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Abstract

This paper presents a PID tuning method for unstable processes using an adaptive-network-based-fuzzy-inference system
(ANFIS) for given gain and phase margin (GPM) speci)cations. PID tuning methods are widely used to control stable
processes. However, PID controller for unstable processes is less common. In this paper, the PID controller parameters
can be determined by the ANFIS. Because the de)nitions of gain and phase margin equations are complex, an analytical
tuning method for achieving speci)ed the gain and phase margins is not yet available. In this paper, the ANFIS is adopted
to identify the relationship between the gain-phase margin speci)cations and the PID controller parameters. Then, it is
used to automatically tune the PID controller parameters for di;erent gain and phase margin speci)cations so that neither
numerical methods nor graphical methods need be used. A simple method is also developed to estimate the stabilizing
region of PID controller parameters and valid region for gain-phase margin. Even for unreasonable speci)cations, out of
the valid region, the ANFIS can still )nd suitable PID controller to guarantee the stability of the closed-loop system.
Simulation results show that the ANFIS can achieve the speci)ed values e=ciently. c© 2002 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Several methods for determining PID controller parameters have been developed over the past 50 years.
Some employ information about open-loop step response, for example, the Coon–Cohen reaction curve method
[7]; other methods use knowledge of the Nyquist curve, for example, the Ziegler–Nichols frequency-response
method. However, these tuning methods use only a small amount of information about the dynamic behavior
of the system, and often do not provide good tuning. It is known that gain margin and phase margin have
served as important measures of robustness. From classical control theories, phase margin is related to the

∗ Corresponding author. Tel.: +886-3-5712121=ext: 54345; fax: +886-3-5715998.
E-mail addresses: chlee@saturn.yzu.edu.tw (C.-H. Lee), ccteng@cn.nctu.edu.tw (C.-C. Teng).

0165-0114/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S 0165 -0114(01)00051 -3



96 C.-H. Lee, C.-C. Teng / Fuzzy Sets and Systems 128 (2002) 95–106

damping of the system, and therefore also serves as a performance measurement. Their solutions are nor-
mally obtained numerically or graphically by trial-and-error use of Bode plots. Controllers designed to satisfy
gain margin and phase margin (GP=GM) criteria are not new approaches [2,8–11,19]. In 1984, Astrom and
Hagglund )rst proposed a tuning method for PID controllers based on phase and amplitude speci)cations
[1]. Then, Ho et al. presented a tuning method for stable and unstable processes [9–11]. They adopt linear
equations to approximate the arctan function as to simplify the gain-phase margin formulas. Due to the ap-
proximation of arctan function, this method may result in unstable controllers or unstable systems for some
speci)cations. In this paper, a fuzzy neural network approach is presented to solve this problem. The ap-
proach determines the PID controller parameters that guarantee the stability of controller and the closed-loop
system.

With the development of fuzzy logic controllers and the more recent hybrid controllers which use both
fuzzy logic and neural network methodology, the possibility exists that one or both of these methods could
perform as a feedback controller [5,6,15,17,18]. The fuzzy logic toolbox [16] implements one of the hybrid
schemes known as the adaptive-network-based-fuzzy-inference system (ANFIS). The ANFIS has proven to
be an excellent function approximation tool and can be as good or better than a plain feedforward neural
network for some situations. Although various kinds of fuzzy logic controllers (FLCs) [20,21] are widely used
nowadays and have certain advantages over conventional PID controllers, relatively few theoretical analysis
that explain why they can achieve better performance are available. In literature [6], we have presented a
tuning method that uses the ANFIS based on gain and phase margin speci)cations, to tune the PI controller
parameters processes e=ciently. This approach enjoys the advantage of functionally mapping the ANFIS, and
gives better performance than GPM [9]. The purpose of this paper is to extend this approach to unstable
processes and solve the unsuitable results of [11]. The stabilizing region of controller parameters and the
valid region of speci)cations (Am; �m) for PID controller are also estimated.

The arrangement of this paper is as follows. In Section 2, we brieKy introduce gain and phase margins, and
the used fuzzy neural network (ANFIS). Section 3 proposes the structure of PID controller using the ANFIS
and the tuning method. Section 4 describes a procedure for estimating the stabilizing region of controller
parameters and valid region of GPM speci)cations for PID controller. Section 5 gives the simulation results
and discusses the advantages of the proposed approach as compared with other methods. Finally, conclusions
are summarized in Section 6.

2. Preliminaries

2.1. Gain margin and phase margin

Consider the n-order unstable process with time-delay

Gp(s) =
K(1 + wn1s)n1(1 + wn2s)n2 · · · (1 + wnqs)nq

(1 + wd1s)d1(1 + wd2s)d2 · · · (1 + wdps)dp
e−Ls; (1)

where at least one of wdi is negative and n=
∑p
i=1 di. The open-loop step response of the process is unbounded,

since it has a pole in the right-half plane. Figs. 1(a) and 1(b) show the Bode and Nyquist diagrams of an
unstable )rst-order plus delay process with PI control. Note that unstable plant have more than one GM=PM.
As the de)nitions of the GM=PM [14], Am1 and Am2 are called gain margin (or upward gain margin) and gain
reduction margin (or downward margin). In addition, applying the Nyquist criterion for stability, the Nyquist
diagram should encircle the point (−1; 0) [in the G(jw) plane] exactly once in the anti-clockwise direction.
Based on the stability criterion, the gain margin Am1 is chosen in this literature. Here, the PID tuning for
unstable plant is detailed in [11]. We followed the same line of [11].
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Fig. 1. Bode and Nyquist diagrams of unstable )rst-order plus delay process with PI control.
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The PID controller given by

Gc(s) = KP +
KI

s
+ KDs; (2)

must be used to satisfy the Nyquist criterion. Let the speci)ed gain and phase margins be denoted by Am and
�m, respectively. The formulas for gain and phase margins are as follows:

arg[GC(jwp)GP(jwP)] = −� (3)

Am =
1

|GC(jwP)GP(jwP)| ; (4)

|GC(jwg)GP(jwg)| = 1; (5)

�m = arg[GC(jwg)GP(jwg)] + �; (6)

where the gain margin is de)ned by Eqs. (3) and (4), and the phase margin by Eqs. (5) and (6). Here wp

and wg denote the phase crossover frequency and gain crossover frequency, respectively. The loop transfer
function is obtained from

Gc(s)Gp(s) =
K(KI + KPs+ KDs2)(1 + wn1s)n1(1 + wn2s)n2 · · · (1 + wnqs)nq

s(1 + wd1s)d1(1 + wd2s)d2 · · · (1 + wdps)dp
e−Ls:

Substituting the above equation into Eqs. (3)–(6), we have

1
2�+ tan−1(wpwc1) + tan−1(wpwc2) + n1 tan−1(wpwn1) + · · · + nq tan−1(wpwnq) − wpL

−d1 tan−1(wpwd1) − d2 tan−1(wpwd2) − · · · − dp tan−1(wpwdp) = 0; (7)

AmK = wp

√
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pw
2
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√
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2
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√
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; (9)

�m = 1
2�+ tan−1(wgwc1) + tan−1(wgwc2) + n1 tan−1(wgwn1) + · · · + nq tan−1(wgwnq) − wgL

−d1 tan−1(wgwd1) − d2 tan−1(wgwd2) − · · · − dp tan−1(wgwdp); (10)

where wc1 and wc2 are the roots of (KI + KPs + KDs2). For a given process (K; wn1; : : : ; wnq; wd1; : : : ; wdp; L)
and speci)cations (Am; �m), Eqs. (7)–(10) can be solved for the PID controller parameters (KP; KI; KD) and
crossover frequencies (wg; wp) numerically but not analytically because of the presence of the tan−1 function.
For stable processes, controllers such as the IMC [4] and GPM [9,10] that are based on gain and phase
margins cannot e=ciently meet speci)cations within a 10% error margin owing to the approximation of the
tan−1 function. In addition, a similar controller based on GPM for an unstable process improves performance
but still can only meet the speci)cations within 5% error [11]. Using this approximated method [11], unstable
results (unstable controller or unstable closed-loop system) occurred due to the approximation of tan−1 (for
details, see Remark 3). Therefore, another approach using the ANFIS for general processes is considered here.
This approach yields high accurate tuning formulas for controllers including P; PI; PD and PID controllers
of stable and unstable processes with time delay.
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Fig. 2. The architecture of the ANFIS.

Remark 1. It is well known that the model

G(s) =
K

1 + sT
e−sL (11)

is the most common process model used in paper on PID controller tuning [2]. As the statement of [2,13]
the following processes were chosen that are representative for the dynamics of typical industrial processes:

G1(s) =
e−s

(1 + sT )2 ; T = 0:1; : : : ; 10;

G2(s) =
1

(1 + s)n
; n = 3; 4; 8;

G3(s) =
1

(1 + s)(1 + �s)(1 + �2s)(1 + �3s)
; � = 0:2; 0:5; 0:7;

G4(s) =
1 − �s

(1 + s)3 ; � = 0:1; 0:2; 0:5; 1:2: (12)

The test batch (12) does not include the transfer function (11) because this model is not representative for
typical industrial processes [2]. Therefore, we present here our approach in transfer function (1) that includes
the test batch (12) and model (11) as model (11) is the most common process model used in the paper on
PID controller tuning.

2.2. Fuzzy neural network (ANFIS)

The used ANFIS [15–17] architecture is shown in Fig. 2. The inputs are given by (x; y) and have Ri (i=
1; : : : ; n2) implications, then the value of f is implied as follows.

Layer 1: Here we denote the output node i in this layer as Ol; i. Every node is an adaptive node with a node
output de)ned by

O1; i = �Ai(x) for i = 1; : : : ; n

O1; i+n = �Ai+n(y);
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where x is the input and Ai is a fuzzy set associated with this node. In other words, outputs of
this layer are the membership values of the premise part. Here the membership function can be
characterized by the generalized bell-shaped function:

�Ai(x) =
1

1 + [(xici=ai)2]bi
;

where {ai; bi; ci} is in the parameter set. Parameters in this layer are referred to as premise
parameters.

Layer 2: Every node in this layer is a )xed node labeled  , which multiplies the incoming signals and outputs
the product,

O2; k = wk = �Ai(x) × �Aj (y); i; j = 1; : : : ; n; k = 1; : : : ; n2:

Each node output represents the )ring strength of a rule.
Layer 3: Every node in this layer is a )xed node labeled N . The ith node calculates the ratio of the ith rule’s

)ring strength to the sum of all rule’s )ring strengths:

O3; i = Owi =
wi

w1 + · · · + wn2
; i = 1; : : : ; n2:

For convenience, the outputs from this layer are called normalized :ring strengths.
Layer 4: Every node in layer 4 is an adaptive node with a node function

O4; i = Owifi = Owi(pi1x + pi2y + pi0); i = 1; : : : ; n2;

where Owi is the output of layer 3 and {pi0; pi1; pi2} is in the parameter set. Parameters in this layer
are called as consequent parameters.

Layer 5: The single node in this layer is a )xed node labeled
∑

that computes the overall outputs as the
summation of all incoming signals, i.e.,

f = O5;1 =
∑
i

Owifi =
∑
i wifi∑
i wi

; i = 1; : : : ; n2:

3. PID controller using the ANFIS

To obtain parameters (KP; KI; KD) for a PID controller more exactly, without using the approximation of
arctan functions, we use the ANFIS [15–17] based on gain and phase margins to model these equations
analytically.

Considering the nonlinear coupled Eqs. (7)–(10), we )nd that there are )ve parameters (wp; wg; KP; KI; KD)
in those four equations. If we are given gain margin and phase margin speci)cations (Am; �m), it may not be
possible to solve for the )ve parameters analytically because the equations are nonlinear. Now, let us consider
another approach. First, it is possible to give randomly controller parameters (KP; KI; KD) as the input of
these equations. Using Eq. (7), we can solve for wp then substitute it into Eq. (8) to get Am. And using
Eq. (9), we can calculate wg then substitute it into Eq. (10) to obtain �m. Hence we obtain the parameters
(wp; wg; Am; �m) that correspond to the controller parameters (KP; KI; KD), respectively. Fig. 3 summarizes
the approach. In preparation for training the ANFIS, we assign randomly points (KP; KI; KD), obtain the
corresponding (Am; �m) points, and set them as the training data. That is, the input data are (Am; �m) and the
output are (KP; KI; KD). Note that the training data satisfy the stability condition, i.e., Am¿0 and �m¿0. Thus,
we can get our training data for the ANFIS. This approach avoids the possibility of not )nding a solution to
nonlinear Eqs. (7)–(10), and reduces the overall task. Furthermore, this approach is useful for all processes
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Fig. 3. Block diagram of function mapping using ANFIS.

(stable, unstable, higher-order, under-damped response, etc.). In Section 5, simulation results demonstrate the
e;ectiveness of this approach.

Fig. 3 illustrates the block diagram of the function mapping of Eqs. (7)–(10) using the ANFIS. Suppose
we are given (Am; �m) and have Ri (i= 1; : : : ; n2) implications, then the value of y∈{KP; KI; KD} is implied
as follows.

3.1. Tuning of the ANFIS

We note that when the values of the premise parameters are )xed, the overall output f= {KP; KI; KD} can
be expressed as a linear combination of consequent parameters. In symbols, the output f in Fig. 2 can be
written as

f=
w1

w1 + · · · + wn2
f1 + · · · + wn2

w1 + · · · + wn2
fn2 = Ow1f1 + · · · + Own2fn2

= ( Ow1Am)p1
1 + ( Ow1�m)p1

2 + ( Ow1)p1
0 + · · · + ( Own2Am)p

n2
1 + ( Own2�m)p

n2
2 + ( Own2 )p

n2
0 ;

which is linear in the consequent parameters {p1
0; p

1
1; p

1
2; : : : ; p

n2
0 ; p

n2
1 ; p

n2
2 }. Note that if a fuzzy neural network

output or its transformation is linear in some of the network’s parameters, then we can identify these linear
parameters using the well-known linear least-squares method [12]. Therefore, we use an o;-line learning (the
recursive least-square algorithm) to update the parameters of ANFIS. After the parameters are updated for each
data presentation, we have an on-line learning scheme. This learning strategy [3] is vital to on-line parameter
identi)cation by systems with changing characteristics. In this learning scheme, we use back-propagation
learning [21] to update the premise parameters {ai; bi; ci}. Details for tuning the ANFIS can be found in
[6,15–17].

4. Stabilizing region and valid region for PID controller

Some of the equations that appeared in the derivation are useful for assessing what is achievable by PID
control. Firstly there are some restrictions on the choice of the gain and phase margins. One usual requirement
is that the controller parameters KP¿0; KI¿0 and KD¿0. Therefore, the suitable choice (speci)cation) of
gain and phase margins for the unstable process must be determined. In literature [10], Ho and Xu used the
linear equation to approximate the tan−1 function that reduces the complex of Eqs. (7)–(10). Therefore, they
found the relationship between Am; �m, time-delay, and unstable-pole. An analysis method was developed
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to )nd the suitable choice of gain-phase margins. However, there are unsuitable speci)cations by using the
result of [11], see Example 1. A simple method is proposed to estimate the valid region of Am; �m for PID
controller and the stabilizing region.

4.1. Procedure for estimating the stabilizing region and valid region

Step 1: Estimate the stabilizing range $ roughly for controller parameters (KP¿0; KI¿0 and KD¿0).
Step 2: Choose randomly (or uniformly) the testing data (KiP; K

i
I ; K

i
D; i= 1; : : : ; n) from the region $ and

calculate the corresponding gain and phase margins using Eqs. (7)–(10).
Step 3: Find the data set $P that every testing data in $ results a stable closed-loop system (Am¿0 and

�m¿0).
Step 4: Estimate the stabilizing region $∗

P of parameter (KP; KI; KD) from these points, i.e., )nd the boundary
of $P (here we can omit the isolated point that are far from the grouped points).
Step 5: Choose randomly on the closure of $∗

P and calculate the corresponding Am and �m using
Eqs. (7)–(10). Then, the valid region of gain and phase margin speci)cation for the PID controller can
be obtained.

Remark 2. It is known that choosing proper training data is important for neural network system. In this
case, gain and phase margins are input data while the PID parameters are the output data. In the preceding
discussion, we explained that we get our training data by giving the PID parameters randomly to derive the
desired output (gain margin and phase margin). The stability of the closed-loop system depends on the PID
parameters we choose. Thus, the above method for )nding the stabilizing region that guarantees the validity
of the training data.

Example 1. Unstable plant Gp(s) = e−0:2s=s− 1 with PI controller [11].
First, we roughly give the stabilizing range of KP and KI as [0; 10] and [0 10]. Then the testing data are

chosen randomly. For each pair (KP; KI), the corresponding gain and phase margin can be obtained. Then,
)nd the points set that satisfy Am¿0 and �m¿0. We omit the isolated points that far from the grouped points
and estimate the stabilizing region $∗

P of parameter (KP; KI) from these points. Fig. 4 shows the estimated
stabilizing region of PI controller for the unstable plant Gp(s) = e−0:2s=s − 1. Finally, we would estimate the
valid region of gain and phase margins using the information provided by the stabilizing region. Points chosen
randomly on the closure of the stabilizing region (KP; KI) are used to calculate the corresponding gain and
phase margins using Eqs. (7)–(10). Then, the valid region of gain and phase margin speci)cation for the PI
controller can be obtained. Fig. 5 shows the estimated valid range for the unstable plant Gp(s) = e−0:2s=s− 1
with PI controller. Note that, the form of the controller Ho et al. [9–11] used was Gc(s) =Kc(1 + (1=sTI)).
By comparing these two forms of controllers, we have KC =KP and TI =KP=KI.

Remark 3. Denote $1 (dash–dotted line) and $2 (solid-line) as the estimated valid regions for the result in
[11] and our approach. From Fig. 5 and Table 1, it is clear that P1; P2; P3 =∈ ($1 ∪$2) and P4; : : : ; P10 ∈$1

but P4; : : : ; P10 =∈$2. By testing these data, we obtain that these 10 speci)cations by using the approximated
method [11] give unavailable results (at least one of KC; TI; Am; �m is negative, see the shadow items in
Table 1) because of the approximation of tan−1 function. Since P1; P2; P3 =∈$1, we got TI¡0. On the other
hand, P4; : : : ; P10 ∈$1 we have parameters KC; TI¿0 and wrong phase margin (�m¡0 or ∞). Note that,
even for these unreasonable speci)cations, the ANFIS provides suitable controller parameters that guarantee
the closed-loop system stability. In this paper, the system plant is directly used to design the controller.
Therefore, we avoid the above results using the ANFIS. In the following section, we will show the comparison
of simulations between the results of [11] and our approach.



C.-H. Lee, C.-C. Teng / Fuzzy Sets and Systems 128 (2002) 95–106 103

Fig. 4. Estimated stabilizing region of (KP; KI).

Fig. 5. Valid region of (Am; �m) for PI controller: solid line, our result; dash–dotted line: result of [10] (P1–P10 are outside the estimated
valid region).
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Table 1
Comparison result of unreasonable speci)cations

Speci)cations Results of [11] ANFIS results

Am �m KC TI Am �m KC TI

P1 (3; 40) 3.0420 41.8603 2.3998 −17:3642 3.0536 39.9748 2.3818 96.6836
P2 (4; 40) 4.0559 42.0461 1.8035 −13:0428 3.9295 38.3010 1.8476 37.5771
P3 (5; 35) 5.0700 35.9405 1.4363 −29:5354 4.8060 33.1555 1.5076 21.7432
P4 (7; 15) 7.0952 −2:6003 1.0090 8.5340 6.9303 9.7452 1.0478 40.3184
P5 (7:5; 15) 7.6038 −13:3516 0.9477 16.4203 6.9303 9.7452 1.0478 40.3184
P6 (8; 15) 8.1117 ∞ 0.8934 101.3638 6.9303 9.7452 1.0478 40.3184
P7 (7:5; 10) 7.6012 −12:6772 0.9398 7.3770 6.9303 9.7452 1.0478 40.3184
P8 (8; 5) 8.1072 −20:2941 0.8796 6.6594 6.9303 9.7452 1.0478 40.3184
P9 (8:5; 10) 8.6184 ∞ 0.8390 32.6130 6.9303 9.7452 1.0478 40.3184
P10 (9; 5) 9.1249 ∞ 0.7909 20.7626 6.9303 9.7452 1.0478 40.3184

Table 2
Di;erent PI controllers for Gp(s) = 100e−0:01s=(s2 + 10s− 5)

Speci)cations Result Error

Am �◦m KP KI A∗m �∗m wg wp Error of Am (%) Error of �◦m (%)

2 30 0.5894 0.003808 1.9356 29.8200 8.3540 5.0432 3.220 0.600
3 45 0.3741 0.0024667 3.0500 44.5976 8.3539 3.3631 1.667 0.894
4 50 0.2784 0.0176454 4.0734 49.8999 8.3170 2.5372 1.835 0.200

5. Simulation results

In this section, we give a speci)c performance comparison with GPM [11] because both were designed
based on gain and phase margin speci)cations.

Example 2. PI controller for a second-order process.
The process is given as follows:

Gp(s) =
100e−0:05s

s2 + 10s− 5
:

Since the process is not a )rst-order type, the GPM cannot be applied. Various gain and phase margins are
speci)ed for this model in Table 2. The ANFIS yields less than 3.5% and 0.9% for desired gain and phase
margin speci)cations.

Example 3. PI controller for a )rst-order with time-delay process.
The process is given as

Gp(s) =
e−0:2s

s− 1
; L=' = 0:2¡1:

The results for di;erent speci)cations in this example are illustrated in Table 3, which shows that even when
the plant is )rst-order with time-delay, the proposed ANFIS approach has better performance than GPM.
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Table 3
Di;erent PI controllers for Gp(s) = e−0:2s=(s− 1)

Tuning method Speci)cations Result Error

Am �◦m KC TI A∗m �∗m wg wp Error of Am (%) Error of �◦m (%)

Results of [11] 3 35 2.3453 6.6120 3.2074 35.9332 0.4442 2.1181 6.91 2.67
4 30 1.7453 4.5773 4.2593 29.4323 0.5411 1.4408 6.48 1.89
5 30 1.4181 12.0744 5.3666 27.8533 0.3257 0.9813 7.33 7.16

ANFIS 3 35 2.3829 4.9050 2.9866 34.8414 0.5188 2.1716 0.45 0.45
4 30 1.7636 4.1793 4.0181 29.6371 0.5648 1.4773 0.45 1.21
5 30 1.4452 10.8200 4.9882 29.1893 0.3441 1.0469 0.24 2.70

Table 4
Results for Gp(s) = e−0:2s=(s− 1) with PID controllers under di;erent speci)cations

Speci)cations Results Errors

Am �m KP KI KD A∗m �∗m Error of Am (%) Error of �◦m (%)

2 20 5.1641 0.1081 0.2915 2.0278 20.3724 1.390 1.862
3 30 5.5592 0.0135 0.3102 2.9998 30.3809 0.007 1.270
4 40 2.6842 0.1798 0.0684 3.9787 40.5597 0.5325 1.400

ANFIS yields less than a 2% error but GMP’s is greater than 5%. Also, Table 1 shows the comparison with
the result of [11] for unreasonable speci)cations.

Remark 4. It is clear that the results of ANFIS all satisfy the stability conditions KC; TI¿0 and Am; �m¿0.
Even if someone gives unreasonable speci)cations (outside the valid region $2) for PI controller, we have a
stable system using the ANFIS. This guarantees the stabilization of the proposed PI controller.

Example 4. PID controller for a )rst-order with time-delay process.
The process is given as

Gp(s) =
e−0:2s

s− 1
; L=' = 0:2¡1:

In this example, we use the PID controller to compensate the )rst-order unstable process. ANFIS also yields
less than a 2% error in this case. Table 4 shows the simulation results for di;erent speci)cations. However,
the ANFIS gives acceptable errors for the speci)ed gain and phase margins.

6. Conclusion

This paper has investigated the PID tuning method using fuzzy neural system (ANFIS) based on gain
and phase margin speci)cations. The proposed method has been generalized to determine the PID controller
parameters for general processes that include the test batch and common used model of the typical industrial
processes. There are two advantages to use the ANFIS for formulating gain and phase margin problems.
First, the trained ANFIS automatically tunes the PID controller parameters for di;erent gain and phase margin
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speci)cations so that neither numerical methods nor graphical methods need be used. Second, the ANFIS
can also )nd the relationship between PID controllers (KP; KI; KD) and speci)cations (Am; �m) in the weight-
ing parameters in the networks. Therefore, the proposed method is simple and systematic in reducing the
complexity of the problem presented in this paper. A simple method was also developed to estimate the
stabilizing region of controller parameters and valid region for gain-phase margin speci)cation. The ANFIS
can still )nd suitable PID controller parameters that guarantee the stabilization even for unreasonable speci)-
cations. That is, the ANFIS can provide controller parameters for guaranteeing the stability of the closed-loop
system. Simulation results have shown that the ANFIS can achieve the speci)ed values e=ciently.
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