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Unconventional vortices in multicomponent Ginzburg-Landau theory
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Simulations of a three-component time-dependent Ginzburg-Laf#lzlian Higgs model reveals that the
dominant topological defects are vector vortices rather than conventional AbrikNgsen-Olesenvortices
or skyrmions. We describe in detail these vortices in the steady state and discuss their possible role in the
dynamics. In particular, we conclude that the vector vortices have a superconducting core distinct from the
superconducting bulk state. The profile of the vector order parameter and the magnetic field are calculated.
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[. INTRODUCTION components vanishingcoreless magnetic skyrmions discov-
ered in this systefii and vortices in two-component order
The formation of an equilibrium state in a system under-parameter modelésee Ref. 9 In the latter case the theory
going a symmetry-breaking phase transition due to a suddepredicts either usual Abrikosov vortices with zero of the or-
change in the thermodynamic condition is a topic of wideder parameter in the vortex center or nonzero in the vortex
theoretical and experimental interest. Recently much center but zeros of the order parameter outside the vortex
progress has been made in understanding the phase-transitiegnter. In contrast to AV, the core of VV is superconducting
dynamics in systems with global symmetry such as liquidalthough the superconducting state inside the core is different
crystals® superfluid Hé,* and the atomic Bose-Einstein from that outside the core. We calculated both the structure
condensaté.The extremely important case of a symmetry- of the order parameter and magnetic field decaying from the
breaking phase transition with local gauge symmetry is alsyortex axis and predict that the vortex nucleation is domi-
under intensive consideration. It includes the critical dynam-ated by vector vortices.
ics in conventional superconductors, as well as symmetry-
breaking phenomena in the early UnivefseThe transfor- Il. THE MODEL
mation of this unstable state to a thermodynamic equilibrium \ve investigate the dynamics of a complex vector field

state is accompanied by massive creation of topological dey,(r)= (4!, 42 y3) and of a vector potentigh(r) in two di-
fects. For example, Abrikosov vortices and antivorticeSmensionsy = (x,y), with Hamiltonian

emerge in a normal-to-superconductor phase tranditidre

problem becomes much more involved in nonconventional 5
superconductors. The order parameter describing Cooper :f dr
pairs generally has several componénBxamples include
the description of highl . superconductors as a mixture of
d-wave ands-wave component¥ andp-wave superconduct-
ors a heavy fermion URY or newly discovered SRuQ,.*?
The symmetry of the order parameter is closely linked to th
crystallographic symmetry group of the material. The com-;. ; . . }
mon feature of theories describing these diverse systems rgpe the dimensionless variables as follows:

mains the W1) local gauge invariance. It is well known that, r—rlé,  g—li, A—>A/(\/§5Hcm),

while in the one-component case the Abrikosov vortices

(AV) are the only kind of topological defect, in the multi- [K

component case other types of defects can be formed during &= 24 o= al By. @)
the phase transition. ) ) )

In this paper we concentrate on a complex vector field Here&is the coherence lengtid,is the penetration depth
model (describing, in particular, superconductors with ©f the magnetic fieldH.p, is the thermodynamic critical
p-wave pairing that possesses an approximate globa(30 Magnetic field, aneb, is the flux quantum. The correspond-
symmetry. In this case the number of the components of th&'9 dimensionless TDGL equations are
order parameten=3 provided more sophisticated structure gy _
of the topological defects, in particular, coreless vorticesFTZi/fa—(l!/bl//*b)l//a—ﬁ(wbwb)llf*a—(lv+A)zl//a+ ,

K
ST =iA 12— alyaf2+ L oy

VX A)2
(VXA 877) } 1

é'n the framework of the time-dependent Ginzburg-Landau
(TDGL) equations, whera=1,2,3. It is convenient to de-

B2 aal2
+7|l/fl//| +

typical for the Hé rather than for superconductors. We con- 3)
sider this kind of topological defect in a(l) gauge invariant
multicomponent Ginzburg-Landau model: vortices with non- % __

: > VXVXA+J, (4)
zero order parameter along the vortex axis that will be called at

“vector vortices” (VV) below. These defects are essentially where time is rescaled in the Ginzburg-Landau characteristic
different from both the usual Abrikosov vorticéwhich are  time units,8=8,/8, andw is the random force.
simply one-component topological solitons with additional The superconducting current is defined by
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FIG. 1. (@) Magnetic-field dependence for
@ single VV (solid line) and AV (dash ling. (b) Azi-
<107 muthal component of the superconducting current
35 T T T T T T encircling the VV(solid line) and the AV (dash
. line).
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superconductivity establishes itself in a normal domain in the
(5 bulk superconductor. The initial conditions, were chosen in

i 1
Js:_ *aV a__ aV xay_ aZA,
52 WV gET R - [y

while the topological charge in this case has the form

the form

P(r,t=0)

r<R-1

1
— Al = a|2 a
P—J'CA di= o §a‘, fc"’” 12V dad|, (6)

where the phases are defined k=% exp(®?) and _ ) (
k=0l¢.
k(

,0) expiPe)[r+1-R], R—-1<r<R

r>R,

IIl. NUMERICAL SIMULATIONS OF PHASE TRANSITION ’0) eXpiPe),

In order to study the topological defects in tpevave (7)
superconductors the TDGL Eg®) and(4) with 8=1 have
been solved numerically. We start with the problem where A={A;;A,}, A(r,t=0)=0 (8
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(Ho/2)r, r<R different from those of AV(see Fig. 2 In particularF does
Ay (r,t=0)= not vanish in the center of the vortex. On the other hand a

~Hor(Ky(r/1)/Ko(Rl k) +PIY, r>R(,9) gauge invariant, but not @) invariant, quantity likel ;|2

has no SQ(2) rotation symmetrysee Fig. 8)]. However,
where one can find an S@) transformatiorR such that one of its
PIR)Ko(R/ ) components Ri); becomes S(J2) invariant [see Fig.
Ho= ( o(R/x _ (10) 3(b)]. The remaining two components constitute a two-
kK1(R/ k) +(RI2)Ko(R/ k) dimensional vector, while the suf|?+|,|? possesses
HereK, andK, are modified Bessel functions. SQ(2) invariance[Fig._3(b)]. Thus, in the one vortex state
Thus, initially, we have a normal spd//=0) of radiusR the SQ(2) symmetry is preserved while the global D
with P quanta of magnetic flux trapped inside with tempera_symmetry IS con_\pletely broken. '.I'he.VV splutmn IS param-
ture T,>T., while outside the temperature is still lower etrized below using a set of rotation invariant functions.
than the critical one To<T.). The phase of the order pa-
rameter increases linearly to provide the total topological IV. SINGLE VORTEX SOLUTION

chargeP. The magnetic field is uniform across the spot and We look for a solution of Eqs3) and(4) in the following

decays outsidé (see plot of our initial configuration in Ref. : : . s
8). The magnetic field at the sample edges is assumed to bi:([)‘o(i)/z s;gr:]m)e]t.rlc ansatz in the gauge in which
zero. The boundary conditions for the order parameter and -’ XU @)

the vector potentiah are imposed in the form

yr=[c(r)cose+d(r)sing],

apr . : :
(an —.A¢a) =0, (VXA)poundary=0. (11) Y?=i[c(r)sing—d(r)cose], ¢*=f(r)exdix(r,¢)],
boundary (12
The equations were discretized using the link variables of the i )
lattice gauge theory in a domainL X L with L=401. Com- Ax=a(r)cose+Db(r)sing, Ay=a(r)sing—b(r)cose.
putations were performed using the semi-implicit Crank- (13

Nicholson method. The total number of runs was 50. Theqere is the azimuthal angle(r),d(r),f(r),a(r),b(r) are
system evolves into a steady state in which one can identifg,en real functions of the radial coordinase(r,¢)=¢ at
well separated topological defects. Our main objective in thig > ¢

paper is to describe these objects. Substituting the ansatz E¢d.2) and(13) into Eq.(5), we

The results of the numerical simulatiofsith P=1) are  gptain the components of the superconducting current
presented in Figs. 1-4. In Figs(al, 1(b), and 2 the single

vortex spatial profile of magnetic field, supercurredy { the 2

azimuthal componeit and the order parameté?=|y,|? K2),=— i F2br (14
+ || %+ | 5|2, respectively, are presented and compared

with those of AV. It shows that a single vortex solution hasand

rotational SQ(2) symmetry. Surprisingly, the profile of the

order parametefF? of each of the numerous vortices is very «?J,=F?2ar, (15)
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FIG. 3. (a) Contour lines of spatial distribu-
(a) X tion of |¢4|? show the absence of $@) rota-
tional symmetry.(b) Radial dependence of the
k ' ' ' ' ' ' ' (Iga|?+] 421 (curve 3 and the|ys|? (curve 2
functions after theR transformation.

2 2 2
(I, 7+, 1),

(b)

where F2=(f2+c?+d?). The necessary conditiod, =0 —2f,+2fgbg—fo+ 2f3=0, (17)
implies A,=0 and hence(r)=0.

It should be noted that the azimuthal angle in the phasevhich is in excellent agreement with the result of the
exponent of they; component of the ansatz coincides with numerical simulation reading that fo=1 f;~0.01,
that obtained numerically over the distancesrk « where fgwo_49, by~0.07 (see Fig. 2 [for arbitrary S>>0,
our analytical results have been obtained. Functiofs), fg~(1+g)*l]_ The ansatz solutiofil2) is degenerate with
f(p), d(p), andb(p) at smallp=r/x (1>p>«~') behave respect to the azimuthal angle and hence
as

c=gcos¢ and d=-—gsing (19

c(p)=(cop+cip?), f(p)=fo—Ff1p® b(p)=bgp,
_ 3 is also a solution for arbitrary angle The angleg indicates
d(p)=(dop+dsp). (16) direction of the residual S@) global symmetry breaking. To
Substituting these expansions into E¢3. and (4) one ob-  conclude, the vortex solution is invariant under rotational
tains the lowest-order relation, SQ(2) but completely breaks S6). This is in contrast with
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FIG. 4. The energye(R) of the VV has a
logarithmic dependence drR

the AV solution for which the S() symmetry is broken

rung, n(j,t") is the local time number of vortices ifth

dc_an to its SQZ) subgr_oup only. To use a simpl_e analogy realization, andV(w;) is the distribution function of the ran-
with mechanics, the AV is like a symmetric top while the VV dom forcew; (white noisg. The results presented in Fig. 5

is similar to an asymmetric rigid body.

demonstrate that vector vortices are essentially dominated

The energy of the VV is about three times smaller thenthe ysual Abrikosov vortices. The reason may be compara-

that of the AV. The energ¥(R)

2m R
E(R)=fo dgoJO F{y(r),A}rdr (19)

of the VV is presented in Fig. 4. HerE{y(r),A} is the
Hamiltonian density.

V. EFFECTS OF VV ON DYNAMICS AND CONCLUSION

tively small energy and large entropy of the VV due to de-
generacy of the S@) global symmetry. On a basis of this
observation we conjecture that in any multicomponent gauge
theory with a symmetry-breaking phase transition the domi-
nant topological defects are maximally asymmetric. This is
in contrast with most analytical investigations of topological
defects in which high symmetry of defects is generally pos-
tulated(due to simplicity of their identification

The nontrivial structure of the vortex core might have

In this work we described the vector vortex solution in thevarious static and dynamical implications on the physics

Ginzburg-LandauGL) theory with Q3) symmetry. Depen-

of the p-wave superconductors. For example, the existence

dence of the order parameter and the magnetic field for &F @ superconducting component in the core must signifi-
single VV, presented in Figs(d), 1(b), and 2, shows that the cantly Qecrease the pinning force and thereby the transport
magnetic field in the center of the VV core is small andproperties.

cannot destroy superconductivity, but decreases the magni-
tude of the order parameter only.

Now we discuss the available results on the influence of"
the VV on dynamics. It should be noted that during all the
runs in our numerical simulation the dynamics of the s
symmetry-breaking phase transition in the multicomponent

GL theory was dominated by the superconducting vector [

vortices. In particular we simulated the normal-
superconducting phase transition and calculated the average
number of nucleated topological defect&) both in multi- 15
component model and for usual scalane-componemntGL
theory. Here

20

5
40

t
nt=3 W(wj)Jt( )n(j,t’)dt’, (20)
wj 0 (Uj

FIG. 5. The mean number of vortices and antivortices vs time

60 70 80 90 100 110 120

wherety(w;) is the initial time of the random process de- for multicomponent) and usual scalar Ginzburg-Landé2) mod-
pending on random force ijth realization {,,,=20 in our  els correspondingly. The initial topological charBe=0.
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