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Abstract-A general analytical method is proposed to trans- 
form a 2-D multilayer physical domain with the nonplanar 
semiconductor surface into a 2-D rectangular mathematical do- 
main with the planar surface, in which a set of Fourier series 
are used to describe a general conformal mapping for each 
layer. Based on the proposed method, a simple iteration algo- 
rithm, which incorporates a nonlinear Jacobian-iteration 
method with the fast-Fourier transformation (FFT), is devel- 
oped to solve a system of nonlinear equations due to the mu- 
tually coupled boundary conditions. As a result of the analyti- 
cal conformal mapping, a regular, deformable grid-structure 
can be applied to simulate the device structure with the non- 
planar semiconductor surface, and the device simulator using 
the conventional rectangle-based grid can be easily modified to 
simulate the device with the nonplanar semiconductor surface. 

I. INTRODUCTION 
HE COMPLEXITY of device structure has been T raised due to the successive improvement of device- 

fabrication technology. The effects of the nonplanar semi- 
conductor surface can not be neglected for a modem 
scaled semiconductor device. Therefore, a device simu- 
lator with the capability of handling the nonplanar semi- 
conductor surface is necessary for the optimal design of a 
scaled semiconductor device. 

The basic grid-structure is very important for coding a 
device simulator in treating the nonplanar semiconductor 
surface. The triangle-based grid [l], [2] is the most widely 
used grid-structure in handling the nonplanar simulation 
domain. The major advantage of this method is its higher 
flexibility in locating the grid. However, this method re- 
quires more complicated codes and data structure due to 
the highly irregular grid-structure. Moreover, the obtuse 
triangle causes some problems and the efforts are needed 
to generate a triangular mesh without obtuse triangles. 

Another approach for the grid-structure in nonplanar 
numerical simulation is the coordinate transformation 
method. This method has been widely used in other fields 
131, 141 and is applied to control the quality of the grid- 
structure in semiconductor device simulation [ 5 ] ,  [ 6 ] .  The 
basic procedure of this method is that several differential 
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equations are described as the governing equations for co- 
ordinate transformation. A special case of coordinate 
transformation in 2-D simulation is that the 2-D Laplace 
equations are used as the governing equations. This is the 
well-known conformal mapping method and can be for- 
mulated by the Cauchy-Riemann relations. The single- 
layer numerical conformal mapping used in process sim- 
ulation has been developed in [7] for treating the moving 
boundary problem. The major drawback of the numerical 
conformal mapping is that a set of 2-D Laplace equations 
must be solved self-consistently to satisfy the mutually 
coupled boundary conditions. As a result, a complicated 
numerical method is needed for solving these 2-D Laplace 
equations satisfying the mutually coupled boundary con- 
ditions. 

In this paper, a simple analytical method for conformal 
mapping is developed, in which a set of Fourier series are 
used. Moreover, a curvilinear coordinate system is used 
to accurately describe the device structure and then is 
translated into the rectangular domain. The major features 
of this method are summarized as: 1) the regular grid 
structure is used to simulate the device with the nonplanar 
semiconductor surface; 2) the computational efforts for 
fitting the device structure are much reduced by adopting 
a nonlinear Jacobian-iteration method with the fast Fou- 
rier transformation (FFT), especially for a large number 
of Fourier series; 3) the discretized basic semiconductor 
device equations are still valid under the proposed con- 
formal mapping. 

In Section I1 the formulations of a general conformal 
mapping method are proposed and their physical pictures 
are discussed. In Section I11 a simple and efficient itera- 
tion algorithm is developed for solving a system of non- 
linear equations satisfying the mutually coupled boundary 
conditions. Section IV shows the actual generation of the 
grid structure for different isolation structures in a MOS- 
FET and the detailed discussions on the nonlinear itera- 
tion are given. Section V gives a conclusion. 

11. THE GENERAL CONFORMAL MAPPING METHOD 
As shown in Fig. 1, a set of semiconductor device 

equations have to be solved in a physical domain Q ( p ,  v). 
The conventional 2-D semiconductor device equations can 
be written as: 
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Fig. 1 .  The schematic cross-section of a semiconductor device with a non- 
planar structure. 

V - (-p,,nV* + D,,Vn) = U,, - G,, 

V * (-pppV\k - DpVp) = Up - Gp. 

(2) 

(3) 
Among different grid structures, the rectangle-based 

grid is the most simple and widely used method in device 
simulation. Unfortunately, this grid-structure is limited in 
a rectangular-like physical domain. A transformation can 
be used to generalize the rectangular grid-structure to a 
nonplanar domain Cl. The transformation can be carried 
out by finding the functions pj(x, y) and uj(x, y) in each 
layer j .  The partial differential operators under this trans- 
formation can be obtained as: 

a ax a ay a 
aPj aPj ax aPj ay 

a ax a ay a 
avj avj ax avj ay 

+ - -  _ -  _ _  - 

and 

+ --. (4) 

Substituting (4) into (1) and ( 2 ) ,  the Poisson’s equation 
and the current continuity equation for electrons in the 
j-layer can be rewritten as 

- - _ _  - 

( 5 )  

Similar treatment can be applied to the continuity equa- 
tion for holes. 

There are many pairs of the functions p (x, y) and v (x, 
y) that can be used to define a general transformation. 
However, the above equations are too complicated in a 
general coordinate transformation and must be further 
simplified by applying the following constraint equations: 

ax ay ax ay 
aPj aPj avj auj 
-_  + - - = o  

The constraint function (7a) is used to preserve the right 
angle between the lines in the transformation. For in- 
stance, the lines p (x, y) and v(x, y) for x = constant and 
y = constant constitute an orthogonal curvilinear coordi- 
nate system. Note that the comers in the simulation do- 
main are limited to the right angle by the constraint due 
to the right angle of the mathematical plane. The con- 
straint function (7b) means the conservation of the aspect 
ratio of an infinite small cell, i.e., 

J Y  

As a result, the transformation produces the changes of 
position and size but keeps the angle and the aspect ratio 
under the constraints of (7a) and (7b). An example show- 
ing the transformation from a rectangular finite-box to a 
deformable finite-box under these constraints is plotted in 
Fig. 2. It is clearly seen that the orthogonality between 
the grid lines is preserved. 

Although (7a) and (7b) are seen to be nonlinear, how- 
ever, the linearized forms of (7a) and (7b) can be ex- 
pressed as the well-known Cauchy-Riemann relations for 
the 2-D case: 

From (9), we obtain 

(9) 

a 2 x  a 2 x  a 2 y  a 2 y  
aPj au; aPj av; 
7 + ~ = 0 and 7 + ~ = 0. (10) 

Note that the first and second terms in (5) and ( 6 )  become 
vanished if the 2-D Laplace equations in (10) are used. 
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Fig. 2. An example showing the mapping of a finite-box from the x - y (mathematical) plane onto the p-v (physical) plane 

The relations in (9) are also true for their inverse func- 
tions: 

apj avj apj avj 
ax ay ay ax . ( 1  1) 

From (7a), (7b), and (lo),  the 2-D Poisson's equation and 
the 2-D current continuity equations defined in the math- 
ematical x - y plane can be rewritten as 

- and - = -- 

where J = [(ax/apj)2 + ( a y / a ~ ~ ) ~ ] - ~ .  Note that (12) and 
(13) show a fact that the basic semiconductor equations 
are invariant under the transformation satisfied by the 
Cauchy-Riemann relations. It is interesting to note that 
the discretized semiconductor device equations are not 
changed after the transformation from a rectangular do- 
main to a nonplanar domain if the transformation is con- 
formal. The invariability of the angle between the con- 
jugate grid lines and the aspect ratio of the finite box is 
very useful in modifying the codes used for simulating the 
planar device structure to those for simulating the non- 
planar device structure. 

In order to find a set of the conjugate functions, p j ( x ,  
y) and v j ( x ,  y), satisfied (11) in each layer, the equations 
in (1 1 )  can be decoupled by mutual substitution, and the 
resulting equations can be written as a set of 2-D Laplace 
equations: 

a2p j  a2pj  a 2 v j  a 2 v .  ax2 + 7 = 0 and 7 + = 0. (14) 
JY ax ay 

Although the 2-D Laplace equations in (14) form a set of 
decoupled linear equations, it must be noted that the 
boundary conditions of these two Laplace equations are 
mutually coupled. As shown in Fig. 3, the numerical do- 
main (x  - y) is mapped to the physical domain ( p - U), 
and the boundary conditions for (14) must satisfy the 

V i 

Fig. 3 .  An example showing the relation between the device structure and 
the mutually coupled boundary condition. 

shape of the device structure in each layer, i.e., 

(15) 
where j andjmax denote the j th interface and the total num- 
ber of the layer to be fitted, respectively. 

The coupled boundary conditions in (1  5) describe the 
nonlinear equations due to the shape of the semiconductor 
device and need a numerical algorithm to get the solution 
of (15). A numerical method for solving the above 2-D 
partial differential equations with mutually coupled 
boundary conditions can be found in [7]. However, the 
numerical method for getting a conformal mapping needs 
much computational efforts due to a large linear system 
with mutually coupled boundary conditions. The problem 
for doing this coordinate transformation analytically is 
how to get a set of general solutions for (11 ) .  Our ap- 
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proach is based on a set of Fourier cosine series with ei- 
genvalue k, (= mn/L): 

m sin (k,x) 
pj(x, Y )  = x + C [Aj,, cosh k,  

m = 1 sinh (k,  bj) 

(bj - Y + Yj)  - Bj,m si& km ( Y - ~ j ) l .  

( 16b) 
Note that the conjugate functions, p j ( x ,  y )  and v j ( x ,  y )  in 
(16), are the particular solutions of the 2-D Laplace equa- 
tions in (14), respectively. The coefficients, Aj, , and Bj, ,, 
have to be solved by satisfying mutually coupled bound- 
ary conditions (15). 

Substituting (16a) and (16b) into (15), the following 
equations can be obtained for y = y j  and y = y j  + bj: 

m 

(x + zl sin (krnx) [Ai, ,  coth (kmbj) 

+ Bj, , csch (k ,  bj)] 

m 

= - c Aj., cos (k,x), ( 1 7 4  
m =  I 

03 

J ; +  1 (x + c sin (k,x) [A,,, csch (k,bj) 
m =  1 

+ Bj,m ~ 0 t h  (krnbjll 
m 

= bj + C Bj,, cos (k,x).  ( 17b) 
m =  I 

Transforming (17a) and (17b) into cosine-Fourier series, 
the following equations are obtained: 

f. J 9  m = - A .  J , m ,  form = 1, 2, 3 ,  - 3 00 (18a) 

(18b) 

(18c) 
where$,, and$ + l , m  are the Fourier coefficients of$( p ( x ,  
y j ) )  and fi + ( p (x, y j  + bj)) , respectively, and can be ex- 
pressed as: 

= Bj,,, form = 1, 2, 3 ,  * * * 7 03 

bj = $+ I , O  - $ , o  

c = 1 form = 0; c = 2 form # 0 (19a) 

f j + l , r n  = 5 L o  S L $ ( p ( x 7  Yj + bj)) cos (kmx) h, 

c = 1 form = 0; c = 2 form # 0. (19b) 

The mutually coupled boundary conditions have been 
transformed into a system of nonlinear equations (18a)- 
(1 8c). The algorithm for solving these coefficients will be 
presented in Section 111. 

111. NUMERICAL ALGORITHM 
As pointed out in the previous section, an iterative 

method is required for obtaining the coefficients A ,  and 
B,. These coefficients must be determined from the known 
device structure. The computation efficiency and accu- 
racy for solving (18a)-(18c) are determined by two fac- 
tors: one is the number of Fourier series; the other is the 
numerical method and its convergence criterion in the 
nonlinear iteration. The FFT method is used to perform 
the Fourier transformation, in which the number of Fou- 
rier series can be expressed as n = 2*, where p is a pos- 
itive integer. The major advantage of the FFT algorithm 
is that CPU time for a FFT transformation is O(n  X log 
(n)).  This feature is very important for accurately mod- 
eling the device structure with a large number of Fourier 
series. 

Among the solution methods for a system of nonlinear 
equations, the Newton’s method is the best known pro- 
cedure. In general, the Newton’s method is expected to 
give quadratic convergence, provided that a sufficiently 
accurate initial guess is needed. However, the Newton’s 
method needs to construct a Jacobian matrix and its in- 
version. The CPU time for calculating the coefficient in 
the Jacobian matrix for the nonlinear system (18a)-( 18c) 
is O(n X n X log (n))  by using a FFT algorithm. As a 
result, the efficiency of the Newton’s method will degrade 
seriously when the problem size is large. This limits the 
Newton’s method to the case with only a small number of 
unknown variables. Thus, a nonlinear Jacobian-iteration 
is adopted to solve the system of nonlinear equations, 
which is more favorable than the Newton’s method for a 
large problem size because the Jacobian matrix is not nec- 
essary for the proposed nonlinear Jacobian-iteration 
scheme. However, the major drawback of the nonlinear 
Jacobian iteration is that the coupling effect between the 
variables is not well considered and the convergence of 
the nonlinear Jacobian iteration is strongly dependent on 
the property of the equations. 

The algorithm for solving the coefficients Aj, , and Bj, , 
with w as a relaxation parameter is listed as follows: 

Procedure Fourier-Conformal-Mapping 
Initialize Ai,,,  Bj,,, and bj 

For k = 1, kmaxdo 
p = l  

Calculate pf(x, yj) and pf(x, yj + 6,) by FFT 
Calculate f; (x) and fF+ (x) 
Translate ff  (x) and fj”+ (x) To ff, , and f f +  I ,, 

by FFT 
$ + I  = f F + 1 , 0  -fro 
F o r m  = 1, 2 p  do 

= A;, - w(fFkrn + A;,,) 
= ~ : , m  + W ( f j + l , r n  - Bim) 



CHIN AND WU: NEW GRID-GENERATION METHOD 1341 

Fig. 4. The grid structures for different isolation structures: (a) LOCOS 
structure, and (b) Trench-like structure. 

End for 
If (convergence criterion is reached) then 

Initialize A j , ,  = 0, Bj, ,  = 0 for m 

Calculate increasing residue 
If (increasing residue less than one half of 

p = p +  1 

= 2p- '  + 1 to2P 

convergence criterion) stop 
End if 

End for 
End Fourier-Conformal-Mapping 

where the symbol k denotes the kth iteration; n denotes 
the number of Fourier series, which is equal to 2p. In this 
algorithm, two FFT procedures are needed for each Ja- 
cobian iteration. Note that the convergence criterion must 
be properly chosen to avoid the generation of the ripple- 
like grids. 

Generally, the convergence of Fourier series is O(e-") 
for C" function. This property is useful for the contin- 
uation method in solving A, and B,. The solutions for the 
problem with the 2 p  terms of Fourier series are used as 
the initial guess for the problem with the 2p + ' terms of 
Fourier series. As the residue of the iteration for the prob- 
lem with the 2 p  terms of Fourier series reaches to a certain 
criterion, p is increased by 1. The p is increased until the 
truncation error of Fourier series meets the requirement 
of the desired accuracy. In this algorithm, the maximum 
number of p is determined by the increased residue less 
than one half of the convergence criterion when p is in- 
creased by 1. According to the convergence of Fourier 

series (O(e-")) ,  the truncation error of Fourier series is 
expected to be around the residue of nonlinear iteration. 

Once the coefficients A ,  and B, are determined by the 
numerical algorithm, the grid points in each node (i ', j ' ) 
can be determined by 

OD sin (k,x,.,,) 
" ' , J '  = x"J + c  , = 1 sinh (k,b,) 

* [Ai,, cosh krn(b1 - Y J ,  + Y J )  + Bj,m 
cosh km ( Y J ,  - (20a) 

and 

O1 COS (krnxi,,j) 
= yJn - y, - c 

m = I sinh (k,  b,) 

[A,,,  sinh km (bj - ~ j ,  + Y,) - B1.m 

sinh km ( ~ j ,  - ~j)1 .  
Note that the coefficients A, and B, are different for each 
subdomain and the x-grid lines in each mathematical sub- 
domain must be determined to meet the continuity of 
p-grid lines across the interface between the subdomain. 

IV. RESULTS AND DISCUSSIONS 
In this section, some practical examples showing the 

applications of the proposed Fourier conformal mapping 
algorithm are demonstrated and discussed in detail. The 
generated grid structures for comparing the narrow-width 
effect between different isolation structures: LOCOS and 
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Tm = 30nm and V, = -2V 
f 

4 x : LOCOS 
+ : Trench - like 

1 
0 1 2 3 4 

Gate Width Cum) 
Fig. 5 .  Comparisons of the threshold voltage versus the effective gate width 

for different isolation structures of a MOSFET. 

Trench-like are shown in Fig. 4(a) and (b), respectively, 
in which one half of the grids are used in the simulation 
due to the symmetry of the device structure. It must be 
noted that the orthogonality of the finite-box is kept, as 
shown in Fig. 4(a) and (b). The isolation structures are 
basically formed by two regions (layers): the semicon- 
ductor bulk and the insulator layer, in which the semicon- 
ductor bulk is covered by the insulator layer and the in- 
sulator layer has a transition region between field oxide 
and gate oxide. The hypertangent function can be used to 
describe these transitions. For a LOCOS structure, the 
shape functions forfo ( p ) ,  fi ( p ) ,  and& ( p )  can be approx- 
imated by: 

fo(p) = -0.2425 + 0.2125 tanh ~ 

( p  LY) 
f i ( p )  = 0.2125 - 0.2125 tanh ~ 

( p  ;.Y) 
&(CL) = 3. (2 1 c) 

Similarly, for a Trench-like structure, we may write: 

fi ( p )  = 0.375 - 0.375 t a d  ~ ( cc o.?) 
& ( A  = 3. (22c) 

The thicknesses of gate oxideo and field oxide for these 
structures are 300 and 8500 A ,  respectively. Note that 
the nonplanarity of the Trench-like structure is stronger 
than that of the LOCOS structure. The calculated thresh- 
old voltage versus the effective gatewidth for different iso- 
lation structures is shown in Fig. 5. It is clearly seen that 
the narrow-width effect in a Trench-like isolation struc- 
ture is superior to that in a LOCOS isolation structure. 

The coefficients of Fourier series (A,  and B,) versus 
integer m used in the transformation for the oxide region 

LOCOS -11 
-3- 

M 5 -5- 

-6- 

-7- 

1 10 

Integer m 
(a) 

0 

- 8 ,  , , , , , , , , I  , , , , , , , - 
1 10 1w 

Integer m 

(b) 

K1 

Fig. 6.  The logarithmic plot of Fourier coefficients (Am, B,) versus integer 
rn for the transformation of the oxide region: (a) LOCOS structure and (b) 
Trench-like structure. 

of LOCOS and Trench-like structures are shown in Fig. 
6(a) and (b). A ,  is equal to B,,, for the LOCOS structure 
due to the symmetry of the shape functions fo( p )  and 
fi ( p ) .  Note that the convergence of Fourier series is 
O(e-") .  It is clearly shown in Fig. 6(a) and (b) that the 
magnitude and convergence of the Fourier series are 
strongly dependent on the nonplanarity of the semicon- 
ductor surface. It is expected that more Fourier series 
terms must be used to minimize the truncation error for 
Fourier series with slow convergence. In order to meet 
the same convergence criterion, the number of Fourier se- 
ries for the Trench-like isolation are larger than that for 
the LOCOS isolation due to the slow convergence of 
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(a) (b) 
Fig. 7. (a) the p value and (b) the CPU time (s) versus the convergence 

criterion (Run by IBM RS/6000 model 320 workstation). 

Fourier series for a Trench-like structure, as shown in Fig. 
7(a). Besides, the convergence rate of the proposed non- 
linear Jacobian iteration is dependent on the nonplanarity 
of the semiconductor surface. As a result, the CPU-time 
versus the convergence criterion for the transformation of 
the Trench-like structure is larger than that of the LOCOS 
structure, as shown in Fig. 7(b). Therefore, the compu- 
tation efficiency will be deteriorated for the case with a 
strongly nonplanar semiconductor surface due to the slow 
convergence rate of both nonlinear Jacobian iteration and 
Fourier series. 

The shape functions in (21)-(23) are only used to dem- 
onstrate the applications of the proposed method. Ac- 
tually, the polynomial fitting method or other appropriate 
special function can be used to increase the accuracy of 
the shape function for the actual device structure. 

V .  CONCLUSIONS 
A general analytical method to generate the grid struc- 

ture for the nonplanar semiconductor surface is presented, 
in which the analytical formulation and the numerical al- 
gorithm are described in detail. The major advantage of 
the proposed method is that the discretized semiconductor 
device equations are invariant under the proposed coor- 
dinate transformation. It is demonstrated that the pro- 
posed method is efficient for the smooth semiconductor 
surface with mild nonplanarities, but the efficiency be- 
comes deteriorated for the case with a strongly nonplanar 
semiconductor surface. Therefore, the proposed method 
is useful in improving the flexibility of conventional rec- 
tangular-based grid in handling the modem isolation de- 
vice structures, such as modified LOCOS and Trench-like 
technologies. 
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