in (Ref. 3), the melting line fit-
London approximation resemble repelling particles with theting gives T,=93.07, H,,=167.53,Gi = 1.9 104, «
force even more long range than the Coulomb. In light of=48.5(see also Ref. 27
this impetus to consider the above scenario in the vortex The 3D Monte Carlo simulatiof$are not precise enough
matter, we provide both theoretical and phenomenologicalo provide an accurate melting point since the LLL scaling is
evidence that the above picture is a valid one. violated. One gets different values aff'=—14.5, —13.2,

Euijita, and LarkiR* attempted to find the melting point by

2.4
+2.848a7| Y2+ —. (3
ar
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FIG. 1. Free energy of solifline) and liquid (dashed ling as H(T)
function of the scaled temperature. The solid line ends at a point
(doY indicating the loss of metastability. Inset shows a tiny differ- g5 3. Comparison of the theoretical magnetization curves
ence between liquid and solid near the melting point. (lines) of fully oxidized YBa,Cu,O, utilizing parameters obtained

L . o by fitting the melting line on Fig. 2 with torque magnetometry

—10.9 at magnetic fields 1, 2, 5T, respectively. This viola-gyperimental resuifgdots. Arrows indicate melting points while at
tion is perhaps due to a small sample sipé order 100 o magnetic field the experimental data start from the point in
vortices. The situation in 2D is better since the sample sizeyhich the magnetization is reversible indicating low disorder.
is much larger. We performed similar calculation in the 2D
LLL GL model and found that the melting point ia7  magnetization jump ratio defined bM divided by the
=—13.2. Itis in good agreement with the MC simulatidis. magnetization at the melting on the solid side is found to be
Phenomenologically the melting line can be located usingqual to
Lindemann criterion or its more refined version using
Debye-Waller factof® The more refined criterion is required AM Am
in the case of Y-Ba-Cu-O since vortices are not pointlike. M. WZO-OB- 4
Numerical investigation of the Yukawa ¢dsndicated that ° °
the Debye-Waller factoe 2V (a ratio of the structure func- This prediction is compared on Fig.(the upper insgtwith
tion at the second Bragg peak at melting to its valud at the experimental results on fully oxidized YB2u;0; (Ref.
=0) is about 60%. We get using methods of Ref.2%V 7, rhomb$ and optimally doped YBZu;0,_5 (Ref. 5
=0.59 foral'= —9.5. stars.

The scaled magnetization is defined byn(ay) Thesg samples probqbly have the Ipwest amount of disor-
= —(d/dar)fer(a7). At the melting pointal=—9.5 the der thatis notincluded in the calculations. From the model,

we caculate the specific-heat jump ratio at the melting

% 23

AM/M (%)
5 2—2b+t)? " b
Ac=0.007 — | —0.20Gi 3b—1-1) 2

3”’ H 5)

It is compared on the lower inset on Fig. 2 with the experi-
mental values of Ref. Busing the fitting parameters given
abovs.

In addition to describing the melting, we present here an
example of quantitative results that are obtained using the

0% ' 095 TIT, > ] present approach—the magnetization curves. Our LLL mag-
o - pe= 70 = P p= p netization curve coincides with the LLL Monte CarMC)
result of Ref. 14which is very accurate since the LLL scal-
ing is obeyed to the precision of MC. However in experi-
ments away from the melting line higher Landau levels

oxidized YBaCu;O; in Ref. 7 with our fitting. Inset on the right (HLL) are no longer negligible. Naively in vortex solid when
shows the relative universal magnetization jump of 1@we) and  the distance from the mean-field transition line is smaller

experimental results for fully oxidized YBE&uO, in Ref. 7  than the inter-Landau-level gap~1—b<2b, one expects
(rhombg and optimally doped untwinned YB&u;,0,_ 5 in Ref. 5  that the higher Landau modes can be neglected. More care-
(starg. Inset on the left shows the relative nonuniversal specific-fully examining the mean-field solution reveals that a weaker
heat jump(line) and experimental results for optimally doped un- condition 1—t—b<12b should be used for a validity test of
twinned YBaCu;O;_ 5 in Ref. 3. the LLL approximatior® in vortex solids. In vortex liquid

25

AC/Crut (%)
6

H (T)

T (K)

FIG. 2. Comparison of the experimental melting line for fully
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one has to go beyond the mean field to estimate the HLlIfields, while at low magnetic fields the higher Landau-levels
contribution®* In 3D, Lawrie in Ref. 31, calculated the ex- theory beyond Gaussian approximation is required. The LLL
citation energy in the framework of the Gaussidtartree-  scaling has a limited validity away from melting line.

Fock) approximation. The excitation gap is 10 times smaller  To summarize, the problem of the quantitative description
than inter Landau gap for fields in a wide range around meltof melting of the vortex lattice in the framework of the LLL
ing line for fields larger than 0.1 T in Y-Ba-Cu-O. Therefore Ginzburg-Landau approach is solved. The results for melting
in the range of values of the interest in the present paper thge magnetization jump, and specific-heat jump are in good
LLL contribution should be dominant. Experimentally it is agreement with experiments and MC simulations. This is the
often claimed that one can establish the LLL scaling forfirst quantitative theory of the first-order melting of any kind
fields above 3 T(see, for example, Ref. 32 to our knowledge. We believe that similar methods can be

_ The theoretical expressions we use are the LLL contribuyppjied to other systems undergoing the first-order melting
tion to the magnetization plus the corrections due to HLLiransition.

calculated in Gaussian approximation. The results are com-

pared on Fig. 3 with the experimental magnetization curves We are grateful to T. Nishizaki and A. Junod for providing
of Ref. 7. We use the parameters from the fitting of thedetails of their experiments. The work was supported by
melting curve(see Fig. 2. The agreement is fair at higher NSC of Taiwan Grant No. NSC#90-2112-M-009-039.
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