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ABSTRACT

This study investigates how constraint-based
routing decision granularity significantly affects
the scalability and blocking performance of QoS
routing in an MPLS network. Coarse granularity,
such as per-destination, has lower storage and
computational overheads but is only suitable for
best effort traffic. On the other hand, fine granu-
larity, such as per-flow, provides lower blocking
probability for bandwidth requests, but requires
a huge number of states and high computational
cost. To achieve cost-effective scalability, this
study proposes using hybrid granularity schemes.
The overflowed cache of the per-pair/flow scheme
adds a per-pair cache and a per-flow cache as
the routing cache, and performs well in blocking
probability. The per-pair/class scheme groups the
flows into several paths using routing marks,
thus allowing packets to be label-forwarded with
a bounded cache.

INTRODUCTION
The Internet provides users diverse and essen-
tial quality of service (QoS), particularly given
the increasing demand for a wide spectrum of
network services. Many services, previously
only provided by traditional circuit-switched
networks, can now be provided on the Inter-
net. These services, depending on their inher-
ent characteristics, require certain degrees of
QoS guarantees. Many technologies are there-
fore being developed to enhance the QoS
capability of IP networks. Among these tech-
nologies, differentiated services (DiffServ) [1–3]
and multiprotocol label switching (MPLS) [4–6]
are paving the way for tomorrow’s QoS ser-
vices portfolio.

DiffServ is based on a simple model where
traffic entering a network is classified, policed,
and possibly conditioned at the edges of the net-
work, and assigned to different behavior aggre-
gates. Each behavior aggregate is identified by a
single DS codepoint (DSCP). At the core of the
network, packets are fast forwarded according to

the per-hop behavior (PHB) associated with the
DSCP. By assigning traffic of different classes to
different DSCPs, the DiffServ network provides
different forwarding treatments and thus differ-
ent levels of QoS.

MPLS integrates the label swapping forward-
ing paradigm with network layer routing. First,
an explicit path, called a label switched path
(LSP), is determined, and established using a
signaling protocol. A label in the packet header,
rather than the IP destination address, is then
used for making forwarding decisions in the net-
work. Routers that support MPLS are called
label switched routers (LSRs). The labels can be
assigned to represent routes of various granulari-
ties, ranging from as coarse as the destination
network down to the level of each single flow.
Moreover, numerous traffic engineering func-
tions have been effectively achieved by MPLS.
When MPLS is combined with DiffServ and con-
straint-based routing, they become powerful and
complementary abstractions for QoS provision-
ing in IP backbone networks.

Constraint-based routing is used to compute
routes that are subject to multiple constraints,
namely explicit route and QoS constraints.
Explicit routes can be selected statically or
dynamically. However, network congestion and
route flapping are two factors contributing to
QoS degradation of flows. To reduce blocking
probability and maintain stable QoS provision,
dynamic routing that considers resource avail-
ability, namely QoS routing, is desired.

Once the explicit route is computed a signaling
protocol, either Constraint-Based Routing Label
Distribution Protocol (CR-LDP) or Resource
Reservation Protocol with Traffic Engineering
extension (RSVP-TE), is responsible for estab-
lishing forwarding state and reserve resources
along the route. In addition, LSRs use these pro-
tocols to inform their peers of the label/FEC
bindings they have made. A forwarding equiva-
lence class (FEC) is a set of packets that will be
forwarded in the same manner. Typically packets
belonging to the same FEC will follow the same
path in the MPLS domain.

Ying-Dar Lin and Nai-Bin Hsu, National Chiao Tung University

Ren-Hung Hwang, National Chung Cheng University

QOS ROUTING



IEEE Communications Magazine • June 2002 59

It is expected that both DiffServ and MPLS
will be deployed in an Internet service provider’s
(ISP’s) network. To interoperate these domains,
EXP-Inferred-PSC SLP (EXP-LSP) and Label-
LSP models are proposed [5]. EXP-LSP provides
no more than eight bandwidth aggregate (BA)
classes but scale better. On the other hand, Label-
LSP provides finer service granularity but results
in more state information.

The number of path computations can be
reduced by path caching [7–8]. A path cache
memorizes the constraint-based routing decision
and behaves differently with different granulari-
ties. In coarse granularity, such as per-destina-
tion in Fig. 1a, all flows moving from different
sources to a destination are routed to the same
outgoing link; this has lower storage and com-
putational overheads, but is only suitable for
best effort traffic. On the other hand, with fine
granularity, such as per-flow in Fig. 1b, each
individual flow is computed and routed inde-
pendently; this provides lower blocking proba-
bility for bandwidth requests, but requires a
huge number of states and high computational
cost. Figure 1c shows the per-pair granularity;
all traffic between a given source and destina-
tion, regardless of the number of flows, travels
the same route. Note that in cases of explicit
routing, per-destination and per-pair routing
decisions are identical.

This study investigates how the granularity of
the routing decision affects the scalability of com-
putation or storage, and the blocking probability of
a QoS flow request. To reduce the blocking proba-
bility without sacrificing per-flow QoS require-
ments, two routing mechanisms are proposed from
the perspective of granularity. The Per_Pair_Flow
scheme adds a per-pair cache (P-cache) and an
overflowed per-flow cache (O-cache) as a routing
cache. The flows that the paths of P-cache cannot
satisfy with the bandwidth requirement are routed
individually and their routing decisions overflowed

into the O-cache. The Per_Pair_Class scheme
aggregates flows into a number of forwarding class-
es. This scheme reduces the routing cache size and
is suitable for MPLS networks, where packets are
labeled at edge routers and fast forwarded in the
core network.

The rest of this article is organized as follows.
We describe two on-demand path computation
heuristics on which our study is based. We
describe the overflowed cache Per_Pair_Flow
scheme. We then describe the Per_Pair_Class
scheme, which uses a mark scheme to reduce
cache size. Subsequently, we present a simula-
tion study that compares several performance
metrics of various cache granularities. Finally,
we present conclusions.

PATH COMPUTATION
This article assumes that link-state-based and
explicit routing architecture are used. Link
state QoS routing protocols use reliable flood-
ing to exchange link state information, enabling
all routers to construct the same link state
database (LSDB). Given complete topological
information and the state of resource availabili-
ty, each QOS-capable router finds the least
costly path that stil l  satisfies the resource
requirements of a flow.

Two on-demand shortest path computation
heuristics are described as the basis in this study.
QoS Extensions to Open Shortest Path First
(QOSPF) [9] uses the widest shortest path (WSP)
selection criterion to select the path with the
minimum number of hops (shortest). If there are
several such paths, the one with the maximum
available bandwidth (widest) is selected. Algo-
rithm 1 shows the algorithm to respond to the
route query. Each routing entry of Sh

d = (Dh
d , Bh

d ,
sh

d) consists of the minimum delay Dh
d , available

bandwidth Bh
d , and path sh

d to node d, with mini-
mum hops h.

� Figure 1. An example of routing granularity.
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This algorithm iteratively identifies the opti-
mal (widest) paths from itself s to any other
node d, in increasing order of hop count h, with
a maximum of H hops, and where H can be
either the value of diameter of G or can be set
explicitly. Afterward, WSP picks the widest s of
all possible shortest paths to node d as the rout-
ing path with minimum hops. Thus, the complex-
ity is O(KH), where K is degree of G (i.e., the
maximum degree of any node).

Another heuristic, constrained shortest path
(CSP), shown in Algorithm 2, uses “minimum
delay with abundant bandwidth” as the selec-
tion criterion to find a shortest path s for flow
F. Step 1 eliminates all links that do not satisfy
the bandwidth requirement b. Next, the CSP
simply finds a shortest path s from itself (i.e.,
s) to destination d, as in steps 2–8. Initially, all
nodes except the source are nonlabeled. When
it is discovered that a node represents the short-
est possible path from the source to that node,
it is labeled and never visited thereafter. Step 3

chooses a nonlabeled node x with minimum
delay, and x is labeled in step 5. Step 7 updates
the delay metric for each adjacent node i .
Meanwhile, CSP is terminated either in step 4,
as the delay exceeds the threshold D before
reaching destination d, or in step 6, as all nodes
are labeled. Consequently, CSP finds a QoS
path, s = s … d, such that width(s) ≥ b and
delay(s) £ D, to satisfy the bandwidth require-
ment b and delay requirement D. The complex-
ity of CSP is O(n2), where n = |V|. Note that
this complexity can be improved by using a
heap data structure.

CACHE WITH
PER-PAIR/FLOW GRANULARITY

This section introduces a routing scheme with
per-pair/flow hybrid cache granularity. The
architecture presented herein uses source rout-
ing and a hop-by-hop signaling procedure such
as CR-LDP or RSVP-TE. Routes are guaran-
teed to be loop-free in source routing, and the
signaling procedure prevents each packet of
the flow from carrying complete route informa-
tion. Sets of labels distinguish destination
address, service class, forwarding path, and
probably also privacy. In MPLS, edge devices
perform most of the processor-intensive work,
performing application recognition to identify
flows and classify packets according to the net-
work policies.

Upon a flow request during the signaling
phase, the path query can be got through with by
computing path on demand, or extracting path
from the cache. When the query is successful,
the source node initiates hop-by-hop signaling to
set up forwarding state, and the destination node
initiates bandwidth reservation backward on
each link in the path.

The routing path extracted from the cache
could be misleading, that is, flows following a
per-destination cache entry might not find suffi-
cient resources along the path, although there
exist alternative paths with abundant resources.
This lack of resources is attributed to flows of
the same source-destination (S-D) pair routed
on the same path led by the cache entry, which
is computed merely for the first flow. Therefore,
this path might not satisfy the bandwidth require-
ments of subsequent flows. Notably, the blocking
probability increases rapidly when a link of the
path becomes a bottleneck.

On the other hand, although no such mislead-
ing (assume no staleness of link state) occurs in
per-flow routing, flow state and routing cache size
could be enormous, ultimately resulting in poor
scalability. Furthermore, due to the overheads of
per-flow path computation, on-demand path find-
ing is hardly feasible in real networks (with high
rate requests.) Therefore, path precomputation is
implemented in [9], which asynchronously com-
putes feasible paths to destinations.

The routing cache of this scheme is function-
ally divided into three parts, a per-pair cache (P-
cache), an overflowed per-flow cache (O-cache),
and a per-destination cache (D-cache). To speed
up access to the routing entry, caches are placed
on kernel memory and never swapped out.

� Algorithm 1. The widest shortest path (WSP) heuristic.

WSP_Routing (F, s, d, b, D)
topology G(V, E); /* width bij associate with eij Œ E */
flow F; /* from s to d with req. b and D */
routing entry Sd;
/* set of tuple(delay, width, path) from s to d */
shortest path s;
Begin
initialize Sd ¨ f, prune eij if bij < b, "eij Œ E
for hop-count h = 1 to H

Bs ¨ •, Ds ¨ 0
find all paths (s, …, x, d) with h hops, and
Begin
update Dd ¨ h
Bd ¨ Max{Min[Bx, bxd]}, "x
sd ¨ sx » d
Sd ¨ Sd » (Dd, Bd, sd)
End

if (Sd π f) pick path sd with widest Bd, stop

endfor
End

� Algorithm 2. The constrained shortest path (CSP) heuristic.

CSP_Routing (F, s, d, b, D)
topology G(V, E) ;/* width bij associate with eij Œ E */
flow F; /* from s to d with req. b and D */
label L; /* set of labeled nodes */
shortest path s;
/* obtained by backtracking the inspected nodes */

Begin
1) prune eij if bij < b, "eij Œ E
2) initialize L ¨ {s}, Di ¨ dsi, "i π s
3) find x œ L such that Dx = MiniœL[Di]
/* examine tentative nodes */ 

4) if Dx > D, “path not found”, stop
5) L ¨ L » {x}
6) if L = V, return(s) with delay(s) = Dd, stop

7) update Di ¨ Min[Di, Dx + dxi], "i adjacent to x
8) go to 3)

End
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Shortest paths on the P-cache and D-cache are
precomputed at system startup or can be flushed
and computed on demand under the network
administration policy. Entry of the O-cache is
created when a request arrives and cannot find
sufficient bandwidth on the path in P-cache. By
looking up the next hop in the D-cache, best
effort traffic is forwarded as in a non-QoS sup-
port OSPF router. QoS paths are extracted from
the P-cache in this scheme.

Algorithm 3 shows the Per_Pair_Flow scheme,
which is detailed as follows. When a path query
with multiple constraints is executed at the
ingress LSR, look up the P-cache for routing
information. If the lookup is a miss, it implies
that no routing path is stored for the particular
request. Therefore, in this situation the
Per_Pair_Flow invokes the FindRouteLeastCost
function to find a QoS path s. This path is stored
in the P-cache and the flow request F is sent
through s explicitly. But if path s cannot be
found, the request is blocked.

However, if the lookup of P-cache is a hit, a
resource availability check must be made accord-
ing to the latest link states to ensure the QoS of
the flow. If the check is successful, the signaling
message of F is sent according to the P-cache.
Meanwhile, if the check fails, function Find-
RouteLeastCost is invoked to find an alternative
path based on the information in LSDB and the
residual bandwidth database (RBDB). This QoS
path s is stored in the O-cache (i.e., overflowed
to the O-cache), and signaling of F is sent
through s. But if path s cannot be found, the
flow is blocked.

Function FindRouteLeastCost in Algorithm 3
finds a QoS path on demand using WSP or CSP
heuristics. The link cost function in this compu-
tation can be defined according to the needs of
network administrators. For example, hop
counts, exponential cost [10], or distance [11]
can be used as the link cost metric in the com-
puting function.

CACHE WITH
PER-PAIR/CLASS GRANULARITY

This section presents another hybrid granularity
scheme using a routing mark as part of the label
in MPLS. Herein, when a flow request arrives at
an edge router it is routed to the nearly best
path given the current network state, where the
“best” path is defined as the least costly feasible
path. Flows between an S-D pair are routed on
several different paths and marked accordingly
at the source and edge routers. Notably, flows of
the same routing path may require different
QoS. The core router in an MPLS domain uses
the label to determine to which output port
(interface) a packet should be forwarded, and to
determine service class. Core devices expedite
forwarding while enforcing QoS levels assigned
at the edge.

By limiting the number of routing marks, say
to m, the routing algorithm can route flows
between each S-D pair along a limited number
of paths. The route pinning is enforced by stamp-
ing packets of the same flow with the same mark.
Rather than identifying every single flow, the

forwarding process at intermediate or core
routers is simplified by merely checking the
label. The size of the routing cache is bounded
to O(n2m), where n is the number of network
nodes. Note that if the constraint-based routing
is distributed at the edge nodes, each node
caches m paths to other n – 1 destinations, and
this bound reduces to O(nm).

Table 1 illustrates the structure of the routing
cache, which provides a maximum of m feasible
routes per node pair. The first path entry LSP1
can be precomputed, or the path information
can be flushed and computed on demand under
the network administration policy. Besides the
path list of LSP, each path entry includes the
residual bandwidth (width), maximum delay
(length), and utilization (r). Information on the
entry can be flushed by the management policy
(e.g., refresh timeout or reference counts).
Regarding labeling and forwarding, the approach
is scalable and suitable for the DiffServ and
MPLS networks.

Algorithm 4 shows that, upon a flow request
F, the Per_Pair_Class algorithm first attempts to
extract the least costly feasible path p from the
routing cache. If the extraction is negative, the
scheme attempts to compute the least costly fea-
sible path, termed s. If s is found,
Per_Pair_Class assigns a new mark to s, inserts
this new mark into the routing cache, and then
labels/routes the flow request F explicitly through
s. Meanwhile, if p is found and the path is only
lightly utilized, the Per_Pair_Class marks the
flow F and routes it to path p. Otherwise, the
flow is blocked. If the utilization of path r(p)
exceeds a predefined threshold, the Per_Pair_
Class can either route F to a p held in the cache,

� Algorithm 3. Per_Pair_Flow routing.

Per_Pair_Flow(F, s, d, b, D)
flow F; /* from s to d with req. b and D */
path s,
Begin
case miss(P-cache):

s ¨ FindRouteLeastCost(s, d, b, D)
if (s found)
insert (P-cache), label(F) & route(F) through s

else “path not found”
case s ¨ hit(P-cache): 

if (width(s) ≥ b) and (delay(s) £ D)
label(F) & route(F) through s

else /* overflow */
Begin
s ¨ FindRouteLeastCost(s, d, b, D)
if (s found)
insert(O-cache), label(F) & route(F) through s

else “path not found”
End

End

� Table 1. Routing cache in Per_Pair_Class routing.

Src., dst. LSP1 … LSPm

s,d1 p11, width11, delay11, r11 … p1m, …

s,di pl1, widthl1, rl1 … …
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or route F through a newly computed path s,
whichever is least costly. Therefore, traffic flows
can be aggregated into the same forwarding class
(FEC) and labeled accordingly at the edge
routers. Notably, flows of the same FEC may
require different service class. Consequently,
flows between an S-D pair may be routed on a
maximum of m different paths, where m is the
maximum number of routing classes. In the
Per_Pair_Class algorithm, function FindRoute-
LeastCost compute the least cost path using the
CSP or WSP heuristics.

PERFORMANCE EVALUATION
This section evaluates the performance of uni-
cast QoS routing, and particularly its sensitivity
to various routing cache granularities. The per-
formance of the proposed Per_Pair_Flow and
Per_Pair_Class schemes is evaluated.

NETWORK AND TRAFFIC MODEL
Simulations were run on 100-node random
graphs based on Waxman’s model [12]. In this
model, n nodes are randomly distributed over a
rectangular coordinate grid, and the distance
between each pair of nodes is calculated with the
Euclidean metric. Then edges are introduced
between pairs of nodes, u, u, with a probability
depending on the distance between u and u. The
average degree of nodes in these graphs is in the
range [3.5, 5]. Each link is assumed to be STM-1
or OC-3 with 155 Mb/s.

The simulations herein assume that the token
rate of a leaky bucket mechanism is used as the
bandwidth requirement, which is the primary

metric. Furthermore, this study assumes that
there are two types of QoS traffic: GS1 has a
mean rate of 3 Mb/s, while GS2 has a mean rate
of 1.5 Mb/s. The flow arrival process is assumed
to be independent at each node, following a
Poisson model. Flows are randomly destined to
the else nodes. The holding time of a flow is
assumed to be exponentially distributed with
mean m. The mean holding time can be adapted
to keep the offered load at a constant. The link
states of adjacent links of a source router are
updated immediately, while the states of other
links are updated by periodically receiving link
state advertisements (LSAs). Note that the vari-
ability of flow durations, arrival processes, and
bandwidth requirements complicates the simula-
tion work by making convergence unlikely within
acceptable simulation time. Alternative traffic
models such as PARETO or heavy-tailed can be
found in [10].

PERFORMANCE METRICS
From the perspective of cache granularity, this
study expects to find QoS routing techniques
with a small blocking probability while maintain-
ing scalable computational costs and storage
overheads. Thus, several performance metrics
are interesting here:
• Request bandwidth blocking probability,

Preq, is defined as

(1)

Prout is the routing blocking probability,
defined as the probability that a request is
blocked due to no existing path with sufficient
resources, regardless of cache hit or miss. Psig
denotes the signaling blocking possibility, the
probability that a successfully routed flow gets
rejected during the actual backward reservation
process, during the receiver-initiated reservation
process of RSVP.
• Normalized routing cache size, N~cache, is

the storage overhead per flow for a caching
scheme.

• Normalized number of path computations,
N~comp, is the number of path computations
per flow in the simulated network.

SIMULATION RESULTS
The simulation results are mainly to examine the
behavior of the flows under moderate traffic
loading (e.g., r = 0.7) where most of the block-
ing probabilities would not go beyond 20 per-
cent. Moreover, the 95 percent confidence
interval lies within 5 percent of the simulation
average for all the statistics reported here.

Blocking Probability — This experiment
focuses on the effects of inaccurate link-state
information, due to their update periods, on the
performance and overheads of QoS routing.
Theory and algorithms of QoS routing with
inaccurate information can be found in [13, 14].
Figure 2a shows the blocking probabilities, Preq,
on the 100-node random graph with an offered
load r = 0.7; the flow arrival rate l = 1; the
mean holding time is adjusted to fix the offered
load; the refresh timeout of cache entry (flush)

P
rejected bandwidth

requested bandwidth
P Preq rout sig= = +Â

Â
_

_
.

� Algorithm 4. Per_Pair_Class routing with marks.

Per_Pair_Class(F, s, d, b, D)
flow F; /* from s to d with req. b and D */
cache entry P(s, d);/* set of routing paths from s to d
*/
extracted path p;
computed path s;
Begin
initiate cost(NULL) ¨ •
extract p Œ P (s, d)
that cost(p) is the least & satisfy constraint

{  width(p) ≥ b, length(p) £ D, …  }
case (p not found): 

s ¨ FindRouteLeastCost(s, d, b, D)
if (s not found) then “path not found”
insert/replace(s, P (s, d)),
label(F) & route(F) through s

case (p is found):
if (p(s) lightly utilized) then
label(F) & route(F) to p

endif
s ¨ FindRouteLeastCost(s, d, b, D)
if (s not found) then “path not found”
if (cost(s) < cost(p)) then /* s better */ 
insert/replace(s, P(s, d)),
label(F) & route(F) through s

else /* p better */
label(F) & route(F) to p

endif
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= 100 units. As described earlier, CSP and WSP
heuristics are used. As expected, larger update
periods basically increase flow blocking. The
larger update period results in a higher degree
of inaccuracy in the link state, and more changes
in the network could be unnoticed. As links
approach saturation under the inaccuracy,
LSDBs and RBDBs viewed from the source
router are likely unchanged, and might mistake
an infeasible path as feasible. In that case, flows
are blocked in the signaling phase and only
admitted if other flows leave.

However, blocking does not appear to grow
even higher as the update period goes beyond a
critical value. Since the larger link state update
does not respond quickly enough to variations in
network state, some changes are unnoticed.
After many scenarios are simulated, we found
that climbing of curves in longer mean holding
time of flows grows slower than in shorter mean
holding time of flows. This phenomenon sug-
gests that to get more accurate network state
and better QoS routing performance, the update
period (the value MaxLSInterval in OSPF)
should not go beyond the mean holding time of
the admitted flows.

Per-pair routing gets higher blocking proba-
bility than other granularities. Traffic in the pure
per-pair network tends to form bottleneck links
and is more imbalanced than in other networks.
Conversely, in the per-flow and per-pair/flow
networks, the traffic obtains a QoS path more
flexibly and has more chances to get alternative
paths in large networks.

Intuitively, the finest granularity per-flow
scheme should result in the lowest blocking
probability. However, it is not always true in our
experiments. In Fig. 2a, indeed, the per-flow
scheme with CSP has the strongest path compu-
tation ability; it could find a feasible route for a
flow under heavy load but with a longer length.
A flow with a longer path utilizes more network
resources than a flow with a shorter path.
Although we limit the number of hops, H, of the
selected path to the network diameter, the per-
flow scheme still admits as many flows as it can.

Eventually, network resources are exhausted; a
new incoming flow is only admitted if other
flows are terminated. This is why the per-flow
scheme performs similar to or somewhat poorer
than the per-pair/flow and per-pair/class schemes
we proposed.

In addition, with the large update periods,
stale link state information reduces the effective-
ness of path computation of the per-flow scheme.
It is possible to mistake an infeasible path as
feasible (optimistic leading), or mistake a feasible
path as infeasible (pessimistic leading). Thus, it
will get more signaling blocks in the former case
and routing blocks in the latter; both are negative
to the performance of per-flow routing.

Obviously, by comparing the statistics of
CSP with WSP, WSP performs better than CSP
in this experiment. WSP uses breadth-first
search to find multiple shortest paths and pick
one with the widest bandwidth, and achieves
some degree of load balancing. On the other
hand, traffic is more concentrated in CSP com-
putation networks. To cope with this shortage
in CSP, appropriate link cost functions that
consider the available bandwidth of the link
should be chosen. Studies regarding this issue
can be found in [15].

In Fig. 2b, we have insight into the blocking
probability, blocked in either the routing phase
(prefix R–) or the signaling phase (prefix S–).
Look at the performance under accurate net-
work state (i.e., period = 0); the routing blocks
account for all blocked flow requests. As the
update period gets larger, more and more flows
mistake an infeasible path as feasible. Therefore,
those flows cannot reserve enough bandwidth in
the signaling phase and will be blocked. Blocking
shifting from the routing to the signaling phase
is caused by the staleness of network state. Ris-
ing (Psig) and falling (Prout) curves of each
scheme cross over. The cross point is postponed
in the per-pair cache scheme. A caching mecha-
nism usually does not reflect accurate network
state immediately; thus, sensitivity to staleness is
reduced.

This experiment also studies the effectiveness

� Figure 2. Blocking probability: a) WSP vs. CSP; b) routing vs. signaling.
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of different numbers of routing classes, m, of
Per_Pair_Class with per-pair/class granularity.
Figure 3 illustrates that when m = 1, all flows
between the same S-D pair share the same path,
just the same as per-pair. When m = 2, the per-
pair/class shows its most significant improve-
ment over m = 1, but there is very little
improvement when m ≥ 3. The simulation
results reveal that the Per_Pair_Class can yield
good performance with only a very small num-
ber of routing alternatives.

Cache Size — Figure 4a gives the average num-
ber of cache entries for each single flow (i.e.,
normalized 

~
N~cache). It indicates that the 

~
N~cache of

per-flow, per-pair, and per-pair/class schemes
remain nearly constant regardless of traffic load-
ing. On the other hand, 

~
Ncache of per-pair/flow

increases as traffic load increases. Statistics in
Fig. 4a can be verified by the storage complexi-
ties as follows.

The cache size of per-pair is bounded by (n –
1)2 with O(n2) complexity, where n is the num-

ber of nodes. Metric N~cache (per-pair) is relative
to the network size and forwarding capacity.
Assume the wire-speed router has forwarding
capacity of 100,000 flows; 

~
N~cache (per-pair) is

near to 0.1. Similarly, the cache per-pair/class is
bounded by (n –1)2m and has a complexity of
O(n2m), where m is the number of classes. N~cache
(per-pair/class) is (n – 1)2m divided by the num-
ber of forwarding flows.

Finally, 
~
N~cache (per-flow) = 1 in Fig. 4a; thus,

the cache size increases dramatically as the num-
ber of flows increases in the per-flow scheme,
which disallows it to scale well for large back-
bone networks. Compared to per-flow, hybrid
granularity is used in the per-pair/flow and the
per-pair/class schemes, both significantly reduc-
ing the cache size to about 10 percent (in light
load) to 20–40 percent (in heavy load) without
increasing the blocking probability, compared to
the per-flow in Fig. 2a.

Number of Path Computations — Figure 4b
compares the average number of path computa-
tions per flow (i.e., normalized 

~
N~comp) of various

schemes. This metric primarily evaluates the
computational cost. Note that in order to evalu-
ate the effect of granularity in QoS routing, the
simulation only uses on-demand WSP and CSP
path computation heuristics. However, only plot-
ting curves of WSP are shown; statistics of CSP

� Figure 3. The blocking probability of per-pair/class.

#class = 1
#class = 2
#class = 3
#class = 4

90 1000
0.00

0.14

0.16
Bl

oc
ki

ng
 p

ro
ba

bi
lit

y
fo

r 
pe

r-
pa

ir
/c

la
ss

0.12

0.10

0.08

0.06

0.04

0.02

8070605040302010
Link state update period (unit)

WSP,  = 0.7,  = 1, flush = 100, b = 3 Mb/s

� Figure 4. Average cost per flow: a) number of cache entries; b) number of path computations.
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� Table 2. A summary of the simulation results.

Cache Comp. Storage Blocking
granularity overheard overhead

Per-pair ��� ��� �

Per-flow �¢ � ���

Per-pair/flow �� �� ���

Per-pair/class ��� ��� ���

���: good, ��: medium, �: poor, �¢ can be
improved by using path precomputation.
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are almost the same as WSP. Obviously, Fig. 4b
has an upper bound (i.e., N~comp (per-flow) = 1)
and a lower bound (i.e., 

~
N~comp (per-pair)) which

increases as the number of blocked flows increas-
es. Note that the 

~
N~comp (per-pair/flow) and

~
N~comp (per-pair/class) are quite influenced by the
refresh timeout of entry (i.e., flush).

CONCLUSIONS
This study investigates how granularity affects
constraint-based routing in MPLS networks and
proposes hybrid granularity schemes to achieve
cost effective scalability. The Per_Pair_Flow
scheme with per-pair/flow granularity adds a P-
cache (per-pair) and an O-cache (per-flow) as
the routing cache, and performs low blocking
probability. The Per_Pair_Class scheme with per-
pair/class granularity groups the flows into sever-
al routing paths, thus allowing packets to be
label-forwarded with a bounded cache size.

Extensive simulations are run with various
routing granularities, and the results are summa-
rized in Table 2. Per-pair cache routing has the
worst blocking probability because the coarser
granularity limits the accuracy of the network
state. Per-pair/flow granularity strengthens the
path-finding ability just as per-flow granularity
does. Additionally, per-pair/class granularity has
small blocking probability with a bounded rout-
ing cache. Therefore, this scheme is suitable for
constraint-based routing in MPLS networks.
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