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Abstract

The closed-form solution for the hydraulic head, derived for the radial groundwater flow equation subject to the constant-head
boundary condition at the wellbore, is in an integral form that covers an integration range from zero to infinity. The integral is
difficult to evaluate due to the integrand not only consisting of the product and the square of the Bessel functions but also having a
singularity at the origin. A unified numerical method is proposed to evaluate the solution with accuracy to five decimal places and
for very wide ranges of dimensionless distances and times. This approach includes a singularity removal scheme, Newton’s method,
the Gaussian quadrature, and Shanks’ method. It gives the dimensionless heads in tabular forms with better accuracy while
comparing to those given by other approaches.

A formula describing the flow rate across the wellbore, derived by the authors based on Darcy’s law, is proved to equal those
presented by Jaeger [Proc Royal Soc Edinburgh 61 (1942) 223] and Jacob and Lohman [Am Geo Union 33 (4) (1952) 559]. The same
singularity removal scheme and the Gaussian quadrature are also employed to evaluate the wellbore flow rate. Computed values of
dimensionless flow rate versus dimensionless time expressed in tabular forms are also correct to five decimal places. Both the tabular

results of dimensionless hydraulic head and dimensionless flow rate may be useful in engineering applications.

© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Some physical problems, in the areas of heat con-
duction, groundwater flow, hydrodynamic problems,
and deep mining operations, may be modeled as a dif-
fusion type of partial differential equation in a radial
coordinate system. In the mean time, the boundary
condition such as the Dirichlet type or the Neuman type
is commonly employed at the origin of the coordinate,
some distance from the origin, and/or the remote side of
the problem domain. The closed-form solution for the
radial diffusion equation (e.g., the groundwater flow
equation) subject to the Dirichlet-type boundary con-
dition (e.g., constant head or constant temperature) at a
cylindrical surface has practical uses in some physical or
engineering applications.

*Corresponding author. Tel.: +886-3-572-6050; fax: +886-3-573-
1910.
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Yang).

Goldstein [10] used Heaviside’s operational method,
developed by Bromwich, to solve a closed-form solution
of the viscous fluid. Using the asymptotic expansion, he
found the approximate solutions in small and large di-
mensionless times. Carlsaw and Jaeger [5] employed
the Laplace transformation and the contour integral
method to obtain the same closed-form solution to the
heat conduction problem. Their solution for tempera-
ture distribution in an infinite medium is expressed in an
integral form that covers the integration limit from zero
to infinity and has an integrand consisting of the prod-
uct and the square of the Bessel functions. In Harvard’s
problem report [12], an infinite series expansion was
initially adopted to remove the singularity of the inte-
grand at the origin; and then, the numerical integration
methods such as the trapezoidal rule, the tangential rule,
and the seven-point formulas [7] and cited by Harvard’s
problem report [12] were applied to evaluate the inte-
gral. Results for the temperature distributions in the
tabular form are given to five decimal places for di-
mensionless distances at 2(1)10 and 20 and dimen-
sionless times at 0.1(0.1)1(1)10. Although Harvard’s
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problem report [12] had presented the numerical results
for the solution to five digits, yet the range of dimen-
sionless times and distances may be too small. Two ex-
amples, one is for an idealized pumping test and another
one is for a constant-head injection test, given in Batu [2]
indicate that the ranges given in Harvard’s problem re-
port [12] for dimensionless times from 0.1 to 10 and
dimensionless distances from 2 to 20 may not be large
enough to meet the need in engineering applications.
Moreover, the problems of low accuracy when em-
ploying those traditional integration formulas to evalu-
ate the integral may restrict the computations to have
the solutions beyond their ranges of dimensionless times
and distances and still having the accuracy to five deci-
mal places. Jaeger [18] provided tabular results for the
solutions (temperature distributions) for dimensionless
times from 10~ to 10 and dimensionless distances from
1.1 to 100. However, the numerical values for the solu-
tion, obtained by the approximated formulas for the
cases of small and large times and by the traditional
integration approach for most of times, are only to three
decimal places; this accuracy may be not sufficient in
engineering applications. Hantush [11] originally intro-
duced Goldstein’s solution into the groundwater area
for problems having a wedge-shaped aquifer (i.e., non-
uniform thickness aquifer) and provided the approxi-
mate formulas for relatively small dimensionless time
(t < 0.01) and large dimensionless time (7 > 500).

Smith [25] considered a problem in the deep mining
operations, which required finding the heat flux across
the wellbore. Using the Bromwich contour integral
method, he obtained the solutions for the surface tem-
perature and temperature flux across the wellbore. Tab-
ular values with accuracy to the third decimal place for
the heat flux at the wellbore obtained by various ap-
proximate formulas can be seen in the literature
[15,16,19]. Based on the solution given by Smith [25],
Jacob and Lohman [20] presented a formula describing
the flow rate across the wellbore and listed tabular val-
ues for dimensionless times ranged from 107* to 10'%.
Further, Lohman [21] also gave tabular values of di-
mensionless head, modified from Jacob and Lohman
[20], for dimensionless times between 10~* and 10'? and
at dimensionless times of 10'3, 104, and 10'°. Later on,
Reed [24] expanded Lohman’s table to cover the range
of dimensionless times from 10! to 3 x 10'3. Recently,
Batu [2] gave exactly the same table for values of di-
mensionless head versus dimensionless time as Reed’s
one.

Carslaw and Jaeger [5] briefly described few steps to
derive the solution of temperature distribution in a heat
conduction problem. The integral in the closed-form
solution of Carslaw and Jaeger [5] is difficult to accu-
rately evaluate because of the singularity of the inte-
grand at the origin and the oscillatory nature and slow
convergence of the integrand, especially, in small di-

mensionless times and/or large dimensionless distances.
Therefore, the main purpose of this paper is to present
a unified numerical approach, including the use of a
singularity removal scheme, Newton’s method, the
Gaussian quadrature, and Shanks’ method for efficiently
evaluating such a integral with accuracy to five decimal
places.

Jaeger [17] and Jacob and Lohman [20] both gave the
formulas for describing the flow rate across the wellbore
of a well under a constant-head boundary condition.
Although these two formulas are in completely different
form, yet interestingly both are derived from the same
diffusion equation and representing equivalent physical
systems. Besides, based on Darcy’s law and the closed-
form solution for the hydraulic head, we also derive a
different formula for wellbore flow rate. Thus, another
purpose of this paper is to present the detailed proce-
dures for showing the equivalence of these three for-
mulas mathematically. Finally, we also use the same
singularity removal scheme and the Gaussian quadra-
ture to evaluate the wellbore flow-rate formula with the
accuracy to five decimal places too.

2. Theoretical background
2.1. Closed-form solution of hydraulic head

Based on the conservation of mass and Darcy’s law,
the radial flow equation to describe the distribution of
the hydraulic head A(r,¢) in a homogeneous, isotropic,
and confined aquifer may be written as [§]

oh h 10h
S@t_T(6r2+r 6r> m
where ¢ represents the time from the start test, r repre-
sents the radial distance from the centerline of the well,
S represents the storage coefficient of the aquifer, and 7'
represents the transmissivity of the aquifer.

The hydraulic head of the aquifer is initially assumed
zero, that is

h(r,0) =0 forr>r, (2)

where r, represents the well radius. The boundary
condition for maintaining a constant head 4, at r = r,, at
any time may be written as

h(ry,t) =hy for ¢ >0 (3)

The hydraulic head is relatively unchanged at any
time as r near infinity; such a boundary condition can be
expressed as

h(co,t) =0 for¢t>0 (4)
Carslaw and Jaeger [5] used the Laplace transform

and the contour integral method to solve Eq. (1) subject
to Egs. (2)-(4) and gave the time-domain solution as
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h= 20 / RSO
T Jo

[Yo(ru)Jo(rwu) = Jo(ru) Yo(ryu)] du (5)
Jera) + o)) w
where Jy(-) and Y,(-) are the Bessel functions of the first
and second kinds of order zero, respectively.

Define the dimensionless variables /p(p,t) = i/hy,
©=Tt/Sr2, and p = r/r, where the notations of /p, T,
and p respectively represent the dimensionless hydraulic
head, time, and distance. Eq. (5) can then be expressed
in dimensionless form as

(. =1-2 [ Fdu (6)

+ Vo) Yo (pu) — ¥o(u)Jy(pu)]
VR ) + 13 (u)lu

(7)

2.2. Derivation for formulas of dimensionless flow rate
across the wellbore

Employing Darcy’s law, the flow rate across the
wellbore may be expressed as
ahD(pvt)

P=""2

(8)
p=1
where Op = Q/2nr,T is the dimensionless flow rate.
Substituting Eq. (6) into Eq. (8) and with p =1, one
obtains

2 [ e () Yo(u) = Jo() Y (u)]
== e ™ d 9
o= Rwinw O
where J; (1) and Y; (u) are the Bessel functions of the first
and second kinds of order first, respectively.

Jaeger [17] also gave a flow-rate formula in the form

2

4 o e
0o | 200 + 7200 (10

The bracket term on the right-hand side (RHS) of
Eq. (9) is equal to 2/nu based on the formula given in
Abramowitz and Stegun [1, p. 360, Eq. (9.1.16)]; that is

Ji(u) Yo(u) — Jo(u) Yy (u) = 2/ (mu) (11)
Thus, Eq. (10) can be obtained by simply substituting
Eq. (11) into Eq. (9).

Based on the results of Smith [25], Jacob and Lohman

[20] also presented another formula to represent the flow
rate across the wellbore as follows:

e T

Eq. (12) differs from Eq. (10); but these two formulas
can be shown equally. Assume that U = e ™ and
dV = 1/{[J2(u) + Y2(u)]u} du; then, dU = —2tue ™ du

and V = (n/2) tan"'[Yy(u) /Jo(u)] [1, p. 82, Eq. (4.4.54)].
Applying the integration by parts, Eq. (10) may be ex-
pressed as

0

Notably, ¥,(0)/Jo(0) = —oco when u = 0, thus tan~! x
[%(0)/Jo(0)] = —m/2; on the other hand, Yy(oc0)/
Jo(0o) = 0 when u — oo, then tan![¥;(00)/Jo(c0)] = 0.
Therefore, Eq. (13) may be expressed as

2 RN R & A1(7)
=1+— “ tan™! d 14
Ob + - /0 ue an (Jo(u) u (14)
One can easily prove that
4 [e's]
;T O gue_“‘zduzl (15)

Substituting Eq. (15) into (14) yields Eq. (12). Therefore,
we have shown that these three formulas, i.e., Egs. (9),
(10) and (12), are mathematically equal.

2.3. Behavior of integrand

In order to explore the characteristic of Eq. (6), one
may separate the integrand, Eq. (7), into three compo-
nents as E(t,u) = exp(—tu?), N(p,u) = Jo(u)Yy(pu)—
Yo(u)Jo(pu), and D(u) = [(J2(u) + Y2(u))u] " [12]. The
exponent function £(t,u) is a damping factor and has a
nature of rapid decay from one to zero while u varies
from zero to infinity. The component N(p,u) shows a
damped oscillation along the u-axis for large u. In ad-
dition, D(u) exists a branch point at u =0 and ap-
proaches to a constant value for large u.

Fig. 1 demonstrates the plots of the integrand, F(u),
versus u for p =10 and t = 0.001, 1, or 10 and shows
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Fig. 1. A plot of the integrand F'(u), Eq. (7), versus u for dimensionless
distance p = 10 and dimensionless time t = 0.001, 1, or 10.
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Fig. 2. A plot of the integrand F(u), Eq. (7), versus u for dimensionless
time 7 = 1 and dimensionless distance p = 10, 50, or 100.

the oscillatory nature of the integrand. This figure dis-
plays that the smaller the t value, the slower conver-
gence will be the integrand. Besides, the value of F(u)
becomes infinity as u close to zero and approaches zero
for large u; obviously, the integration of Eq. (6) is dif-
ficult to accurately evaluate especially when u is very
close to the origin (singular point). Furthermore, for a
fixed value of p, F(u) not only has the same roots for
various values of 7, but also displays decreasing ampli-
tudes of the oscillation with increasing . Fig. 2 gives the
plots of F(u) versus u for =1 and p = 10, 50, or 100
and indicates that F(u) increases in the amplitude but
decreases in the wavelength of the oscillation while in-
creasing p. For small p and large 7, the amplitude de-
creases at a very slow rate. Observed those curves shown
in Figs. 1 and 2, one can find the roots of F(u) by a root
search scheme and perform the numerical integration
for the area under the integrand and between any two
consecutive roots. The integrand in Eq. (9) is a mono-
tonically decreasing function, which has a positive large
value at the origin (singularity) and rapidly decreases to
zero as u goes large.

3. Numerical evaluation of closed-form solution

A unified numerical method is presented in this paper
to estimate the values of the closed-form solution, i.e.,
dimensionless head, at various dimensionless distance
and time. This method initially adopts an approach of
infinite series expansion given in Harvard’s problem
report [12] to remove the singularity of the integrand at
u = 0 so that the numerical integrations for Eqs. (7) and
(9), both with the integration limit from zero to infinity,
are possible. The Newton’s method, which has the merit
of quadratic convergence [22], is then employed along
with suggested increments to find the consecutive roots
of the integrand along the u-axis. For each area under
the integrand and between two consecutive roots, the
Gaussian quadrature is chosen to perform numerical
integrations. Finally, Shanks’ method is applied to ac-
celerate the convergence when evaluating the related

Bessel functions and the alternating infinite series
transformed form the integral.

3.1. Removal of the singularity of integrand at the origin

One efficient way of evaluating the integral in Eq. (6),
the closed-form solution, is to transform it to an alter-
nating infinite series. Let a < u; where a is a small value
and u; be the first root of F(u). The integral over the
half-domain may be expressed by piecewise integrations
as

/OOCF(u)du—/OHF(u)du—Q—/aulF(u)du—}—izoc;/uluMF(u)du
(16)

Harvard’s problem report [12] provided an algorithm
using an infinite series expansion to remove the singu-
larity of the integrand at the origin. In the interval
0 <u<a, the first term on the RHS of Eq. (16) is sub-
tracted and added a term (2/7) log p at the same time for
the numerator and expressed as

/OHF(u)du

/a e () Yo(pu) — Yo(w)Jo(pu)] — 2 log p
g 3 () + Y3 (u)Ju

du

“  Zlogp
*Atmm+mww

The numerator of the first term on the RHS of Eq.
(17) may be approximated by an infinite series. Detailed
derivations for expressing the first term of Eq. (17) as an
infinite series are given in Appendix A. Accordingly, the
first term on the RHS of Eq. (17) reduces to

/ e o(u) Yo(pu) — Yo(u)Jo(pu)] — 2 log p

0 5 () + Y5 (u)]u
2 [“dutdad +ds’ + A
I /o Jo (1) + Y5 (u)

where d|,dy,ds, . .. are coefficients.
Based on the differentiation formula for arctangent

function [1, p. 79, Eq. (4.4.3)] and the relationship of Eq.
(11), one can write

d 1 Jo(u) o 3 1
BT hwﬂ‘mﬁw+ww (19)

Taking the integration of the RHS of Eq. (19) from zero
to a yields

S e val @

Note that Jy(0)/Y(0) =0 when u =0, thus tan™' x
[/0(0)/Y,(0)] = 0. Based on Egs. (18) and (20), Eq. (17)
can reduce to

du (17)

du

du (18)

T
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a 2 [*d do® + du® + A
/F(u)duz——/ wrdw tdw+ A,
0 0

7 Jo (1) + Y5 (u)
—logptan™' {‘Q)EZ” (21)

The value of the first term on the RHS of Eq. (21)
approaches zero as u — 0 because its numerator ap-
proaches zero and denominator approaches infinity. The
arctangent in the interval 0<u<a is a continuous
function since a < uy; therefore, the second term of Eq.
(21) is a finite value when p is known. Obviously, the
singularity at the origin has been removed and the value
of left-hand side (LHS) integral of Eq. (21) can be easily
evaluated. In order to obtain good accuracy of the
evaluation for Eq. (21), the upper limit « is set as a very
small value; say, a = u;/10 for 1< 1 and a = u;/(107)
for t > 1.

For the numerical evaluation of the wellbore flow
rate, the numerator on the RHS of Eq. (9) can be re-
placed by 2/nu based on the relationship of Eq. (11).
The integration range of Eq. (9) can be split into [0,q]
and (a, o) regions. For the first region, one can subtract
and add one for the numerator at the same time. Con-
sequently, Eq. (9), the formula for dimensionless flow
rate at the wellbore, becomes

4 |
O = _{ | v
¢ 1
“f 2 + 72

S e—ruz
+ | G v d“} 22

The numerator of the first term on the RHS of Eq.
(22) may be approximated by an infinite series as

7‘5142

1
—1=—u? 4= () — = () + () — 4

© 2!
(23)

Thus, the variable u in the denominator of the first term
on the RHS of Eq. (22), which poses the problem of the
singularity at u = 0, can be cancelled out. Based on the
relationships of Egs. (20) and (23), Eq. (22) can be re-
written as

du

4 /“ —tu+ 17 — 570 + v — A
0 g () + Y5 (u)]

o () o [ e )

(24)

The value of the first RHS term approaches zero as
u — 0 because the numerator of the integrand ap-
proaches zero and the denominator approaches infinity.

Similarly, the arctangent is a continuous function in the
interval 0 < u < a because Jy(a)/Yy(a) is a finite value as
discussed before. Thus, the formula for dimensionless
flow rate, Eq. (24), does not contain the singular point.
Because the integrand of the third term on the RHS of
Eq. (24) is a monotonically decreasing function, Eq. (24)
can be easily evaluated by the Gaussian quadrature. The
upper limit « is set as a very small value, say 10~>, for
better accuracy.

3.2. Newton's method and suggested increments

The pattern of the oscillatory nature of the integrand
F(u) along the u-axis indicates that the result of inte-
gration between any two consecutive roots and under
the integrand may be considered as a term of an alter-
nating series. Because the oscillation of F(u) is due to
the term N(p,u), the functions F(u) has the same roots
as N(p,u); and the roots of N(p,u) may be found by a
conjunctive use of the following suggested increments
for locating the roots and Newton’s method for itera-
tively converging to the root.

In reality, dimensionless distance, p, is a critical fac-
tor when determining the location of the root. For
p > 1, the asymptotic expansion of the large positive ith
root of the nominator in Eq. (7), u;, is [1, p. 374]

y—o?  p—day 4203

m:ﬁ+%+ e,

TA, i=1,2,...
(25)

where f=in/(p—1), a=-1/(8p), y=25(p’-1)/
16(4p)*(p — 1), and u = —1073(p° — 1)/5(4p)’ x (p —
1)|. When p is small, Eq. (25) gives good approximation
for first few roots of F(u) in Eq. (6). Thus, the first root
u; can be approximated by n/(p — 1) which is obtained
by simply neglecting the second and remaining terms of
Eq. (25). Therefore, the increment A, from the origin to
the first root approximately equals to 7/(p — 1). When p
is large, the approximate result of using the increment 4,
to estimate the large roots of F(u) will be very poor; on
the other word, another increments that give reasonable
approximations to the larger roots are needed. Rea-
sonable guess for the second increment is chosen as
A, = uy; and, therefore, the second root u, is approxi-
mately equal to 2u;. Similarly, the remaining increments
A; are chosen as u;,_ | —u;_, and the remaining roots
are approximately equal to u; = u;_| + 4;, where i =
3,4,....

With the suggested increment 4;, Newton’s method is
capable of finding the sequence of roots in a very effi-
cient manner. The iterative scheme representing New-
ton’s algorithm to find the roots of the integrand is [22]

Fu)
—PWQ,]_L;“. (26)

u’-ﬂ:uf

1
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where u/ represents the ith root at the jth iteration. The
derivative of F(u) obtained by direct differentiation is

F'(u) = 2tuF (u) + e~ D(u){[Y: (u).Jo(pu) — J1 (u) Yo(pu1)]
+ p[Yo(u)Ji(pu) — Jo(u) Y1 (pu)]}
— F(u)D(u){ [J7 (u) + Y5 ()]
= 2ulJo(u)J1 (u) + Yo(u) Y ()]} (27)

The criteria used to terminate the iteration of Eq. (26)
are |u/"' —ul| < UTOL and |F(u/"") — F(u])| < FTOL,
where the values of UTOL and FTOL depend on the
desired accuracy of the roots. For example, by taking
UTOL = 107" and FTOL = 102 and starting from
u =0 with 4 = 0.1, Newton’s method only takes seven
iterations to find the first root u#; = 0.3313938715, which
has the accuracy to 10 decimal places when t =1 and
p = 10.

3.3. Shanks’ method

The Shanks transform, also called the e-algorithm,
consists of a family of nonlinear sequence-to-sequence
transformations [26]. Shanks [26] proved that these
transformations are effective when applied to accelerate
the convergence of (some) slowly convergent sequences
and when converging (some) divergent sequences. Some
examples of the applications of Shanks’ method include
numerical series, the power series of rational and mero-
morphic functions, and a wide variety of sequences
drawn from integral equations, geometry, fluid me-
chanics and number theory [26]. Huang et al. [14] had
applied the Shanks transform method to evaluate the
drawdown solution in a large-diameter well and the
solution for groundwater flow under constant-head
boundary condition. The results show that this method
is very efficient while applying to these two drawdown
solutions.

The infinite series transformed from the third term on
the RHS of Eq. (16) converges very slowly as demon-
strated in Fig. 1 for the case of small t and large p.
Therefore, Shanks’ method is applied to accelerate the
convergence of the running sum for such an infinite
series. The RHS of Eq. (16) may be expressed as

Si=Si+> S (28)

where S, represents a sequence of partial sums, S rep-
resents the sum of the first and the second terms in Eq.
(16), and >,°, S, represents the running sum of the
third term in Eq. (16). Such an approach of adding all
the terms until the specified tolerance is met for Eq. (28)
is called the direct sum. The Shanks transform is a
nonlinear iterative algorithm based on the sequence of
partial sums and expressed as [28]

s Sl’l = S§— Sl’l
ot = e ) o -

(29)

where ¢y(S,) = S, and e;(S,) = [eo(Sy:1) — eo(S,)] .

The Shanks transform requires using the even-order
terms when approximating the sum of S,; the odd-order
terms are purely intermediate quantities in the compu-
tations. Applying the Shanks transform to evaluate
a given series requires setting a convergence criterion.
A convergence factor, ¢, is defined as

€242 (Snfl) - le(Sn)
€2r41 (Sn—l)

The running sum is terminated when the LHS term of
Eq. (30), which indeed includes three successive terms, is
less than ¢. This procedure can avoid the iteration being
stopped prematurely.

<e (30)

3.4. Numerical integration

The Gaussian quadrature is a commonly used tech-
nique to perform the numerical integration. The integral
f: f(x) dx should be transformed by using the change of
variable to the new integration interval of [—1,1] when
employing the Gaussian quadrature. The formula of the
Gaussian quadrature may be written as [9]

/_1f(¢f) dé = ’Z:: Wif (&) for n points (31)

where W, represents the weighting factor and ¢&; repre-
sents the integration point. Values of W, and ¢&; can be
found from the books in the fields of numerical methods
(e.g., Refs. [3,9]) and the finite element methods (e.g.,
Refs. [4,23]).

The first term on the RHS of Eq. (16) can be easily
estimated after the removal of the singularity for the
integrand at the origin. The second RHS term of Eq.
(16) can be directly evaluated from a to u; (i.e., the
smallest root) and the third RHS term denotes the sum
of those integration results representing the areas under
F(u) and between u; and u;,; where i =1,2,.... Each
area is considered as a term of an infinite series and the
running sum is terminated by means of Shanks’ method,
which is applied to accelerate the convergence for the
evaluation of the infinite series. In this case, the con-
vergence criterion is set as 1077 for the evaluations of
dimensionless head of Eq. (6).

Both the six-point and ten-point formulas of the
Gaussian quadrature are used at the same time to carry
out the numerical integration for each RHS term of Eq.
(16). If the difference of these two results for any interval
between two consecutive roots is greater than the pre-
scribed criterion, then, the interval will be divided into
two portions. The same integration procedure is re-
peatedly applied to each portion until the convergence
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criteria are met to ensure that the result bears the desired
accuracy. The result of the integration within the inter-
val, considered as a term of the infinite series, is equal to
the sum of the areas obtained from total divided por-
tions. The third term on the RHS of Eq. (16), the
running sum of an infinite series, is evaluated and ter-
minated by means of Shanks’ method. Adding those
three RHS terms of Eq. (16) gives the value of Eq. (6).

The interval for the numerical integration of di-
mensionless flow rate in Eq. (9) is chosen as 107'°.
Then, both the six-point and ten-point formulas of the
Gaussian quadrature are also used at the same time to
carry out the integration of (9). If the difference of these
two integration results is greater than the prescribed
criterion, say 1077, then, the interval will be divided into
two portions, and the same integration procedure is
again applied to each portion until the integration result
for each portion is less than 10~7. Finally, the numerical
integration result for dimensionless flow rate can be
obtained by simply adding all the results from each
interval or portion.

4. Numerical evaluations and discussions

Table 1 lists the suggested increments, the approxi-
mate roots, the roots of Eq. (7), and the number of it-
erations required by Newton’s method to find the first
five roots for p = 10 and 7 = 1 or 10. It shows that the
approximate roots are fairly close to the real roots
based on the suggested increments when using Newton’s
method to determine the roots. Notably, Newton’s
method takes less than 10 iterations to converge to the
roots.

The Shanks transform is employed to accelerate the
calculation of dimensionless hydraulic head as well as
the Bessel functions of Jy(u), Jy(u), Yo(u), and ¥;(u).
Both Shanks” method and the direct sum are employed
to evaluate Eq. (6) for p =2, 10, 50, or 100 while
7 =0.001, 0.1, and 10 and the results under the criterion
¢ = 1077 are given in Table 2. As indicated in Table 2,
Shanks’ method needs less than 14 terms to obtain the

Table 1
Suggested increments and required number of iterations when using
Newton’s method to find the roots of the integrand, Eq. (7), for p = 10

i Increment,  Approxi- Root, U; Number of itera-
A; mate root tions
=1 =10
1 0.34907 0.34907 0.33139 6 6
2 0.33139 0.66278 0.68576 7 8
3 0.35436 1.01714 1.03774 8 7
4 0.35198 1.38972 1.38864 9 9
5 0.35090 1.73954 1.73896 9 5

Note: p is the dimensionless distance and t is the dimensionless time.

Table 2

Required terms to achieve the same degree of accuracy when
employing the direct sum (DS) and Shanks’ method (SM) to evaluate
Eq. (6) for various p and t under the criterion ¢ = 1077

T P
2 10 50 100
DS SM DS SM DS SM DS SM
0.001 36 13 271 12 >1000 12 >1000 12
0.1 5 8 3112 147 12 278 12
10 5 8 5 8 17 12 2 12

result while the direct sum generally requires more terms
than Shanks’ method if p is large. Table 2 also indicates
that the Shanks transform converges significantly faster
than the direct sum when 1 is small and p is large. Ob-
viously, Shanks’ method can efficiently accelerate the
evaluation of the integral for those oscillatory functions.

Notably, all the Bessel functions in the integrand are
evaluated with accuracy to 10 decimal places. The re-
sults of dimensionless head (Ap) versus dimensionless
time (), ranging from 1072 to 10°, and dimensionless
distance (p), ranging from 1.1 to 100, listed in Tables 3—
5 correct to at least five decimal places when applying
the proposed unified method to evaluate Eq. (6). No-
ticed that Ap(p = 1.0) = 1.0 for any time t is the con-
stant-head boundary condition. Those results agree with
those of Harvard’s problem report [12] to five decimal
places and with those of Jaeger [18] to three decimal
places as indicated from comparisons with those two
results.

The integration of Harvard’s problem report [12]
was, however, solely done by traditional integration
formulas such as the trapezoid rule, which may cause
the problems of low accuracy and high computing time.
Consequently, their integration may also have the
problem of slow convergence whenever 7 is small and p
is large and results in poor accurate solutions. Batu [2, p.
199] gives an example of idealized pumping test taken
from Wikramaratra [27]. The recorded drawdown starts
from 10 s for an aquifer with following data: 7T = 86.4
m?/day, S = 0.01, r, = 0.2 m. Therefore, the minimum
value of dimensionless time is T =25 which is larger
than 10, the upper limit of dimensionless time given in
Harvard’s problem report [12]. Besides, a constant-head
injection test is given in Batu [2, p. 693] to determine the
formation horizontal hydraulic conductivity Kr. One of
the well radii is 0.1 m and various values of the radius of
influence R considered to estimate Kr are 0.5, 1, 2, 4, and
5. For those values R > 2, dimensionless distance p will
be greater than 20 which is beyond the upper limit of
dimensionless distance given in Harvard’s problem re-
port [12]. These two examples may indicate that the
ranges given in Harvard’s problem report [12] for di-
mensionless times from 0.1 to 10 and dimensionless
distances from 2 to 20 may not be large enough to meet
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Table 3
Values of dimensionless hydraulic head Ap(p, 7), Eq. (6), for p from 1.1 to 2.0 and 7 from 0.001 to 1000
T Dimensionless distance p
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

0.001 0.02417 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.002 0.10858 0.00143 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.003 0.18763 0.00897 0.00009 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.004 0.25141 0.02315 0.00070 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.005 0.30272 0.04157 0.00237 0.00005 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.006 0.34472 0.06203 0.00542 0.00022 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.007 0.37977 0.08312 0.00986 0.00061 0.00002 0.00000 0.00000 0.00000 0.00000 0.00000
0.008 0.40954 0.10404 0.01555 0.00132 0.00006 0.00000 0.00000 0.00000 0.00000 0.00000
0.009 0.43520 0.12433 0.02226 0.00243 0.00016 0.00001 0.00000 0.00000 0.00000 0.00000
0.01 0.45759 0.14378 0.02977 0.00396 0.00033 0.00002 0.00000 0.00000 0.00000 0.00000
0.02 0.58914 0.29025 0.11747 0.03855 0.01017 0.00214 0.00036 0.00005 0.00000 0.00000
0.03 0.65238 0.37911 0.19415 0.08690 0.03378 0.01135 0.00328 0.00082 0.00017 0.00003
0.04 0.69132 0.43908 0.25429 0.13350 0.06323 0.02692 0.01027 0.00350 0.00107 0.00029
0.05 0.71838 0.48285 0.30195 0.17487 0.09343 0.04592 0.02071 0.00855 0.00323 0.00111
0.06 0.73859 0.51659 0.34061 0.21093 0.12230 0.06622 0.03342 0.01569 0.00684 0.00277
0.07 0.75444 0.54360 0.37269 0.24237 0.14911 0.08660 0.04739 0.02440 0.01180 0.00536
0.08 0.76730 0.56586 0.39982 0.26994 0.17374 0.10641 0.06191 0.03417 0.01787 0.00885
0.09 0.77800 0.58462 0.42313 0.29429 0.19630 0.12535 0.07652 0.04460 0.02479 0.01313
0.1 0.78710 0.60071 0.44345 0.31598 0.21694 0.14329 0.09093 0.05537 0.03233 0.01808

0.2 0.83704 0.69116 0.56234 0.45037 0.35472 0.27454 0.20866 0.15564 0.11387 0.08167
0.3 0.85958 0.73299 0.61955 0.51869 0.42984 0.35241 0.28570 0.22893 0.18124 0.14172
0.4 0.87319 0.75847 0.65493 0.56185 0.47862 0.40468 0.33948 0.28246 0.23302 0.19054
0.5 0.88256 0.77611 0.67963 0.59233 0.51358 0.44283 0.37958 0.32335 0.27367 0.23008
0.6 0.88954 0.78928 0.69817 0.61537 0.54025 0.47226 0.41093 0.35582 0.30653 0.26266
0.7 0.89501 0.79962 0.71276 0.63361 0.56149 0.49588 0.43632 0.38240 0.33375 0.29002
0.8 0.89944 0.80802 0.72466 0.64852 0.57894 0.51540 0.45744 0.40468 0.35676 0.31337
0.9 0.90314 0.81504 0.73461 0.66102 0.59363 0.53190 0.47538 0.42371 0.37656 0.33361
1 0.90629 0.82101 0.74309 0.67171 0.60622 0.54608 0.49088 0.44023 0.39382 0.35137
2 0.92371 0.85417 0.79040 0.73164 0.67729 0.62689 0.58003 0.53641 0.49574 0.45781
3 0.93175 0.86950 0.81235 0.75959 0.71068 0.66517 0.62270 0.58298 0.54575 0.51081
4 0.93668 0.87892 0.82585 0.77683 0.73133 0.68892 0.64928 0.61212 0.57720 0.54433
5 0.94013 0.88551 0.83531 0.78891 0.74582 0.70563 0.66801 0.63270 0.59948 0.56814
6 0.94273 0.89048 0.84244 0.79804 0.75677 0.71826 0.68220 0.64831 0.61640 0.58627
7 0.94479 0.89441 0.84809 0.80526 0.76545 0.72829 0.69346 0.66073 0.62987 0.60072
8 0.94648 0.89763 0.85273 0.81119 0.77258 0.73651 0.70271 0.67093 0.64095 0.61261
9 0.94790 0.90034 0.85662 0.81618 0.77857 0.74344 0.71051 0.67953 0.65030 0.62265
10 0.94911 0.90267 0.85997 0.82046 0.78372 0.74939 0.71720 0.68692 0.65833 0.63129
20 0.95605 0.91593 0.87903 0.84488 0.81310 0.78339 0.75551 0.72924 0.70442 0.68090
30 0.95939 0.92232 0.88822 0.85665 0.82728 0.79981 0.77402 0.74971 0.72674 0.70496
40 0.96150 0.92635 0.89402 0.86409 0.83623 0.81018 0.78572 0.76266 0.74087 0.72020
50 0.96300 0.92923 0.89816 0.86940 0.84263 0.81759 0.79408 0.77192 0.75096 0.73109
60 0.96416 0.93143 0.90133 0.87347 0.84753 0.82327 0.80049 0.77901 0.75871 0.73945
70 0.96508 0.93320 0.90388 0.87674 0.85147 0.82783 0.80563 0.78471 0.76492 0.74616
80 0.96585 0.93467 0.90599 0.87944 0.85473 0.83161 0.80990 0.78943 0.77008 0.75172
90 0.96650 0.93592 0.90779 0.88174 0.85750 0.83482 0.81352 0.79345 0.77446 0.75645
100 0.96706 0.93700 0.90934 0.88373 0.85990 0.83760 0.81666 0.79692 0.77825 0.76054
200 0.97038 0.94334 0.91846 0.89543 0.87399 0.85393 0.83509 0.81733 0.80053 0.78460
300 0.97204 0.94652 0.92304 0.90130 0.88106 0.86213 0.84435 0.82759 0.81173 0.79669
400 0.97312 0.94858 0.92601 0.90510 0.88565 0.86745 0.85035 0.83423 0.81899 0.80452
500 0.97390 0.95008 0.92816 0.90787 0.88898 0.87131 0.85471 0.83906 0.82426 0.81022
600 0.97451 0.95124 0.92984 0.91002 0.89157 0.87431 0.85810 0.84281 0.82835 0.81464
700 0.97501 0.95219 0.93120 0.91176 0.89367 0.87674 0.86085 0.84586 0.83168 0.81823
800 0.97542 0.95298 0.93233 0.91322 0.89543 0.87878 0.86315 0.84841 0.83446 0.82123
900 0.97577 0.95365 0.93331 0.91447 0.89693 0.88053 0.86512 0.85059 0.83684 0.82381
1000 0.97608 0.95424 0.93416 0.91556 0.89824 0.88205 0.86683 0.85249 0.83892 0.82605

Note: ip(p =1,7) = 1.0.

the need in engineering applications. Jaeger [18] also lated Eq. (6) by dividing 7 into three regions, t < 0.3,
presented tabular values of dimensionless temperatures 0.3 <1< 10, and 7 > 10. For the region of the early
for the same ranges of 7 and p as we give, yet, his so- time, 7t < 0.3, a simple formula expressed in the form of

lutions only correct to three decimal places. He calcu- the repeated integral of the error function was used to
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Table 4
Values of dimensionless hydraulic head /p(p, 7), Eq. (6), for p from 2 to 10 and t from 0.1 to 1000
T Dimensionless distance p
2 3 4 5 6 7 8 9 10

0.1 0.01808 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.2 0.08167 0.00092 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.3 0.14172 0.00577 0.00005 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.4 0.19054 0.01496 0.00041 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.5 0.23008 0.02696 0.00138 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000
0.6 0.26266 0.04035 0.00317 0.00012 0.00000 0.00000 0.00000 0.00000 0.00000
0.7 0.29002 0.05424 0.00578 0.00033 0.00001 0.00000 0.00000 0.00000 0.00000
0.8 0.31337 0.06807 0.00915 0.00072 0.00003 0.00000 0.00000 0.00000 0.00000
0.9 0.33361 0.08155 0.01313 0.00132 0.00008 0.00000 0.00000 0.00000 0.00000
1 0.35137 0.09452 0.01760 0.00217 0.00017 0.00001 0.00000 0.00000 0.00000
2 0.45781 0.19414 0.07081 0.02151 0.00534 0.00107 0.00017 0.00002 0.00000
3 0.51081 0.25650 0.11862 0.04918 0.01800 0.00576 0.00160 0.00038 0.00008
4 0.54433 0.29964 0.15698 0.07640 0.03409 0.01382 0.00507 0.00167 0.00049
5 0.56814 0.33179 0.18797 0.10101 0.05087 0.02382 0.01032 0.00412 0.00151
6 0.58627 0.35702 0.21354 0.12281 0.06714 0.03465 0.01680 0.00762 0.00323
7 0.60072 0.37754 0.23508 0.14208 0.08246 0.04566 0.02401 0.01194 0.00561
8 0.61261 0.39470 0.25354 0.15920 0.09672 0.05649 0.03158 0.01685 0.00856
9 0.62265 0.40935 0.26961 0.17451 0.10991 0.06695 0.03928 0.02213 0.01195
10 0.63129 0.42206 0.28377 0.18829 0.12212 0.07696 0.04695 0.02764 0.01567
20 0.68090 0.49680 0.37034 0.27739 0.20705 0.15328 0.11219 0.08101 0.05760
30 0.70496 0.53387 0.41494 0.32578 0.25641 0.20142 0.15747 0.12228 0.09418
40 0.72020 0.55755 0.44384 0.35779 0.28993 0.23519 0.19046 0.15371 0.12345
50 0.73109 0.57455 0.46476 0.38121 0.31481 0.26068 0.21590 0.17852 0.14719
60 0.73945 0.58763 0.48092 0.39944 0.33434 0.28092 0.23634 0.19877 0.16690
70 0.74616 0.59816 0.49397 0.41422 0.35027 0.29755 0.25330 0.21573 0.18361
80 0.75172 0.60690 0.50484 0.42657 0.36365 0.31159 0.26770 0.23025 0.19802
90 0.75645 0.61433 0.51410 0.43711 0.37511 0.32366 0.28016 0.24287 0.21064
100 0.76054 0.62078 0.52213 0.44628 0.38510 0.33423 0.29109 0.25400 0.22183
200 0.78460 0.65872 0.56963 0.50080 0.44489 0.39798 0.35775 0.32268 0.29175
300 0.79669 0.67784 0.59364 0.52849 0.47547 0.43085 0.39245 0.35883 0.32902
400 0.80452 0.69023 0.60922 0.54651 0.49540 0.45235 0.41523 0.38266 0.35372
500 0.81022 0.69924 0.62057 0.55963 0.50995 0.46806 0.43190 0.40015 0.37189
600 0.81464 0.70624 0.62939 0.56984 0.52128 0.48031 0.44492 0.41382 0.38611
700 0.81823 0.71193 0.63655 0.57814 0.53048 0.49027 0.45552 0.42496 0.39771
800 0.82123 0.71668 0.64254 0.58508 0.53820 0.49862 0.46440 0.43430 0.40746
900 0.82381 0.72076 0.64768 0.59104 0.54480 0.50577 0.47203 0.44233 0.41583
1000 0.82605 0.72431 0.65215 0.59622 0.55057 0.51202 0.47868 0.44933 0.42314

approximate Eq. (6). For the region of moderate time,
0.3 < 7 < 10, the integration limits were spitted into two
parts, (0, 0.2) and (0.2, co0). In the first part, a convenient
series expansion was used, while in the second part the
integral of Eq. (6), was evaluated directly. For the region
of large time (tr > 10) and p is not too large, the integral
of Eq. (6) was directly evaluated for moderate t and was
approximated by the asymptotic expansions for large .
Finally, for T > 10 and p is large, Eq. (6) was written in a
slightly different form, while u was replaced by u/p, and
evaluated by the same methods described above. The
integral of Eq. (6) was evaluated in such a cumbersome
manner; consequently, the accuracy of his final results is
generally unknown or even poor. Contrarily, our ap-
proach can be applied not only to directly evaluate the
integral and obtain the results to five decimal places, but
also significantly reduce the computing time due to the
use of Shanks’ method to accelerate the convergence.

Batu [2, p. 699] also gave another example for the
constant-head injection test, which was taken from
Lohman [21]. After the well was shut in for a period of
several days, the static head just prior to the test was
92.33 ft (28.14 m), where four significant figures were
used, above discharge point. This may reflect that Jae-
ger’s tabular values with only three significant figures for
the solutions may be not sufficient for engineering ap-
plications. The values of Eq. (9) estimated by the
Gaussian quadrature after the removal of singularity are
listed in column 2 of Table 6, in which dimensionless
flow rate is correct to at least five decimal places for
dimensionless times from 0.01 to 1000. Those flow rates
given by Jacob and Lohman [20] and Jaeger and Clarke
[19] and shown in Table 6 only have, at most, to third
decimal places, which may also have the problem of the
insufficient accuracy. It is noteworthy that Eq. (9) is a
monotonically decreasing function, the values of Eq. (9)
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Values of dimensionless hydraulic head Ap(p, 7), Eq. (6), for p from 10 to 100 and t from 10 to 1000

T

Dimensionless distance p

10 20 30 40 50 60 70 80 90 100
10 0.01567 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
20 0.05760 0.00068 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
30 0.09418 0.00373 0.00004 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
40 0.12345 0.00910 0.00025 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
50 0.14719 0.01588 0.00082 0.00002 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
60 0.16690 0.02333 0.00181 0.00007 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
70 0.18361 0.03099 0.00324 0.00019 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000
80 0.19802 0.03860 0.00504 0.00040 0.00002 0.00000 0.00000 0.00000 0.00000 0.00000
90 0.21064 0.04603 0.00717 0.00072 0.00004 0.00000 0.00000 0.00000 0.00000 0.00000
100 0.22183 0.05320 0.00954 0.00116 0.00009 0.00000 0.00000 0.00000 0.00000 0.00000
200 0.29175 0.10951 0.03783 0.01117 0.00273 0.00054 0.00009 0.00001 0.00000 0.00000
300 0.32902 0.14646 0.06397 0.02565 0.00919 0.00290 0.00080 0.00019 0.00004 0.00001
400 0.35372 0.17302 0.08559 0.04022 0.01753 0.00699 0.00253 0.00083 0.00024 0.00006
500 0.37189 0.19344 0.10352 0.05369 0.02638 0.01213 0.00519 0.00205 0.00075 0.00025
600 0.38611 0.20986 0.11866 0.06586 0.03512 0.01779 0.00850 0.00381 0.00160 0.00063
700 0.39771 0.22352 0.13166 0.07682 0.04348 0.02362 0.01224 0.00602 0.00280 0.00123
800 0.40746 0.23515 0.14300 0.08671 0.05137 0.02944 0.01621 0.00854 0.00429 0.00205
900 0.41583 0.24524 0.15302 0.09568 0.05878 0.03512 0.02029 0.01129 0.00603 0.00309
1000 0.42314 0.25412 0.16198 0.10386 0.06571 0.04063 0.02441 0.01419 0.00796 0.00430

for dimenssionless times beyond the ranges given in
Table 6 can also be easily evaluated by the Gaussian
quadrature after removing the singularity at the origion.

5. Conclusions

The closed-form solution for the radial diffusion
equation subject to the Dirichlet-type boundary condi-
tion at a cylindrical surface is expressed in an integral
form that covers a range from zero to infinity and has an
integrand consisting of the product and the square of the
Bessel functions. A unified numerical method, including
the use of a singularity removal scheme, Newton’s
method, the Gaussian quadrature, and Shanks’ method,
is proposed for efficiently evaluating the integral of the
closed-form solution for very wide range of dimension-
less times and distances with accuracy to five decimal
places. This method initially adopts an approach of in-
finite series expansion to remove the singularity of the
integrand at u = 0 before performing the numerical in-
tegrations. Newton’s method is then employed along
with suggested increments to find the consecutive roots
of the integrand along the horizontal axis. Our sug-
gested increments have been shown to give good esti-
mates to the roots and Newton’s method usually takes
less than 10 iterations to converge to the roots. For each
area under the integrand and between two consecutive
roots, the Gaussian quadrature is chosen to perform the
numerical integrations. Finally, Shanks’ method is ap-
plied to accelerate the convergence when evaluating the
related Bessel functions and the alternating infinite series

transformed form the integral. Tabular results for the
evaluations of dimensionless head correct to five decimal
places, which should be sufficient in terms of the accu-
racy for engineering applications to the proposed ap-
proach. It has clearly been demonstrated that our
approach can not only directly evaluate the values of
dimensionless head to five decimal places for very wide
ranges of dimensionless times and distances, but also
significantly reduce the computing time due to the use of
Shanks’ method to accelerate the convergence.

Based on Darcy’s law and the solution for dimen-
sionless head, we also derive a formula for dimensionless
flow rate across the wellbore. This formula differs from
the earlier ones given by Jaeger [17] and Jacob and
Lohman [20]; yet, we have proven that these three for-
mulas are essentially equivalent. This flow-rate formula
is also difficult to accurately evaluate because of a sin-
gularity point exiting at the origin of the integrand. The
same singularity removal scheme is also used when
evaluating dimensionless flow rate across the wellbore
for a wide range of dimensionless time and distance. The
results estimated by the proposed numerical approach
also have accuracy to five decimal places.
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Table 6

Dimensionless flow rates estimated by the proposed method, Jacob and Lohman [20], and Jaeger and Clarke [19] for dimensionless times r from 0.01

to 1000
T Proposed method Jacob and Lohman Jaeger and Clarke
0.01 6.12891 6.13 6.129
0.02 4.47163 4.47 4.472
0.03 3.73605 3.74 3.736
0.04 3.29681 3.30 3.297
0.05 2.99658 3.00 2.997
0.06 2.77462 2.78 2.775
0.07 2.60186 2.60 2.602
0.08 2.46240 2.46 2.463
0.09 2.34673 2.35 2.347
0.1 2.24875 2.249 2.249
0.2 1.71522 1.716 1.715
0.3 1.47625 1.477 1.476
0.4 1.33248 1.333 1.333
0.5 1.23357 1.234 1.234
0.6 1.16001 1.160 1.160
0.7 1.10246 1.103 1.102
0.8 1.05577 1.057 1.056
0.9 1.01686 1.018 1.017
1 0.98377 0.985 0.984
2 0.80058 0.803 0.800
3 0.71620 0.719 0.716
4 0.66440 0.667 0.664
5 0.62818 0.630 0.628
6 0.60088 0.602 0.601
7 0.57928 0.580 0.579
8 0.56157 0.562 0.562
9 0.54668 0.547 0.547
10 0.53392 0.534 0.534
20 0.46114 0.461 0.461
30 0.42610 0.427 0.426
40 0.40398 0.405 0.404
50 0.38818 0.389 0.388
60 0.37608 0.377 0.376
70 0.36637 0.367 0.366
80 0.35832 0.359 0.358
90 0.35148 0.352 0.352
100 0.34556 0.346 0.346
200 0.31080 0.311 0.311
300 0.29334 0.294 0.294
400 0.28203 0.283 0.282
500 0.27381 0.274 0.274
600 0.26743 0.268 0.268
700 0.26225 0.263 0.263
800 0.25791 0.258 0.258
900 0.25420 0.254 0.255
1000 0.25096 0.251 0.251

Appendix A. Singularity removal for the first term of Eq.
a7

The numerator of the integrand of the first term on
the RHS of Eq. (17) consists of two components,
e~ [Jo(u) Yo (pu) — Yo(u)Jo(pu)] and (2/7)log p. The ex-
ponential function in the first components may be ex-
panded to a series as

2 3 4
o T T T
e ™ =1—-tl+-ut ——ut+—ub -4

2 6 24 (A1)

Besides, the two cross products Jy(u)Y(pu)—
Yo(u)Jo(pu) may be expressed in terms of a series in even
powers of u as [12]

Jo(u) Yo(pu) — Yo(u)Jo(pu) = —% i(_l)mA'"(g)zm

(A.2)

where
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m 2n

An = Z nlnl(m —l;)!(m —n)! [ logp

n=0

11 1
Lot At
+( +3t+3t +n>

11 1
—(1+§+§+A+m_n>} (A.3)

Furthermore, expanding the LHS of Eq. (A.2) into
power series has

Jo(u)Yo(pu) — Yo(u)Jo(pu)

2 U\ 2 u\4 u\o
RO R ORI
(A.4)
where
Co = —logp (A-3)
Ci=—(p*+1)logp + (p* — 1) (A.6)
LSRR 3.4
Co=—7(p" +4p" + Dlogp+2(p* - 1) (A7)
and
1
C; = —%(pﬁ +9p* +9p* + 1) logp
+=—(11p° +27p* — 27p* — 11) (A-8)
216
Multiplication of Egs. (A.1) and (A.4) gives
e o) Yo (pu) — Yo(u)Jo(pu)]
2
= — [~ logp+du’ + dur' + duui® + 4] (A.9)
where
dl B —(C()T‘f’%) (AIO)
Gt Gt G
PRLCL (A1)
and
(G G Gt G
dy = ( 6 "8 "6 o (A1)

Substituting Eqs. (A.9)-(A.12) into the first term on the
RHS of Eq. (17) yields

e~ [Jo(w) Yo(put) — Yo(u)Jo(pu)] — 2 log p
V5 (u) + Y5 (u)u
_ —%[dlu —+ d2u3 —+ d3M5 —+ /1]
J3(u) + Yo(u)?

(A.13)
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