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Abstract

This study investigates the contact stress and bending stress of a helical gear set with localized bearing
contact, by means of �nite element analysis (FEA). The proposed helical gear set comprises an involute
pinion and a double crowned gear. Mathematical models of the complete tooth geometry of the pinion and
the gear have been derived based on the theory of gearing. Accordingly, a mesh-generation program was also
developed for �nite element stress analysis. The gear stress distribution is investigated using the commercial
FEA package, ABAQUS=Standard. Furthermore, several examples are presented to demonstrate the in2uences
of the gear’s design parameters and the contact positions on the stress distribution. ? 2002 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Helical gears are widely used in power transmission between parallel shafts. Conventional parallel-
axes helical gears with involute teeth are insensitive to center-distance assembly errors and possess
line contacts under an ideal assembly condition. However, involute helical gears are very sensitive to
axial misalignments, causing discontinuous transmission errors (TE) and edge contacts, resulting in
noise and vibration [1]. Therefore, the teeth of helical gears are usually modi�ed to attain a localized
point contact and to avoid edge contacts. Recently, Litvin [2] proposed the concept of tooth surface
modi�cation to obtain a pre-designed parabolic TE as well as a localized bearing contact of the
gear set. This concept of tooth modi�cation has been applied to the generation of various kinds of
gearing, such as spur gears, helical gears and worm gear drives [3–6].
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The contact stress and �llet stress on gears, which are closely related to pitting failure, bending
failure and the gear’s service life, have attracted much attention [7,8]. Nevertheless, the calcula-
tion formulae for gears with special pro�le modi�cations are rarely available in handbooks [9,10].
Therefore, �nite element analysis (FEA), which can involve complicated tooth geometry, is now
a popular and powerful analysis tool to determine tooth de2ections and stress distributions. Many
researchers have applied FEA to tooth de2ection and stress distribution for various gear drives. Sev-
eral researchers have analyzed line-contact involute helical gears using three-dimensional (3-D) �nite
element (FE) stress analysis [7,8]. However, these researchers applied loads directly to the contact
ellipses and contact lines obtained from tooth contact analysis (TCA).
Nevertheless, FE contact analysis for deformable bodies is complex and non-linear. Most early 3-D

FE contact analyses were performed using gap elements [11]. Now, due to the progress of computer
technology and computational techniques, some FEA packages can deal with contact analysis without
using gap elements. Some researchers have begun to apply these FEA softwares to contact problems
of gear surfaces [12,5].
This study adopts FEA to evaluate the stress distribution of a helical gear set with localized

point contact. The gear set is composed of an involute pinion and a modi�ed helical gear. The
authors have presented a generation method for the modi�ed helical gear, possessing double crowning
eIects in the pro�le and lengthwise directions [13]. This novel modi�ed helical gear has been
generated by adopting a generating tool with circular-arc normal sections instead of the conventional
straight-edged sections, to attain the crowning eIect on the gear pro�le direction. The generating
tool moves along a curved-template guide on a hobbing machine to produce the crowning eIect
on the gear in the lengthwise direction. This study also derives the complete mathematical models
for the pinion and the gear, including the working surfaces and the �llets, based on the theory
of gearing and the generation mechanism. A computer program for the FE mesh generation of
a 3-D tooth model is developed from the derived tooth geometry. An FEA package, ABAQUS,
capable of contact analysis for two 3-D deformable bodies was employed to determine the stress
distribution of a pair of contact gear teeth in point contact [14,15]. Finally, some numerical examples
are presented to demonstrate the FE stress analyses under various design parameters and diIerent
contact positions.

2. Mathematical model of the modi�ed helical gear set

The proposed helical gear set is composed of an involute pinion and a modi�ed helical gear.
The modi�ed helical gear possesses both pro�le crowning and lengthwise crowning. Mathematical
models of the pinion and the gear have been developed according to the theory of gearing [16,2]
and the proposed generation mechanism [13,1]. For brevity, the equations are not derived in detail
here.

2.1. Geometry of the involute helical pinion �1

Gear generation by hob cutters can be simulated using an imaginary rack cutter [16,2]. According
to Fig. 1(a), the normal section of the rack cutter surface �P used to generate the involute pinion
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Fig. 1. Formation schema of rack cutter surface �P.

surface, contains four major regions: two straight-edges (regions 1 and 3) and two circular curves
(regions 2 and 4). Regions 1 and 3 generate the left-side and right-side involute screw surfaces of
the helical pinion, while regions 2 and 4 generate the left-side and right-side �llets. Regions 1 and 2
are symmetric with regions 3 and 4, respectively, with respect to the X (P)

r -axis. For simplicity, only
the parameters of regions 1 and 2 are indicated in Fig. 1(a).

2.1.1. Working surfaces of the involute helical pinion �1

Fig. 1(b) illustrates the relationship between coordinate systems S(P)c and S(P)r , and the formation
of the 3-D rack cutter �P for the generation of an involute helical pinion. The working surfaces of
the pinion are involute screw surfaces generated by straight cutting edges (regions 1 and 3) of rack
cutter �P. In Fig. 1, symbols ‘P and uP stand for the parameters of the tool surface. Parameter A
represents the pinion’s dedendum, while SP denotes the tooth space. Angles 	(P)n and �P represent
the normal pressure angle and the lead angle of the pinion, respectively. The position vector R(i)

1 of
the working surfaces of �1 can be represented as follows [1]:

x(i)1 = (‘P cos 	(P)n − A+ r1) cos�1 ± (‘P cos 	(P)n − A) cot 	(P)n sin �P sin�1;

y(i)
1 = (‘P cos 	(P)n − A+ r1) sin�1 ∓ (‘P cos 	(P)n − A) cot 	(P)n sin �P cos�1;

and

z(i)1 =±(A tan 	(P)n − ‘P sin 	(P)n ) cos �P ±
(

A

cos 	(P)n sin 	(P)n
− ‘P
sin 	(P)n

)

tan �P sin �P ± SP
2 cos �P

+ r1�1 tan �P i = 1 and 3: (1)

The upper and lower signs refer to the left-side and right-side working surfaces, respectively.
Parameter r1 denotes the pinion’s pitch radius and �1 is the pinion’s rotational angle during its
generation.
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Fig. 2. Formation schema of rack cutter surface �G.

2.1.2. Fillets of the involute helical pinion �1

The �llets of the involute helical pinion are generated by regions 2 and 4 (circular curves) of
rack cutter �P. The equation of the �llets of the involute helical pinion are as follows:

R(i)
1 =




(O(i;P)
rx − r(P)f sin �(i;P)f + r1) cos�1 ± (O(i;P)

rx − r(P)f sin �(i;P)f ) cot �(i;P)f sin �P sin�1

(O(i;P)
rx − r(P)f sin �(i;P)f + r1) sin�1 ∓ (O(i;P)

rx − r(P)f sin �(i;P)f ) cot �(i;P)f sin �P sin�1

−(O(i;P)
ry ± r(P)f cos �(i;P)f ) cos �P −

(
O(i;P)

ry ± O(i;P)
rx cot �(i;P)f − r1�1

sin �P

)
tan �P sin �P




i = 2 and 4: (2)

Similarly, the upper and lower signs refer to the left-side and right-side �llets, respectively. Here,
r(P)f denotes the radius of the �llet, and �(i;P)f and uP are parameters of the tool surface.

2.2. Geometry of the modi5ed circular-arc helical gear �G

Fig. 2(a) depicts the normal section of the rack cutter �G applied to the generation of the modi�ed
helical gear, which comprises four major regions. Regions 1 and 3 generate the left-side and right-side
working surfaces of the gear, while regions 2 and 4 generate the left-side and right-side �llets,
respectively. Regions 1 and 2 are symmetric with regions 3 and 4, respectively, with respect to the
X (G)

r -axis. For simplicity, only the design parameters of regions 1 and 2 are shown in Fig. 2(a).
In practice, a curved-template guide can be employed on a conventional hobbing machine to

produce a varied plunge of the hob cutter during gear generation. Fig. 2(b) illustrates the formation
of the imaginary rack cutter surface �G when a hob cutter moves with a varied plunge during
the gear generation process. An auxiliary coordinate system S(G)a (X (G)

a ; Y (G)
a ; Z (G)

a ) which translates

along the line O(G)
c O(G)

a (i.e. axis Z (G)
a ) is set up �rst. Line O(G)

c O(G)
a forms an angle �G with axis

Z (G)
c of the coordinate system S(G)c (X (G)

c ; Y (G)
c ; Z (G)

c ). The normal section of the circular-arc rack
cutter is rigidly attached to coordinate system S(G)r (X (G)

r ; Y (G)
r ; Z (G)

r ) with its origin O(G)
r moving
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along a curve of radius R(G)
‘ . This curve has the same shape as the curved-template guide. The

coordinate system S(G)c (X (G)
c ; Y (G)

c ; Z (G)
c ) is rigidly attached to the transverse section of the rack cutter.

Therefore, coordinate system S(G)r shifts by a variable amount, EG, with respect to coordinate system
S(G)c . Parameter �G indicates the position of point O(G)

r on the curved-template guide and EG is
the corresponding shift of the hob. Parameter �(G)max denotes the extreme value of �(G) at which the
parameter EG reaches its maximum value E(G)

2 . Parameters W and �G represent the face width and
the helix angle of the gear, respectively.
The signi�cant diIerences between the normal sections of �P (Fig. 1(a)) and �G (Fig. 2(a)) are

the shapes of regions 1 and 3 which generate the working surfaces of tooth pro�les. Regions 1 and
3 of the normal section of rack cutter �G are circular arcs rather than straight lines, to produce tooth
crowning in the pro�le direction of the generated gear. The deviation between the circular-arc and
the straight line results in a built-in parabolic TE on the generated tooth surface. A curved-template
guide is employed on a conventional hobbing machine to produce a varied plunge of the hob cutter
during the gear generation process. Consequently, the varied shift-amount of the hob cutter causes a
lengthwise crowning eIect on the tooth 2ank to induce localized bearing contacts. Double crownings
on the pro�le and lengthwise directions of the gear tooth surface are thus achieved on the modi�ed
helical gear.

2.2.1. Working surfaces of the modi5ed circular-arc helical gear �2

The left-side and right-side working surfaces of the modi�ed circular-arc helical gear are generated
by regions 1 and 3 of rack cutter surface �G, respectively. The equations of the working surfaces
can be expressed as follows [13]:

R(i)
2 =




x(i)2
y(i)
2

z(i)2


=



(x(i;G)c − r2) cos�2 + (y(i;G)

c − r2�2) sin�2

−(x(i;G)c − r2) sin�2 + (y(i;G)
c − r2�2) cos�2

z(i;G)c


 ; i = 1 and 3; (3)

and

f(i)
2 (�2; �G; �G)=

{
±r2�2 +

[
RG(cos 	(G)n − cos �G) +

SG
2

]
cos�G

∓R(G)
‘ (sin �(G)max − sin �G) sin �G

}
cos �G sin �G

+ [RG(sin 	(G)n − sin �G) + R(G)
‘ (1− cos �G)]

(± sin �G sin �G sin �G − cos �G cos �G cos�G) = 0; i = 1 and 3: (4)

where x(i;G)c ; y(i;G)
c and z(i;G)c are expressed in the following:

x(i;G)c = RG(sin 	(G)n − sin �G) + R(G)
‘ (1− cos �G);

y(i;G)
c =∓

[
RG(cos 	(G)n − cos �G) +

SG
2

]
cos�G + R(G)

‘ (sin �(G)max − sin �G) sin �G;
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and

z(i;G)c =±
[
RG(cos 	(G)n − cos �G) +

SG
2

]
sin �G + R(G)

‘ (sin �(G)max − sin �G) cos�G: (5)

The upper and lower signs represent the left-side and right-side working regions of �2, respectively.
Eq. (4) is the equation of meshing in the theory of gearing [16,2]. �G and �G are the surface
parameters of rack cutter �G: 	

(G)
n is the normal pressure angle of the gear, while �G represents the

helix angle of the gear. SG denotes the tooth thickness, RG is the radius of the circular-arc cutting
edges and R(G)

‘ denotes the radius of the curved-template guide used for lengthwise crowning. �2 is
the gear’s rotational angle during the generation process, and r2 denotes the pitch radius of the gear.

2.2.2. Fillets of the modi5ed circular-arc helical gear �2

The left-side and right-side �llets of the modi�ed circular-arc helical gear are generated by regions
2 and 4 of rack cutter �G, respectively. Similarly, the position vector of the �llets can be represented
by the following equations:

R(i)
2 =




x(i)2

y(i)
2

z(i)2


=



(x(i;G)c − r2) cos�2 + (y(i;G)

c − r2�2) sin�2

−(x(i;G)c − r2) sin�2 + (y(i;G)
c − r2�2) cos�2

z(i;G)c


 i = 2 and 4 (6)

and

f(i)
2 (�2; �

(i; g)
f ; �G)=∓{r2�2 − [(O(i;G)

ry ∓ r(G)f cos �(i;G)f ) cos�G + R‘(sin �(G)max

− sin �G) sin �G]} cos �G sin �(i;G)f + [(O(i;G)
rx + r(G)f sin �(i;G)f + R‘(1− cos �G)]

× (∓ sin �G sin �
(i;G)
f sin �G + cos �G cos �

(i;G)
f cos�G) = 0 i = 2 and 4;

(7)

where

x(i;G)c = O(i;G)
rx + r(G)f sin �(i;G)f + R‘(1− cos �G);

y(i;G)
c = (O(i;G)

ry ∓ r(G)f cos �(i;G)f ) cos�G + R‘(sin �(G)max − sin �G) sin �G;

and

z(i;G)c =−(O(i;G)
ry ∓ r(G)f cos �(i;G)f ) sin �G + R‘(sin �(G)max − sin �G) cos�G: (8)

The upper and lower signs indicate the left-side and right-side �llets of the modi�ed circular-arc
gear, respectively. �(i;G)f and �G are the surface parameters of regions 2 and 4 of rack cutter �G. Eq.
(7) is the equation of meshing for the gear’s �llets.
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3. Finite element stress analysis

3.1. Finite element models and mesh generation program

This study adopts the general-purpose FEA software, ABAQUS=Standard operating on an HP
workstation to evaluate the stress distribution of the proposed helical gear set. Since the commercial
FEA package, ABAQUS=Standard, does not provide an interactive preprocessor, we have developed
a mesh-generation program to establish FEA models for the pinion and the gear according to the
tooth geometry given in the preceding sections. A linear brick element, C3D8, having eight nodes
and six faces, is employed to discretize the geometric models of the pinion and the gear tooth
surfaces [14,15]. The developed mesh-generation program allows the mesh density and the number
of elements to be adjusted to meet speci�c requirements. The mesh-generation program can be
applied to construct FEA models for other types of gear tooth surfaces by modifying the subroutine
related to tooth geometry.
In general, a FEA model with a larger number of elements for FE stress analysis may lead to

more accurate results. However, an FEA model of the whole gear drive is not preferred, especially
considering the limit of computer memories and the need for saving computational time. This study
establishes an FEA model of one pair of contact teeth for the helical gear set. Fig. 3 displays the
mesh system of the pinion and the gear. Each FE tooth model is stacked by 34 unequally-spaced
transverse sections in the tooth lengthwise direction. The regions where stress concentration may
occur, such as the �llets and possible contact areas, are discretized by a �ner mesh. Moreover, the
contact points on the tooth surfaces under light load can be predicted accurately by TCA [16,2].

Fig. 3. Finite element model and boundary conditions of one pair of contact teeth.
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Hence, the mesh density of the gear tooth middle sections is increased as shown in Fig. 3. In sum,
6188 elements and 7840 nodes are used for the pinion and the gear FE model, respectively.

3.2. Material properties and boundary conditions

Carbon steel has been chosen for the FEA model. Its basic mechanical properties are Young’s
Modulus E = 207 GPa and Poisson’s Ratio  = 0:292. Fig. 3 displays the FE model of one pair of
contact teeth and the applied boundary conditions. According to the FEA software, a linear brick
C3D8 element is chosen, and each node has six degrees-of-freedom (DOF), including translations
along the nodal x-, y- and z-directions and rotations about the nodal x-, y- and z-axes. In this study,
all the six DOF of the nodes located on the two lateral sides of the pinion’s base are �xed, as
depicted in Fig. 3. On the other hand, rigid beam elements connect the nodes on the bottom of the
gear’s base with those on the gear’s rotational axis. Furthermore, the nodes on the gear’s rotational
axis are constrained such that the gear can rotate only about its rotational axis. Consequently, the
pinion is statically �xed and a torque is applied at the gear’s rotational axis to make the gear and
pinion tooth surfaces contact with each other.

3.3. Preliminary considerations and assumptions

In the contact stress analysis, the user must de�ne the “contact pair” (the surfaces which may
contact each other during the analysis) as the master and slave surfaces. Here, the master and slave
surfaces are identi�ed as the gear and the pinion tooth surfaces, respectively. During the analysis,
the slave nodes cannot penetrate the master surface segments, but the nodes on the master surface
may penetrate the slave surface segments. Additional contact elements are generated automatically
during the analysis. Two other options, “small sliding” and “friction”, should be speci�ed to de�ne
the interaction between the contact surfaces. “Small sliding” is chosen in this study since it is
computationally less expensive, especially in 3-D contact analyses. Coulomb friction is considered
and the friction coePcient can be speci�ed. This study assumes the gears to mesh under conditions
of good lubrication, and the friction coePcient is given as zero.
Initially, the models are statically loaded by �xing the pinion and then applying a small torque to

the gear member which makes the gear tooth contact the pinion tooth. The analyses proceed incre-
mentally, and the contact between the two deformable bodies is handled automatically by imposing
non-penetration constraints between the pinion and gear tooth surfaces.
In the FEA, a single pair of contact teeth is constructed to perform the stress analysis, and the

following assumptions have been made: (1) the stress is in the elastic range of the material; (2) the
material is isotropic; and (3) heat generation and thermal stress are ignored.

4. Illustrative examples

Table 1 summarized the design parameters of the proposed modi�ed helical gear pair, composed
of an involute pinion and a modi�ed helical gear. In the FEA, a torque of 150 N m was applied to
the gear’s axis.
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Table 1
Major design parameters of the proposed modi�ed helical gear pair

Design values Pinion Gear
Parameters

Number of teeth 18 36
Helix angle 15

◦
(RH) 15

◦
(LH)

Pressure angle, normal 20
◦

Module, normal 4 mm
Radius of curved-template guide R(G)

‘ Straight-edged 200 mm
Radius of rack cutter normal section RG Straight-edged 1000 mm
Face width 40 mm

Fig. 4. Stress distribution on the gear.

4.1. Example 1: contact stress

According to the FE stress analysis simulation, Fig. 4 illustrates the distribution of von-Mises stress
on the gear’s tooth surface when the pinion’s rotational angle is 0◦. The maximum stress occurs at the
contact position near the middle of the tooth 2ank. Based on the FEA results, the maximum principal
stress is −1059:4 MPa, which is very close to the Hertzian contact stress, !H = −1024:34 MPa
(calculated from Appendix A). Therefore, the proposed FEA method can be used to evaluate the
contact stress.

4.2. Example 2: contact stress under di:erent design parameters of gear crowning

Recall that for the double-crowned gear generation, parameter RG indicates the radius of the
rack cutter’s normal section, while parameter R(G)

‘ denotes the radius of the curved-template guide
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Fig. 5. The in2uence of parameters, RG and R(G)
‘ , on the maximum von-Mises stress of the gear.

along which the hob cutter moves during the generation process, as shown in Fig. 2. Therefore,
RG is related to the deviation of the generated tooth pro�le from the standard involute curve. The
deviation results in a pre-designed parabolic TE of this helical gear set. On the other hand, R(G)

‘

aIects the contact areas and the degree of lengthwise crowning is inversely proportional to R(G)
‘ .

Consequently, increasing the design parameter R(G)
‘ increases the contact area as well as a reduced

contact stress.
According to the gear tooth mathematical model and the FEA results, Fig. 5 displays the maxi-

mum von-Mises stress on the gear under diIerent design parameters of RG and R(G)
‘ . According to

Fig. 5, when RG is �xed at 1000 mm, the maximum von-Mises stress decreases as R(G)
‘ increases.

Nevertheless, the in2uence of RG on the contact stress is insigni�cant when compared with that of
R(G)

‘ .

4.3. Example 3: bending stress calculations

The �llet stresses are determined at four pinion’s rotational angles, �′
1 = −5◦; 0◦; 5◦ and 9◦. As

mentioned earlier, the FE models of the pinion and the gear have each been divided into 34 transverse
sections, with the interface of the 17th and 18th transverse sections passing through the middle of
the tooth 2ank. The theoretical contact point is at the 18th transverse section of the pinion and the
gear tooth models, based on the TCA results. Accordingly, Figs. 6(a)–(d) demonstrate the stress
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Fig. 6. Stress distribution on the 18th transverse section of the contact teeth under diIerent contact positions.

distributions of the 18th transverse sections of the pinion and the gear, under these four contact
positions. The variation of the bending stress is small because the bending stress in the �llet is
much smaller than the contact stress.
Generally, the bending stresses in the �llets of the two contacting tooth sides are considered tensile

stresses, and those in the �llets of the opposite, unloaded tooth side, are considered compressive
stresses. Figs. 7(a) and (b) depict the tensile and compressive bending stresses along the pinion’s
�llet for the four contact positions. The bending stress is the average of von-Mises stresses at the
eight integration points of the �fth element counted from the dedendum. As Fig. 7(a) shows, the
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Fig. 7. Bending stress along the pinion’s �llet.

maximum tensile bending stress occurs around the half-face width (W=2 = 20 mm), that is below
the contact point, for each contact position. In the four contact positions, the maximum tensile
bending stresses are 59.65, 50.64, 50.37 and 56:73 MPa. When �′

1 =−5◦, as shown in Fig. 6(a), the
contact point is close to the �llet and the tensile bending stress is high due to stress concentration.
Furthermore, at �′

1 = 9◦, the contact position is near the addendum of the pinion, exerting a large
bending moment and a high bending stress on the tooth root. Therefore, the maximum tensile bending
stresses under the two contact positions (�′

1 =−5◦ and 9◦) are higher than other positions (�′
1 = 0◦

and 5◦).
Figs. 6 (a)–(d) also illustrate that as the pinion rotates from −5◦ to 9◦, the contact position moves

upward from the dedendum to the addendum on the pinion, yielding a larger compressive bending
stress on the opposite and unloaded sides. Therefore, the maximum compressive bending stresses
increases as the pinion rotates from −5◦ to 9◦, as is clear in Fig. 6(b). Furthermore, the respective
peak values of the compressive �llet stresses under the four contact positions are 35.99, 41.8, 49.1
and 62:11 MPa.

4.4. Example 4: stress analysis of a conventional involute helical gear pair

In this example, the stress of a conventional involute helical gear pair is studied via FEA and
American Gear Manufacturers Association (AGMA) stress formulae (please refer to Appendix B).
Table 2 summarizes the major design parameters of the involute helical gear pair, and Fig. 8 displays
the stress distribution on the pinion according to FEA results. Based on FEA results and Fig. 8,
the von-Mises stress in the �llet of the pinion is 28:93 MPa for the involute helical gear pair. In
addition, the maximum principal stress on the gear is 342 MPa based on the FEA results. On the
other hand, the contact and bending stress numbers of the involute helical gear pair are calculated
based on AGMA standard, AGMA 2101-C95 [17]. According to the AGMA stress formulae, the
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Table 2
Major design parameters of the involute helical gear pair

Design values Pinion Gear
Parameters

Number of teeth 17 35
Helix angle 20

◦
(RH) 20

◦
(LH)

Pressure angle, normal 20
◦

Module, normal 4 mm
Face width 40 mm

Fig. 8. Stress distribution on the pinion of the involute helical gear pair.

contact stress is 394:99 MPa and the bending stress on the pinion is 28:34 MPa. Therefore, the
proposed FE stress analysis model for the modi�ed helical gear pair yields reasonable results.

5. Conclusions

In this study, �nite element stress analysis was performed to investigate the contact stress and the
bending stress of a modi�ed helical gear set comprising an involute pinion and a modi�ed helical
gear. The FEA tooth models including the working surfaces and the �llets of the pinion and the
gear were developed. Commercial FEA software, ABAQUS=Standard, capable of contact analysis
was applied to evaluate the stress distribution on the tooth surfaces. The analysis results leads to the
following conclusions:
(1) The proposed helical gear set exhibits localized bearing contacts due to double crowning on

the gear’s tooth surfaces.
(2) The contact stress calculated by FEA is close to the Hertzian contact stress obtained from the

Hertzian stress formulae and curvature analysis.
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(3) Increasing R(G)
‘ results in an increase in the contact area and a reduction in contact stress, due

to a smaller lengthwise crowning eIect on the gear’s tooth surfaces. Although a larger RG causes a
smaller pro�le crowning eIect, the reduction of contact stress is less signi�cant than the in2uence
of R(G)

‘ .
(4) The tensile and compressive bending stresses along the pinion’s �llets under diIerent contact

positions were investigated. The maximum �llet stress occurs near the middle section of the tooth
2ank (below the contact points).
(5) Although this study investigated a modi�ed helical gear set, the developed mesh generation

program can also be applied to discretize FEA models for other types of gearing.
(6) The proposed FEA method can accurately calculate the contact and bending stresses. This

model can be extended further to investigate the load share and transmission errors under load.
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Appendix A. Determination of Hertzian contact stress

The instantaneous contact point of the gear tooth surfaces is spread over an elliptical area with
the center of symmetry located at the theoretical contact point, due to the elasticity. Tooth contact
analysis can determine accurately the theoretical contact point under a light load [16,2]. Assume that
a torque T is applied at the gear’s rotational axis. The contact force F acting on the contact point
can be determined by [18]

F =
T

(R∗
2 × n∗2) · a(2)

; (A.1)

where R∗
2 and n∗2 denote the position vector and the unit normal vector of the contact point repre-

sented in the gear’s coordinate system, and a(2) represents the unit vector of the gear’s rotational
axis.
According to Hertzian contact stress formulae, the semi-axis b of the contact ellipse and the

maximum Hertzian stress !H can be estimated by

b= Cb
3
√
F% (A.2)

!H =−C!

(
b
%

)
: (A.3)

CoePcients Cb and C! can be determined using Figs. 14–6:7 and 14–6.8 in Refs. [19]. The auxiliary
parameter % is de�ned as

%=
2(1−  2)
(A+ B)E

; (A.4)
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Fig. 9. De�nition for orientation and dimension of a contact ellipse.

where  is the Poisson’s ratio and E denotes the Young’s modulus. A and B are determined by

A= 1
4['

(1)
� − '(2)� − (g21 − 2g1g2 cos 2! + g22)

1=2]; (A.5)

B= 1
4['

(1)
� − '(2)� + (g21 − 2g1g2 cos 2! + g22)

1=2]; (A.6)

where

'(1)� = '(1)I + '(1)II ; (A.7)

'(2)� = '(2)I + '(2)II ; (A.8)

g1 = '(1)I − '(1)II ; (A.9)

and

g2 = '(2)I − '(2)II : (A.10)

Here, '(1)I and '(1)II represent the �rst and second principal curvatures of the pinion surface �1, while
'(2)I and '(2)II represent the �rst and second principal curvatures of the gear surface �2, respectively.
As Fig. 9 shows, angle ! is measured counterclockwise from i(2)I to i(1)I and can be evaluated by

! = tan−1

(
i(1)I · i(2)II

i(1)I · i(2)I

)
; (A.11)

where i(1)I and i(1)II denote the unit vectors of the �rst and second principal directions for the pinion,
while i(2)I and i(2)II represent the unit vectors of the �rst and second principal directions for the gear,
respectively.
Furthermore, the principal directions and the principal curvatures of the pinion and the gear tooth

surfaces, and the orientation of the contact ellipses can be determined according to the diIerential
geometry and Litvin’s approach [16,2].
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Appendix B. AGMA stress formulae

The contact stress and bending stress of gears are called “contact stress number” and “bending
stress number” in AGMA standards. According to AGMA 2101-C95, the contact stress number !H
and the bending stress number !F for involute helical gears can be determined as follows [17]:

!H = ZE

√
FtKoKvKs

KH

2r1W
ZR

ZI
; (B.1)

and

!F = FtKoKvKs
1

Wmt

KHKB

YJ
; (B.2)

where Ft is the transmitted tangential load, Ko is the overload factor, Kv is the dynamic factor, Ks

is the size factor, KH is the load distribution factor, KB is the rim thickness factor, ZE is the elastic
coePcient, ZR is the surface condition factor, r1 denotes the pitch radius of the pinion, W is the face
width and mt is the transverse module. Parameters ZI and YJ denote the geometry factors for pitting
resistance and for bending strength, respectively. The detailed derivations and Tables of geometry
factors ZI and YJ are included in AGMA 908-B89 [20]. According to the design parameters of
the involute helical gear pair listed in Table 2, the geometry factor ZI is 0.177, and the values of
geometry factor YJ are 0.46 and 0.51 for the pinion and the gear, respectively.
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