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This work investigates the complexity of one-dimensional cellular neural network mosaic
patterns with spatially variant templates on finite and infinite lattices. Various boundary
conditions are considered for finite lattices and the exact number of mosaic patterns is com-
puted precisely. The entropy of mosaic patterns with periodic templates can also be calculated
for infinite lattices. Furthermore, we show the abundance of mosaic patterns with respect to
template periods and, which differ greatly from cases with spatially invariant templates.
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1. Introduction

Cellular neural networks (CNN) are large ar-
rays of nonlinear circuits proposed by Chua and
Yang [1988a, 1988b]. Since then much work has
been done in the electricial engineering community,
e.g. [Chua & Roska, 1993; Thiran et al., 1995]. Such
systems occur as arrays of identical cells Ci that are
locally connected. If the cells are sitting on lattices
ZN := {i ∈ Z1| −N ≤ i ≤ N}, then the equation
describing cell Ci at site i is as follows:

dxi
dt

= −xi + z + aif(xi)

+
∑

0<|k|≤d
ai;kf(xi+k), i ∈ ZN , (1)

where xi+k, i + k /∈ ZN , satisfies certain bound-
ary conditions described below. Here, f(x) is a

piecewise-linear output function defined by

f(x) =
1

2
(|x+ 1| − |x− 1|) , (2)

and yi = f(xi) is the output of cell at i. The
quantity z is called a threshold or bias term, and
is related to independent voltage sources in electric
circuits. The constant d is a positive integer indi-
cating the degree of interconnection among cells.
The coupling coefficients of the output functions
ai;k and ai are real constants called spatially variant
A-templates and are denoted by

Ai ≡ [ai;−d, . . . , ai;−1, ai, ai;1, . . . , ai;d] . (3)

Recently, theoretical and applied studies of the
CNN model have focused on lattice dynamical sys-
tems [Hsu & Lin, 2000]. A basic and important
class of solutions of (1) are the stable stationary so-
lutions. Hence, related problems can be studied by
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1322 C.-H. Hsu & T.-H. Yang

examining two types of stationary solutions: mo-
saic and transitional. A mosaic solution x satisfies
|xi| > 1 for all i ∈ Z1 and a transitional solution
satisfies |xi| ≥ 1 for all i ∈ Z1 and equality holds for
some i. Their corresponding patterns y are called
respectively mosaic and transitional patterns. Two
other types of stationary solutions exist: defective
and linear. A defect solution x satisfies |xi| > 1 for
i ∈ Z1\D and |xk| < 1 for k ∈ D, where D 6= ∅
and D 6= Z1. x is a linear solution if |xi| < 1 for all
i ∈ Z1.

The outputs y = (f(xi)), called patterns, are
essential for understanding CNN systems. If the
templates of (1) are spatially invariant, i.e. Ai =
[r, p, s] for all i, then many stationary solution spa-
tial chaos results are obtained, see e.g. [Thiran,
1997; Juang & Lin 2000; Hsu, 2000]. In this work,
we are interested in studying the numbers of sta-
tionary solutions of (1) on finite lattices and infinite
lattices with spatially variant templates.

Since a practical CNN has finitely many cells,
some boundary conditions (B.C.) must be im-
posed and realized. Here, we consider three types
of boundary conditions: periodic, Neumann and
Dirichlet. Below, conditions are illustrated for 1-
D CNN with d = 1.

(I) Periodic B.C.

The cell at the right-most and the one at the
left-most are connected to form a circular array.
Specifically,

x−N−1(t) = xN (t)
(P.B.C.)

and xN+1(t) = x−N (t) .

(II) Neumann B.C.

This is the zero-flux or reflective B.C., that is,

x−N−1(t) = x−N (t)
(N.B.C.)

and xN+1(t) = xN (t) .

(III) Dirichlet B.C.

The absent cells x−N−1 and xN+1 are set to con-
stants such that

x−N−1(t) = x̃−N−1 ,

xN+1(t) = x̃N+1 .
(D.B.C)

Here, x̃−N−1 and x̃N+1 are constants with
|x̃−N−1| > 1 and |x̃−N−1| > 1.

By using the notation for transition matrices
and boundary matrices (see Sec. 3), we can obtain

the exact number of mosaic patterns formed by
finite cells with spatially variant templates, and
which generalize the work of [Ban et al., 2001b].

Let {Mi}i=Ni=−N , LS , and RS be, respectively, the

transition matrices of states {xi}i=Ni=−N , boundary
matrix of x−N and boundary matrix of xN (see
Sec. 3). Here S = P , D, or, N if the bound-
ary conditions considered are, respectively, peri-
odic, Dirichlet or Neumann. We also denote [M ]i,j
as the ij-entry of matrix M . The main results are
as follows.

Theorem 1 (Finite cells). Consider mosaic pat-
terns of (1)–(3) on ZN with various boundary con-
ditions. Then the number Γ(ZN ) of mosaic patterns
of (1) on ZN is equal to

Γ(ZN ) =
4∑

i,j=1

LS · N−1∏
−N+1

Mk · RS

i,j

.

Below, we use the symbols “+” and “−” to rep-
resent positive and negative saturated states as well
as their output patterns, i.e. yi = + or − if xi > 1
or xi < 1. Therefore, the elements in {+,−}ZN ,
give all possible mosaic patterns on ZN . The re-
sults regarding the number of mosaic patterns with
spatially invariant template in [Thiran, 1997] and
[Ban et al., 2001b] can be recovered using the above
theorem.

Notably, the patterns obtained on finite lattice
ZN can be considered restrictions of global mosaic
patterns on Z1, see [Shih, 2000]. Therefore, it is im-
portant to investigate the behavior or complexity of
numbers of mosaic patterns on ZN when N tends
toward infinity. One quantity crucial to the study of
behavior is spatial entropy, see Definition 4.1 [Chow
& Mallet-Paret, 1995] or [Robinson, 1995]. Accord-
ing to Theorem 1, the entropy of mosaic patterns
of (1) with spatially periodic templates (see Sec. 4)
can be computed exactly as follows.

Theorem 2 (Infinite cells). Let ` and τ be positive
integers and {Ai}`τi=1 be spatial periodic templates
on finite lattice {i}i=`τi=1 with period τ . Denote ma-

trix M(τ) =
∏j=τ
j=1 Mj , the entropy of mosaic pat-

terns of (1) will then be equal to 1/τ lnλτ . Here, λτ
is the largest positive maximal eigenvalue of M(τ).

The rest of this paper is organized as follows.
In Sec. 2, the conditions of the existence of feasible
local patterns are given. According to these condi-
tions, the parameters space of (1) can be partitioned
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Abundance of Mosaic Patterns for CNN 1323

into finite many regions such that feasible local pat-
terns in each region can be determined. Section
3 constructs the transition matrices and boundary
matrices in the case of spatially variant templates,
and shows that the number of mosaic patterns on
finite cells can be computed precisely. In Sec. 4, we
obtain the entropy of mosaic patterns for spatially
periodic templates and give some numerical results.

2. Partition of the Parameter Space

To construct mosaic patterns on ZN , we need to
determine the number of feasible local patterns for
each cell.

Definition 2.1. Denote Nd(0) = {k| − d ≤
k ≤ d}.

(i) A set = ⊂ ZN is called feasible if = = =d(i) ≡
{i+ k|k ∈ Nd(0)} for some i ∈ ZN .

(ii) A feasible (mosaic) solution is a vector
{xi+k}k∈Nd defined on a feasible set =d(i), with
each |xi+k| > 1, which satisfies the equations
in (1).

(iii) The output patterns corresponding to feasible
solutions are called feasible local patterns.

In this section, we partition the parameter space of
(1) into finite many regions such that feasible local
patterns can be determined in each region. Con-
sider the general one-dimensional spatially variant
templates,

Ai = [ai;−d · · · ai;−1aiai;1 · · · ai;d] .

For a given mosaic solution x, the state at cell Ci is
+, i.e. xi > 1, if and only∑

0<|k|≤d
ai;kyi+k + ai + z − 1 > 0 . (4)

Similarly, the state at cell Ci is −, i.e. xi < −1, if
and only if∑

0<|k|≤d
ai;kyi+k − ai + z + 1 < 0 . (5)

Herein, yi+k, i + k /∈ ZN , are determined from the
imposed boundary conditions. Therefore, the set of
feasible local patterns for state xi with template Ai
and bias z is

Ω(Ai; z) := Ω+(Ai, z) ∪ Ω−(Ai, z) ,

where

Ω+(Ai, z) =

{
(yi−d · · · yi−1yiyi+1 · · · yi+d)|

∑
0<|k|≤d

ai;kyi+k + ai + z − 1 > 0

}
,

Ω−(Ai, z) =

{
(yi−d · · · yi−1yiyi+1 · · · yi+d)|

∑
0<|k|≤d

ai;kyi+k − ai + z + 1 < 0

}
.

For convenience, we assume d = 1 and Ai =
[ri, pi, si] for the remainder of this work. Accord-
ing to (4) and (5), we can denote the eight feasible
local patterns and lines for each cell as

(i)i +⊕+, z + pi − 1 + ri + si = 0 ,

(i)i
′ −	−, z − pi + 1− ri − si = 0 ,

(ii)i −⊕+, z + pi − 1− ri + si = 0 ,

(ii)i
′ +	−, z − pi + 1 + ri − si = 0,

(iii)i +⊕−, z + pi − 1 + ri − si = 0 ,

(iii)i
′ −	+, z − pi + 1− ri + si = 0 ,

(iv)i −⊕−, z + pi − 1− ri − si = 0 ,

(iv)i
′ +	+, z − pi + 1 + ri + si = 0 .

Thus, in each region of the (ri, si) plane as shown
in Fig. 1, the (z, pi − 1) plane can be partitioned
into twenty-five regions. For example, when si >
ri > 0, we have the bifurcation diagram shown in
Fig. 2. From Fig. 2, if the template Ai ∈ [m, n]i,
0 ≤ m, n ≤ 4, then the feasible local patterns for
(1) are as listed in Table 1.

Such a partitioning was studied in [Juang &
Lin, 2000] and [Hsu et al., 2000] for one-dimensional

    si
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Fig. 1. Partition of the (ri, si) plane.
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1324 C.-H. Hsu & T.-H. Yang

Table 1. Feasible local patterns for Ai ∈ [m, n]i.

m Feasible Local Patterns n Feasible Local Patterns

4 +⊕+,−⊕+,+⊕−,−⊕− 4 −	−,+	−,−	+,+	+

3 +⊕+,−⊕+,+⊕− 3 −	−,+	−,−	+

2 +⊕+,−⊕+ 2 −	,+	−
1 +⊕+ 1 +⊕+

0 None 0 None

[2,2]
i

      [3,3]
i

      [4,4]
i

      [4,3]
i

               [4,2]i

      [4,1]
i

         [3,2]i

        [3,4] i

      [2,4]i

        [1,4]
i

[4,0]
i

[0,4]
i

        [1,1]
i

           [0,0]
i

       [2,1]
i

         [2,0] i

          [1,2]
i

[0,2]i

   [2,3]i

[1,3]
i

       [0,3]
i

[3,0]i

       [0,1]
i    [1,0]i

 z

       p
i
-1

[3,1]i

Fig. 2. Partition of (z, pi − 1) plane when 0 < ri < si.

and two-dimensional CNN with spatially invariant
templates. As Fig. 2 shows, there are various sets
of parameters (Ai, z) by which the corresponding
sets of feasible local patterns are identical. In or-
der to obtain the feasible patterns on ZN , we need
to glue such feasible local patterns cell by cell.
Hence, some transition conditions for the interior
cells and boundary conditions for the boundary cells
are needed to match in the following section.

3. Transition and Boundary
Matrices

In this section, we construct a scheme for obtaining
the feasible patterns on ZN . This scheme can be
exactly implemented by formulating suitable tran-
sitions and boundary matrices. Consequently, the
number of patterns on a finite lattice with certain
boundary conditions can be computed precisely.

3.1. Transition matrix

Firstly, we identify the indices {1, 2, 3, 4} and the
four 1× 2 patterns {++,+−,−+,−−} using

1←→ ++, 2←→ +−,
3←→−+, 4←→ −− .

(6)

For simplicity, if i ∈ {1, 2, 3, 4} then denote i+ and
i−, respectively, as the left and right patterns of i in
(6). For example, 2+ = + and 2− = −. As shown
in Table 1, the transition matrix Mi ≡ Mi;mk,nk
of state xi with template Ai ∈ [mk, nk]i, 0 ≤ mk,
nk ≤ 4 will be of the form

++ +− −+ −−

Mi;mk ,nk =

++

+−
−+

−−


m1,1 m1,2 0 0

0 0 m2,3 m2,4

m3,1 m3,2 0 0

0 0 m4,3 m4,4

 .

The formation of feasible local patterns related to
the transition matrix can be described as follows:
the (i, j)-entry of Mi is one if and only if the jth
1 × 2 pattern in (6) can be joined, with one site
overlapped, to the right of the ith 1 × 2 pattern
in (6) to form a 1 × 3 feasible local pattern in
Ω(Ai, z). Some transition matrices are listed in
Table 2.

One can use these transition matrices Mi to
generate patterns on lattices of lengths greater than
three. For example, the nonzero (1, 2)-entry of M2 ·
M3, gives the patterns (y1, y2, y3, y4) = (+,+,+,−)
on a 1 × 4 lattice. Indeed, the (i, j)-th entry of∏N−1
k=−N+1Mk gives the number of patterns on ZN

with the ith 1 × 2 pattern in (6) at the two sites
to the left-most of ZN and the jth 1× 2 pattern in
(6) at the two sites to the right-most of ZN . For
example, when i = 2, j = 4, the patterns on ZN are
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Abundance of Mosaic Patterns for CNN 1325

Table 2. Transition matrices for xi when Ai ∈ [mk, nk]i, mk, nk ≥ 3.

Mi m1,1 m1,2 m2,3 m2,4 m3,1 m3,2 m4,3 m4,4

mk = 4, nk = 4 1 1 1 1 1 1 1 1

mk = 4, nk = 3 1 1 0 1 1 1 1 1

mk = 3, nk = 4 1 1 1 1 1 0 1 1

mk = 3, nk = 3 1 1 0 1 1 0 1 1

of the form,

+ − · · · · · · − − .

If the states x−N and xN satisfy the imposed B.C.
defined in Sec. 1, then the above construction of
transition matrices allow us to count the number of
mosaic patterns on ZN . Therefore, it is necessary
to describe the feasible patterns on the boundary
sites with respect to the imposed B.C. using matri-
ces called boundary matrices as shown below.

3.2. Boundary matrices

Assume A−N ∈ [mk, nk]−N . We use the symbols
Lp(or LPmk ,nk), L

N (or LNmk ,nk), and LD(or LDmk ,nk)
to denote the left-most boundary matrices for state
x−N with periodic, Neumann and Dirichlet bound-
ary conditions, respectively. Similarly, the symbols
Rp(or RPmk ,nk), R

N (or RNmk,nk) and RD(or RDmk ,nk)
denote the right-most boundary matrices for state

xN with periodic, Neumann and Dirichlet boundary

conditions, respectively. The boundary matrices are

defined below.

3.2.1. Periodic boundary matrices

As defined in (6), let {yk}k=N
k=−N be a pattern on ZN

such that {yk}k=N−1
k=−N+1 is a feasible pattern on ZN−1

with y−Ny−N+1 = i and yN−1yN = j, 1 ≤ i, j ≤ 4.

If {xk}k=N
k=−N satisfies the (P.B.C.), we need to check

the feasibility of local patterns for cells at −N and

N sites. According to Fig. 3, the right-most jth

1 × 2 pattern can be joined to the left-most of the

ith 1 × 2 pattern if and only if yNy−Ny−N+1 is a

feasible local pattern for cell −N , and the left-most

ith 1× 2 pattern can be joined to the right-most of

the jth 1 × 2 pattern if and only if yN−1yNy−N is

a feasible local pattern for cell N . Hence, the left

boundary matrix LP and right boundary matrices

RP can be constructed as follows:

LP =


++ +− −+ −−

++ `1,1 `1,2 0 0

+− 0 0 `2,3 `2,4
−+ `3,1 `3,2 0 0

−− 0 0 `4,3 `4,4

 , RP =


++ +− −+ −−

++ r1,1 r1,2 0 0

+− 0 0 r2,3 r2,4

−+ r3,1 r3,2 0 0

−− 0 0 r4,3 r4,4

 .
Here,

`k,i = 1 for 1 ≤ i, k ≤ 4 if and only if

[M−N ]k,i 6= 0 and [MN ]j,k 6= 0 for some1 ≤ j ≤ 4

and

rj,k = 1 for 1 ≤ j, k ≤ 4 if and only if

[M−N ]k,i 6= 0 and [MN ]j,k 6= 0 for some1 ≤ i ≤ 4 .

(P.B.C.)1

3.2.2. Neumann boundary matrices

Let {yk}k=N
k=−N be a pattern on ZN such that {yk}k=N−1

k=−N+1 is a feasible pattern on ZN−1 with y−Ny−N+1 = i
and yN−1yN = j. The Neumann boundary matrices can be similarly defined.
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1326 C.-H. Hsu & T.-H. Yang

2N-1 cells

i j

            2N+1 cells

  -N    N

Fig. 3. Patterns with periodic boundary conditions.

2N-1 cells

i j

               2N+1 cells

 -N N

Fig. 4. Patterns for Neumann boundary conditions.

According to Fig. 4, the left boundary matrix LN and right boundary matrices RN are defined as follows:

LN =


++ +− −+ −−

++ `1,1 `1,2 0 0

+− 0 0 0 0

−+ 0 0 0 0

−− 0 0 `4,3 `4,4

 , RN =


++ +− −+ −−

++ r1,1 0 0 0

+− 0 0 0 r2,4

−+ r3,1 0 0 0

−− 0 0 0 r4,4

 .
Here,

`1,i = 1, i = 1, 2 if and only if [M−N ]1,i = 1 ,

`4,i = 1, i = 3, 4 if and only if [M−N ]4,i = 1 ,

ri,1 = 1, i = 1, 3 if and only if [MN ]i,1 = 1 ,

ri,4 = 1, i = 2, 4 if and only if [MN ]i,4 = 1 .

(N.B.C.)1

Some Neumann boundary matrices are listed in Table 3.

3.2.3. Dirichlet boundary matrices

Let {yk}k=N+1
k=−N−1 be a pattern on ZN+1 such that {yk}k=N

k=−N is a feasible pattern on ZN with y−N−1y−N = i

and yNyN+1 = j. According to Fig. 5, it is obvious that {yk}k=N
k=−N satisfies (D.B.C.) if and only if i− and

j+ are equal to the output patterns of ỹ−N−1 and ỹN+1, respectively.

Table 3. Neumann boundary matrices.

LNm,nm, n ≥ 3 LN2,3 LN3,2 LNm,n2 ≥ m, n ≥ 1 LN1,0 LN0,1 LN0,0

`1,1 1 1 1 1 1 0 0

`1,2 1 0 1 0 0 0 0

`4,3 1 1 0 0 0 0 0

`4,4 1 1 1 1 0 1 0
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Abundance of Mosaic Patterns for CNN 1327

Table 3. (Continued).

RNm,nm, n ≥ 2 RN1,2 RN2,1 RN1,1 RN1,0 RN0,1 RN0,0

r1,1 1 1 1 1 1 0 0

r2,4 1 1 0 0 0 0 0

r3,1 1 0 1 0 0 0 0

r4,4 1 1 1 1 0 1 0

The left boundary matrix LD and right boundary matrices RD are defined as follows:

LD =


++ +− −+ −−

++ `1,1 `1,2 0 0

+− 0 0 `2,3 `2,4

−+ `3,1 `3,2 0 0

−− 0 0 `4,3 `4,4

 , RD =


++ +− −+ −−

++ r1,1 r1,2 0 0

+− 0 0 r2,3 r2,4

−+ r3,1 r3,2 0 0

−− 0 0 r4,3 r4,4

 .
Here

`i,j = 1 if and only if i− = ỹ−N−1 and [M−N ]i,j 6= 0 ,

ri,j = 1 if and only if j+ = ỹN+1 and [MN ]i,j 6= 0 .
(D.B.C)1

2N+1 cells

j
               2N+3 cells

i

  -N    N

Fig. 5. Patterns with Dirichlet boundary conditions.

Using the preceding arguments, we prove Theo-
rem 1 as follows.

Proof of Theorem 1. Proof is given only for the case
of periodic boundary conditions; the other cases can
be proved in similar fashion.

According to Fig. 3, let {yk}k=N
k=−N be a pat-

tern on ZN such that {yk}k=N−1
k=−N+1 is a feasible pat-

tern on ZN−1 with y−Ny−N+1 = i and yN−1yN =
j. Then the number of such feasible patterns on
ZN−1 is equal to [

∏N−1
−N+1Mk]i,j . Hence, {yk}k=N

k=−N
is a feasible pattern on ZN is equivalent to that
yNy−Ny−N+1 is a feasible local pattern for cell
−N , and yN−1yNy−N is a feasible local pattern for
cell N . Therefore, according to the construction
(P.B.C.)1 of periodic boundary matrices, the results
obviously follow. The proof is complete. �

If the templates considered are spatially invari-
ant, i.e. Ai = [r, p, s] for all cells, then the results
of Theorem 1 replicate the results obtained by [Ban
et al., 2001b; Thiran, 1997]. For details see Table 4.

4. Results of Entropy

Obtaining the numbers of feasible patterns for var-
ious boundary conditions was shown in the preced-
ing section. It is also important and interesting to
study the behavior of such number with respect
to the length of ZN . One way to investigate this
behavior is to compute the entropy (see [Chow &
Mallet-Paret, 1995]) of stationary solutions of (1).
In one-dimensional cases, the entropy function h on
Z1 can be defined as

Definition 4.1. Let Γ(ZN ) be the number of feasi-
ble patterns on ZN that satisfy the imposed bound-
ary conditions. Thus,

hN (ZN ) ≡ ln Γ(ZN )

2N + 1

and h(Z1) ≡ lim
N→∞

ln Γ(ZN )

2N + 1
.

h(Z1) is called the entropy of stationary solutions
of (1). Furthermore, if h(Z1) > 0 or h(Z1) = 0 then
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1328 C.-H. Hsu & T.-H. Yang

Table 4. Exact number of mosaic patterns for a spatially invariant template.

Region in r − s Plane Region in z − p Plane P.B.C. N.B.C.

[4, 4] 2H 2H

(I), (II) [3, 3] Γ2(H) Γ1(H)

[2, 2] 2 2

[4, 4] 2H 2H

(III), (VIII) [3, 3] 2 2

[2, 2] 0 2

[4, 4] 2H 2H

(IV), (VII) [3, 3] 2 3 + (−1)H

[2, 2] 0 1 + (−1)H

[4, 4] 2H 2H

(V), (VI) [3, 3] Γ2(H) Γ1(H)

[2, 2] 2 1 + (−1)H

H = 2N + 1.

Γ1(H) =

[(
1 +
√

5

2

)H
+

(
1−
√

5

2

)H]
+ 2 cos

(
2π

3
H

)
.

Γ2(H) =
2√
5

[(
1 +
√

5

2

)H+1

−
(

1−
√

5

2

)H+1
]
.

(1) is said to be spatial chaos or pattern formation,
respectively.

Shih [2000] proved that boundary conditions
have negligible influence on pattern formation and
spatial chaos of mosaic patterns of (1) with spatially
invariant templates. If fact, by the same arguments,
the results also hold for the case of spatially variant
templates.

If the templates are spatially invariant, accord-
ing to [Juang & Lin, 2000], the entropy h of mosaic
patterns on Z1 is

h =



ln 2 if (z, p) ∈ [4, 4] ,

ln λ if (z, p) ∈ [4, 3] or [3, 4] ,

ln
1 +
√

5

2
if (z, p) ∈ [3, 3] ,

0 otherwise .

(7)

Here, λ is the maximal root of λ3−2λ2 +λ−1 = 0.
On the other hand, if the templates are spa-

tially variant, the structure of the entropy function
is quite different. Some partial entropy will ap-
pear for different combinations of templates. For
instance, if we assume one template for odd cells

and another template for even cells, then the en-
tropy h on Z1 is computed as follows.

Example 4.1. Let N ≥ 3 be a positive integer and

Ak = [rk, pk, sk] ∈
{

[4, 1], if k is odd,

[1, 4], if k is even,
(8)

on ZN . If we consider the mosaic patterns of (1) on
ZN with different boundary conditions imposed as
in previous section, then the entropy functions are
equal. Moreover, we have

h(Z1) = ln
1 +
√

5

2
.

Proof. Without lost of generality, we may assume
ZN = {i}i=Ni=1 . First, let {S(K)}∞K=1 be a Fibonacci
sequence, i.e.

S(1) = 1, S(2) = 2,

and

S(K + 2) = S(K + 1) + S(K), if K ≥ 1.
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It is well known that

S(K) =
1√
5

(1 +
√

5

2

)K
−
(

1−
√

5

2

)K . (9)

Using (8), if K ≥ 3 then it is not difficult to
compute that

2K∏
k=2

Mk =


S(2K − 4) 0 S(2K − 3) S(2K − 3)

S(2K − 3) 0 S(2K − 2) S(2K − 2)

0 0 0 0

S(2K − 3) 0 S(2K − 2) S(2K − 2)

 ,
(10)

2K−1∏
k=2

Mk =


S(2K − 4) S(2K − 4) 0 S(2K − 5)

S(2K − 3) S(2K − 3) 0 S(2K − 4)

0 0 0 0

S(2K − 3) S(2K − 3) 0 S(2K − 4)

 ,
and

4∑
i,j=1

[
K−1∏
k=2

Mk

]
i,j

= S(K + 1) . (11)

The numbers Γ(ZN ) for different boundary condi-
tions are computed below.

Case (I) (P.B.C.). Since the LP , RP on ZN in
Theorem 1 can be presented as

LP =


1 1 0 0

0 0 0 0

0 0 0 0

0 0 0 1

 ,
and

RP =


1 0 0 0

0 0 0 0

1 0 0 0

0 0 0 1

 , if N is odd, and

LP =


1 1 0 0

0 0 0 0

1 1 0 0

0 0 1 1

 ,

and

RP =


1 0 0 0

0 0 1 1

0 0 0 0

0 0 1 1

 , if N is even,

by (10), we have

Γ(Z2K+1) = S(2K + 2), K ≥ 3 ,

and

Γ(Z2K) = S(2K + 3), K ≥ 3 .

Case (II ) (N.B.C.). Elementary computation
yields

LN =


1 1 0 0

0 0 0 0

0 0 0 0

0 0 0 1

 , RN =


1 0 0 0

0 0 0 1

0 0 0 0

0 0 0 1


and

RN =


1 0 0 0

0 0 0 0

1 0 0 0

0 0 0 1

 .
Hence, using Theorem 1 and (9), we obtain

Γ(Z2K+1) = S(2K + 2), K ≥ 3 ,

and
Γ(Z2K) = S(2K + 1), K ≥ 3 .

Case (III) (D.B.C.). In this case, we consider
f(x̃0) = 1 and f(x̃N+1) = 1. The other cases can
also be investigated in similar fashion. Using The-
orem 1, it is easy to determine that

LD =


1 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 , RD =


1 0 0 0

0 0 1 0

0 0 0 0

0 0 1 0

 ,
and

RD =


1 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0

 .
Therefore,

Γ(Z2K+1) = Γ(Z2K) = S(2K), K ≥ 3 .

Consequently, according to Definition 4.1 and (9)
and the computations above, we have h(Z1) =
ln (1 +

√
5)/2. The proof is complete. �
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Remark 4.1.

(i) The preceding example shows the influence of
boundary conditions on pattern formation and
spatial chaos is negligible. In general, this is
also true for any type of spatially variant tem-
plates. For details, see [Shih, 2000].

(ii) According to (7), entropy is equal to zero if the
template is spatially invariant in region [4, 1]
or [1, 4]. However, the entropy obtained in Ex-
ample 4.1 is equal to the entropy obtained by
[Juang & Lin, 2000] in region [3, 3] although
the patterns are quite different. Therefore, the
structure of entropy is more complicated when
templates are spatially variant.

Motivated by Example 4.1, we introduce a def-
inition of periodic templates and prove Theorem 2
below. For simplicity, we consider the finite lattices
ZN = {k}k=N

k=1 and Γ(ZN ) =
∑4
i,j=1[

∏N
k=1Mk]i,j

hereinafter.

Definition 4.2. Let ` and τ be positive integers.
The family of templates Ai = [ri, pi, si] ∈ [mi, ni]i,
i = 1 to `τ are called spatially periodic on Z`τ with
period τ if

mi = mj and ni = nj, for i = j (mod τ) .

Here, 1 ≤ j ≤ τ , 1 ≤ i ≤ `τ and 0 ≤ mi, ni ≤ 4.

Proof of Theorem 2. When τ = 1, according to
[Chow & Mallet-Paret, 1995], we have

lim
`→∞

h`(Z`) = lim
`→∞

1

`

4∑
i,j=1

[∏̀
k=1

M(1)

]
i,j

= ln λ1 ,

where λ1 is the largest positive maximal eigenvalue
of M(1). From Theorem 1, we obtain

Γ(Z`τ ) =
4∑

i,j=1

[∏̀
k=1

M(τ)

]
i,j

       ln2 = = 0

   A   B C   D    E   F   G  H  I   J  K   L

1 2 3 4 5 6 7 8 9 1011 1213 1415 16 1718 19 2021 22 2324

1
2
3
4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

>  >  >  >  >  >  > >  >  >  >  >

                    even cells

odd cells

Fig. 6. Structure of h(Z1) when τ = 2.
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Table 5. Characteristic equations, exact entropy and numerical results.

Class P(2) h(Z∞) =
1

2
lnλ2 h1000(Z1000)

A λ4 − 4λ3 0.6931 0.6945

B λ4 − 3λ3 − 2λ2 0.6350 0.6366

C λ4 − 3λ3 − λ2 − λ 0.6094 0.6109

D λ4 − 2λ3 − 3λ2 − λ 0.5624 0.5640

E or
(i) λ4 − 2λ3 − 3λ2

(ii) λ4 − 3λ3
0.5493 0.5510

F λ4 − 2λ3 − 2λ2 − λ 0.5203 0.5220

G or
(i) λ4 − 2λ3 − λ2 − 2λ+ 1

(ii) λ4 − 3λ3 + λ2
0.4812 0.4830

H λ4 − 2λ3 − λ2 0.4407 0.4426

I λ4 − 2λ3 − λ 0.3955 0.3975

J λ4 − 2λ3 0.3466 0.3486

K λ4 − 2λ3 + λ2 − λ 0.2812 0.2834

L λ4 − λ3 − λ2 0.2406 0.2428

Table 6. Numerical results for h(Z1) with
3 ≤ τ ≤ 6.

τ T (τ ) P (τ ) DP (τ ) C(τ )

1 251 4 3 3

2 252 152 14 12

3 253 4420 33 27

4 254 121456 90 84

5 255 3209404 214 195

6 256 82014632 577 497

and

lim
`→∞

h`(Z`τ ) = lim
`→∞

Γ(Z`τ )

`τ
=

1

τ
lnλτ .

The proof is complete. �

Since the function η(m,n) = 5m + n is an
one-to-one function from {0, 1, 2, 3, 4}×{0, 1, 2, 3, 4}
onto {0, 1 . . . , 24}, we may denote [m,n] as η(m,n).
When τ = 2, there are 152 combinations of tem-
plates with positive entropy. Among these there are
14 distinct characteristic polynomials with positive
entropy and 12 distinct positive entropies.

The structure of h(Z1) is illustrated in Fig. 6
by replacing x-, y-axis with η(m,n) respectively.

The characteristic equations, h(Z1) and hN for
N = 1000 are also listed in Table 5.

Remark 4.2. Some numerical results are listed in
Table 6 for the case of 3 ≤ τ ≤ 6 with:

T (τ) ≡ total combination of templates,

P (τ) ≡ all combinations of templates with

positive entropy,

DP (τ) ≡ distinct characteristic polynomials with

positive entropy,

C(τ) ≡ distinct positive entropies.
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