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Unconventional vortices in multicomponent Ginzburg-Landau theory
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Simulations of a three-component time-dependent Ginzburg-Landau~Abelian Higgs! model reveals that the
dominant topological defects are vector vortices rather than conventional Abrikosov~Nielsen-Olesen! vortices
or skyrmions. We describe in detail these vortices in the steady state and discuss their possible role in the
dynamics. In particular, we conclude that the vector vortices have a superconducting core distinct from the
superconducting bulk state. The profile of the vector order parameter and the magnetic field are calculated.
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I. INTRODUCTION

The formation of an equilibrium state in a system und
going a symmetry-breaking phase transition due to a sud
change in the thermodynamic condition is a topic of wi
theoretical1 and experimental2 interest. Recently much
progress has been made in understanding the phase-tran
dynamics in systems with global symmetry such as liq
crystals,3 superfluid He3,4 and the atomic Bose-Einstei
condensate.5 The extremely important case of a symmetr
breaking phase transition with local gauge symmetry is a
under intensive consideration. It includes the critical dyna
ics in conventional superconductors, as well as symme
breaking phenomena in the early Universe.6,7 The transfor-
mation of this unstable state to a thermodynamic equilibri
state is accompanied by massive creation of topological
fects. For example, Abrikosov vortices and antivortic
emerge in a normal-to-superconductor phase transition.8 The
problem becomes much more involved in nonconventio
superconductors. The order parameter describing Co
pairs generally has several components.9 Examples include
the description of highTc superconductors as a mixture
d-wave ands-wave components,10 andp-wave superconduct
ors a heavy fermion UPt3

11 or newly discovered Sr2RuO4.
12

The symmetry of the order parameter is closely linked to
crystallographic symmetry group of the material. The co
mon feature of theories describing these diverse system
mains the U~1! local gauge invariance. It is well known tha
while in the one-component case the Abrikosov vortic
~AV ! are the only kind of topological defect, in the mult
component case other types of defects can be formed du
the phase transition.

In this paper we concentrate on a complex vector fi
model ~describing, in particular, superconductors w
p-wave pairing! that possesses an approximate global SO~3!
symmetry. In this case the number of the components of
order parametern53 provided more sophisticated structu
of the topological defects, in particular, coreless vortic
typical for the He3 rather than for superconductors. We co
sider this kind of topological defect in a U~1! gauge invariant
multicomponent Ginzburg-Landau model: vortices with no
zero order parameter along the vortex axis that will be ca
‘‘vector vortices’’ ~VV ! below. These defects are essentia
different from both the usual Abrikosov vortices~which are
simply one-component topological solitons with addition
0163-1829/2002/65~21!/214532~6!/$20.00 65 2145
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components vanishing!, coreless magnetic skyrmions disco
ered in this system13 and vortices in two-component orde
parameter models~see Ref. 9!. In the latter case the theor
predicts either usual Abrikosov vortices with zero of the o
der parameter in the vortex center or nonzero in the vor
center but zeros of the order parameter outside the vo
center. In contrast to AV, the core of VV is superconducti
although the superconducting state inside the core is diffe
from that outside the core. We calculated both the struct
of the order parameter and magnetic field decaying from
vortex axis and predict that the vortex nucleation is dom
nated by vector vortices.

II. THE MODEL

We investigate the dynamics of a complex vector fie
c(r )5(c1,c2,c3) and of a vector potentialA~r ! in two di-
mensions,r5(x,y), with Hamiltonian

H5E d2r FK

2
u~“2 iA!cau22aucau21

b1

2
~cac* a!2

1
b2

2
ucacau21

~“3A!2

8p G ~1!

in the framework of the time-dependent Ginzburg-Land
~TDGL! equations, wherea51,2,3. It is convenient to de
fine the dimensionless variables as follows:

r→r /j, c→c/c0 , A→A/~A2dHcm!,

j5A K

2a
, c05Aa/b1. ~2!

Herej is the coherence length,d is the penetration depth
of the magnetic field,Hcm is the thermodynamic critica
magnetic field, andF0 is the flux quantum. The correspond
ing dimensionless TDGL equations are

G
]ca

]t
5ca2~cbc* b!ca2b~cbcb!c* a2~ i“1A!2ca1v,

~3!

]A

]t
52“3“3A1Js , ~4!

where time is rescaled in the Ginzburg-Landau character
time units,b5b2 /b1 andv is the random force.

The superconducting current is defined by
©2002 The American Physical Society32-1
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FIG. 1. ~a! Magnetic-field dependence fo
single VV ~solid line! and AV ~dash line!. ~b! Azi-
muthal component of the superconducting curre
encircling the VV~solid line! and the AV~dash
line!.
er

the
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Js52

i

2k2
~c* a

“ca2ca
“c* a!2

1

k2
ucau2A, ~5!

while the topological charge in this case has the form

P5E
C
A•dl5

1

2p (
a
E

C
ucau2

“Fadl, ~6!

where the phases are defined byca5ucauexp(iFa) and
k5d/j.

III. NUMERICAL SIMULATIONS OF PHASE TRANSITION

In order to study the topological defects in thep-wave
superconductors the TDGL Eqs.~3! and ~4! with b51 have
been solved numerically. We start with the problem wh
21453
e

superconductivity establishes itself in a normal domain in
bulk superconductor. The initial conditions, were chosen
the form

c~r ,t50!

55
0, r ,R21

S 1

A2
,

i

A2
,0D exp~ iPw!@r 112R#, R21,r ,R

S 1

A2
,

i

A2
,0D exp~ iPw!, r .R,

~7!

A5$Ar ;Aw%, Ar~r ,t50!50 ~8!
2-2
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FIG. 2. Square of the absolute magnitude
the order parameter of the VV~solid line! and the
AV ~dash line!.
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Aw~r ,t50!5H ~H0/2!r , r ,R

2H0k~K1~r /k!/K0~R/k!!1P/r , r .R,
~9!

where

H05
~P/R!K0~R/k!

kK1~R/k!1~R/2!K0~R/k!
. ~10!

HereK0 andK1 are modified Bessel functions.
Thus, initially, we have a normal spot~ucu50! of radiusR

with P quanta of magnetic flux trapped inside with tempe
ture Tm.Tc , while outside the temperature is still lowe
than the critical one (T0,Tc). The phase of the order pa
rameter increases linearly to provide the total topologi
chargeP. The magnetic field is uniform across the spot a
decays outside14 ~see plot of our initial configuration in Ref
8!. The magnetic field at the sample edges is assumed t
zero. The boundary conditions for the order parameter
the vector potentialA are imposed in the form

S ]ca

]n
2 iAcaD

boundary

50, ~“3A!boundary50. ~11!

The equations were discretized using the link variables of
lattice gauge theory15 in a domainL3L with L5401. Com-
putations were performed using the semi-implicit Cran
Nicholson method. The total number of runs was 50. T
system evolves into a steady state in which one can iden
well separated topological defects. Our main objective in t
paper is to describe these objects.

The results of the numerical simulations~with P51) are
presented in Figs. 1–4. In Figs. 1~a!, 1~b!, and 2 the single
vortex spatial profile of magnetic field, supercurrent (Jw , the
azimuthal component!, and the order parameterF25uc1u2

1uc2u21uc3u2, respectively, are presented and compa
with those of AV. It shows that a single vortex solution h
rotational SOr(2) symmetry. Surprisingly, the profile of th
order parameterF2 of each of the numerous vortices is ve
21453
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different from those of AV~see Fig. 2!. In particularF does
not vanish in the center of the vortex. On the other han
gauge invariant, but not SO~3! invariant, quantity likeuc1u2

has no SOr(2) rotation symmetry@see Fig. 3~a!#. However,
one can find an SO~3! transformationR such that one of its
components (Rc)3 becomes SOr(2) invariant @see Fig.
3~b!#. The remaining two components constitute a tw
dimensional vector, while the sumuc1u21uc2u2 possesses
SOr(2) invariance@Fig. 3~b!#. Thus, in the one vortex stat
the SOr(2) symmetry is preserved while the global SO~3!
symmetry is completely broken. The VV solution is param
etrized below using a set of rotation invariant functions.

IV. SINGLE VORTEX SOLUTION

We look for a solution of Eqs.~3! and~4! in the following
SOr(2) symmetric ansatz in the gauge in whichFa

5@0,p/2,x(r ,w)#:

c15@c~r !cosw1d~r !sinw#,

c25 i @c~r !sinw2d~r !cosw#, c35 f ~r !exp@ ix~r ,w!#,
~12!

Ax5a~r !cosw1b~r !sinw, Ay5a~r !sinw2b~r !cosw.
~13!

Herew is the azimuthal angle,c(r ),d(r ), f (r ),a(r ),b(r ) are
even real functions of the radial coordinate,x(r ,w)5w at
r>j.

Substituting the ansatz Eqs.~12! and~13! into Eq.~5!, we
obtain the components of the superconducting current

k2Jw52
f 2

r
2F2br ~14!

and

k2Jr5F2ar, ~15!
2-3
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FIG. 3. ~a! Contour lines of spatial distribu-
tion of uc1u2 show the absence of SOr(2) rota-
tional symmetry.~b! Radial dependence of th
(uc1u21uc2u2) ~curve 1! and theuc3u2 ~curve 2!
functions after theR transformation.
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where F25( f 21c21d2). The necessary conditionJr50
implies Ar50 and hencea(r )50.

It should be noted that the azimuthal angle in the ph
exponent of thec3 component of the ansatz coincides wi
that obtained numerically over the distances 1,r !k where
our analytical results have been obtained. Functionsc(r),
f (r), d(r), andb(r) at smallr5r /k (1@r@k21) behave
as

c~r!'~c0r1c1r3!, f ~r!' f 02 f 1r2, b~r!'b0r,

d~r!'~d0r1d1r3!. ~16!

Substituting these expansions into Eqs.~3! and ~4! one ob-
tains the lowest-order relation,
21453
e

22 f 112 f 0b02 f 012 f 0
350, ~17!

which is in excellent agreement with the result of t
numerical simulation reading that forb51 f 1'0.01,
f 0

2'0.49, b0'0.07 ~see Fig. 2! @for arbitrary b.0,
f 0

2'(11b)21#. The ansatz solution~12! is degenerate with
respect to the azimuthal angle and hence

c5g cosf and d52g sinf ~18!

is also a solution for arbitrary anglef. The anglef indicates
direction of the residual SO~2! global symmetry breaking. To
conclude, the vortex solution is invariant under rotation
SOr(2) but completely breaks SO~3!. This is in contrast with
2-4
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FIG. 4. The energyE(R) of the VV has a
logarithmic dependence onR.
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the AV solution for which the SO~3! symmetry is broken
down to its SO~2! subgroup only. To use a simple analog
with mechanics, the AV is like a symmetric top while the V
is similar to an asymmetric rigid body.

The energy of the VV is about three times smaller th
that of the AV. The energyE(R)

E~R!5E
0

2p

dwE
0

R

F$c~r !,A%rdr ~19!

of the VV is presented in Fig. 4. HereF$c(r ),A% is the
Hamiltonian density.

V. EFFECTS OF VV ON DYNAMICS AND CONCLUSION

In this work we described the vector vortex solution in t
Ginzburg-Landau~GL! theory with O~3! symmetry. Depen-
dence of the order parameter and the magnetic field fo
single VV, presented in Figs. 1~a!, 1~b!, and 2, shows that the
magnetic field in the center of the VV core is small a
cannot destroy superconductivity, but decreases the ma
tude of the order parameter only.

Now we discuss the available results on the influence
the VV on dynamics. It should be noted that during all t
runs in our numerical simulation the dynamics of t
symmetry-breaking phase transition in the multicompon
GL theory was dominated by the superconducting vec
vortices. In particular we simulated the norma
superconducting phase transition and calculated the aver
number of nucleated topological defectsn(t) both in multi-
component model and for usual scalar~one-component! GL
theory. Here

n~ t !5(
v i

W~v j !E
t0(v j )

t

n~ j ,t8!dt8, ~20!

where t0(v j ) is the initial time of the random process d
pending on random force inj th realization (j max520 in our
21453
n
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runs!, n( j ,t8) is the local time number of vortices inj th
realization, andW(v j ) is the distribution function of the ran
dom forcev j ~white noise!. The results presented in Fig.
demonstrate that vector vortices are essentially domina
the usual Abrikosov vortices. The reason may be compa
tively small energy and large entropy of the VV due to d
generacy of the SO~2! global symmetry. On a basis of thi
observation we conjecture that in any multicomponent ga
theory with a symmetry-breaking phase transition the do
nant topological defects are maximally asymmetric. This
in contrast with most analytical investigations of topologic
defects in which high symmetry of defects is generally p
tulated~due to simplicity of their identification!.

The nontrivial structure of the vortex core might ha
various static and dynamical implications on the phys
of the p-wave superconductors. For example, the existe
of a superconducting component in the core must sign
cantly decrease the pinning force and thereby the trans
properties.

FIG. 5. The mean number of vortices and antivortices vs ti
for multicomponent~1! and usual scalar Ginzburg-Landau~2! mod-
els correspondingly. The initial topological chargeP50.
2-5
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