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Abstract

The propagation of a nonlinear ultrashort pulse in a photonic bandgap structure is investigated by using the finite-

difference time-domain method. The simulation results show that an ultrashort pulse near the bandgap edge can

propagate through a nonlinear fiber Bragg grating, even if the broadband spectrum of this ultrashort pulse overlaps the

whole forbidden band of the grating. It is also shown that the time delay of such an ultrashort solitary wave is pro-

portional to its detuning wavelength from the exact Bragg resonance. � 2002 Published by Elsevier Science B.V.
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1. Introduction

Gap solitons are solitary waves propagating in
a nonlinear photonic bandgap (PBG) structure [1].
The exact analytic solution to describe such a
nonlinear pulse has been obtained from the non-
linear coupled-mode equations (NLCMEs). By
using the multiple scale method [2], the NLCMEs
can be reduced to the nonlinear Schr€oodinger
equation (NLSE). Soliton solutions to this ap-
proximated NLSE are called Bragg solitons. Bragg
solitons exist near the PBG edge and have been
widely discussed both in theory [3–7] and experi-
ment [8,9]. It has been demonstrated that a Bragg
soliton can propagate through a fiber Bragg grat-
ing (FBG) [8]. The experimental results are in very
good agreement with the NLSE model.

One of the attractive characteristics of a Bragg
soliton is the reduction of its group velocity. The
experiments have shown that such a soliton-like
pulse with 80-ps width can travel with the velocity
as low as 70% of the light speed in an unprocessed
fiber. Thus all optical buffer based on the slow
propagation of a Bragg soliton is an ongoing
challenge. Moreover, nonlinear compression for
optical pulses by using FBGs is also an interested
subject associated with the Bragg soliton propa-
gation. Such research may result in applying
solitary propagation in FBGs to the practical all-
optical communication system. However, to in-
vestigate the dynamics of a Bragg soliton, the
models of the NLCMEs and the NLSE have the
drawback: The NLSE is derived from the NLC-
MEs under the low-intensity limit. This limitation
restricts a Bragg soliton to a broad pulse, but for a
high-speed lightwave system an ultrashort pulse is
more practical and necessary.
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In this paper, we use the finite-difference time-
domain (FD–TD) method to study the nonlinear
ultrashort pulse in a PBG structure. The FD–TD
method can directly simulate Maxwell’s equations.
Hence it provides a robust simulation theory to
investigate the characteristics of a Bragg soliton
without any approximation. It is shown that a
nonlinear ultrashort pulse near the bandgap edge
still can propagate through a FBG, even if the
broad spectrum of this ultrashort pulse overlaps
the whole forbidden band of the FBG. The prop-
agating dynamics of such an ultrashort solitary
wave is numerically studied and presented.

2. Simulation theory

We consider an electromagnetic field with the
electric component Ez polarized along the x-axis
and the magnetic component Hy polarized along
the y-axis. Such an electromagnetic field propa-
gates along the x direction in a medium, which is
assumed to be isotropic and non-dispersive.
Maxwell’s curl equations for this problem are
written as:

oHy

ot
¼ 1

l0

oEz

ox
; ð1Þ

oDz

ot
¼ oHy

ot
; ð2Þ

Dz ¼ e0erðxÞEz þ PNL
z ; ð3Þ

where l0 is vacuum permeability, er is vacuum
permittivity, e1ðxÞ is the relative material permit-
tivity, Dz is the electric induced polarization in-
cluding the linear and nonlinear contributions of
the medium, and PNL

z is the nonlinear polarization
regarding the Kerr nonlinearity. On the basis of
the FD–TD method, the finite difference equations
for Eqs. (1) and (2) are:
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where Dt and Dx are the finite difference intervals
in the temporal and spatial domain, respectively.
The procedures of the FD–TD approach are de-

scribed in the following. First Eq. (4) is used to
determine Hy jnþ1=2

iþ1=2 from the previous values of
Hy jn�1=2

iþ1=2 , Ezjniþ1 and Ezjni . Second Dzjnþ1
i determined

by using Eqs. (5) from the previous values of Dzjni ,
Hy jnþ1=2

iþ1=2 and Hy jnþ1=2
i�1=2 . Finally the resulting Dzjnþ1

i
are substituted into Eq. (3) to determine Ezjnþ1

i
under the Newton iterative procedure:

Ehpþ1i
z ¼ Dzjnþ1

e0½erðxÞ þ vð3ÞjEhpi
z j2�

; ð6Þ

where vð3Þ is the third-order susceptibility, p is zero
or positive integral, and Ep

z ¼ En
z for p ¼ 0.

To investigate Bragg solitons in a one-dimen-
sional PBG medium, we consider a uniform FBG
with the relative material permittivity e1ðxÞ ¼
nðxÞ2, where

nðxÞ ¼ n0 þ Dn cos
2px
K

� �
: ð7Þ

Here n0 is the linear refractive index at the central
wavelength of the electric field, Dn is the magni-
tude of the periodic index variations, and K is the
grating period with respect to the Bragg wave-
length kB via K ¼ kB=2n0. It is noticed that during
the FD–TD process, there is no constraint on the
quantity of Dn and the apodized profile of the
grating. Thus the FD–TD method is more suitable
than the NLCMEs and the NLSE model to in-
vestigate the dynamics of a nonlinear pulse in a

Fig. 1. The reflectivity (solid curve) of the uniform FBG and

the broadband spectrum (dotted curve) of the incident pulse as

functions of the wavelength detuning Dk ¼ k � kB from the

exact Bragg resonance.
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realistic rectangular waveguide grating or an ap-
odized FBG. Such nonuniform gratings have been
widely discussed for pulse compression and all-
optical delay line based on the mechanisms of the
Bragg soliton. Nevertheless, in the present paper,
we focus our attention on how an ultrashort
pulse evolves in a uniform FBG with Kerr non-
linearity.

3. Numerical results and discussions

The solid curve in Fig. 1 shows the reflectivity
RðDkÞ of the uniform FBG in our simulation. The
linear refractive index of this FBG is n0 ¼ 1:5 and
the index variation is Dn ¼ 9� 10�4. The central
wavelength of this reflectivity is kB ¼ 1:55 lm. The
dotted curve in Fig. 1 shows the spectrum of the

Fig. 2. Monitoring the propagation of a low-amplitude pulse in the fiber grating. The FD–TD method gives the snapshot of the

propagating pulse at t ¼ 15 ps, (2) t ¼ 60 ps, (3) t ¼ 105 ps, and (4) t ¼ 150 ps.
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adopted incident pulse with a hyperbolic-secant
pulse shape initially. The full width at half maxi-
mum (FWHM) of this pulse is assumed to be
Tf ¼ 5:28 ps; likewise the central wavelength of
this incident pulse is located at k0 ¼ 1:5492 lm.
Both of the FBG reflectivity and the pulse spec-
trum are shown as functions of the Bragg wave-
length detuning Dk ¼ k � kB. Furthermore, the
range with RðDkÞ ¼ 1 exhibits the forbidden band
of such a PBG structure. Obviously, the initial
pulse spectrum exceeds the PBG edge and even
overlaps the whole forbidden band. We emphasize
that because of the low-intensity limit for Bragg
solitons, the previously demonstrated experiments
and simulations have not yet clarified the propa-
gation of a nonlinear pulse with such a broadband
spectrum. We use FD–TD method to examine the
dynamics of this nonlinear ultrashort pulse beyond
the low-intensity limit. By choosing a uniform
FD–TD space resolution Dx ¼ 50 nm, the nu-
merical phase error is limited to about 3:6� 10�5,
which is much smaller than the dispersion due to
the PBG structure. Fig. 2 shows the evolution of
the incident pulse with low peak power
P ¼ 1:4� 10�2 W propagating through the FBG.
The Kerr coefficient of this FBG is vð3Þ ¼
1:97� 10�9 W�1, in which absorbing the effective
core area in three dimensions and the grating
length is L ¼ 38 mm. After the initial pulse is put
into this FBG, Figs. 2(a)–(d) show the pulse
shapes at t ¼ 15 ps, t ¼ 60 ps, and t ¼ 150 ps, re-
spectively. One can see that the shapes of this pulse
are asymmetrically broadened as a consequence of
its broadband spectrum. The evolution of the peak
power and the spatial width of the pulse versus the
propagating distance are shown in Fig. 3. During
the propagation, the pulse undergoes the large
quadratic grating dispersion. Such a large disper-
sion is produced by the interference among the
multi-layers of the grating. To balance this qua-
dratic grating dispersion, we have to increase the
peak power of the initial pulse.

Fig. 4 shows the evolution of the nonlinear ul-
trashort pulse with peak power P ¼ 1:4� 105 W.
Figs. 4(a)–(d) represent the pulse shapes at
t ¼ 15 ps, t ¼ 60 ps, t ¼ 105 ps, t ¼ 150 ps, re-
spectively. It is shown that the peak power and the
pulse width are changed very little during the

propagation. Hence the balance between the
nonlinearity and the quadratic grating dispersion
leads to a soliton-like pulse. Fig. 5 explicitly shows
the evolution of the peak power and the spatial
width versus the propagating distance. The nu-
merical results show that the incident hyperbolic-
secant pulse becomes quasi-stable. The pulse
adjusts its amplitude and duration periodically
because of the interaction between the nonlinearity
and the quadratic grating dispersion. The soliton
periodic Ls for such a solitary wave can be defined
[10] by the nonlinear length Lnl via Ls ¼
pLnl=2 ¼ p=ð2c 
 P Þ. Therefore the soliton-like
wave propagates about 16.7 soliton periods. An-
other notable characteristic of this solitary wave is
its propagating delay with respect to the propa-

Fig. 3. (a) Peak power and (b) spatial pulse width of the low-

amplitude pulse versus the propagating distance.
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gating time of the light in an unprocessed fiber.
For the above hyperbolic-secant pulse with carrier
frequency k0 ¼ 1:5492 lm, the delay after propa-
gating through the grating with length L ¼ 38 mm
is 42 ps. This delay corresponds to the soliton’s
group velocity as low as 72% of the light speed in
an unprocessed fiber. The group velocity of our
adopted ultrashort pulse is very close to that of the

Bragg solitons demonstrated previously in the ex-
periment [8]. The spatial width of the pulse in
grating is smaller than the one in the unprocessed
fiber. It results from the incidence from the normal
group-velocity medium into slow group-velocity
medium. However, the spatial length of an optical
cycle is unchanged because of the constant average
refractive index. It is found that the pulse in

Fig. 4. Monitoring the propagation of the soliton-like pulse in the FBG. The FD–TD method gives the snapshot of the propagating

pulse at (1) t ¼ 15 ps, (2) t ¼ 60 ps, (3) t ¼ 105 ps, and (4) t ¼ 150 ps.
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grating contains less optical cycles than the pulse
in the unprocessed fiber. It could be clarified that
the pulse is slowing down by periodic medium not
by the linear refractive index. Fig. 6 further dis-
plays the time delay versus the carrier wavelength
of the ultrashort Bragg soliton. One can see that
the delay is linearly proportional to the Bragg
detuning wavelength. Note that both of the
NLCMEs and the NLSE model cannot predict
such a relation between the time delay and the
carrier wavelength detuning of an ultrashort Bragg
soliton. Consequently, it would be useful to apply

the FD–TD method to estimate the group velocity
of an ultrashort Bragg soliton, especially for de-
signing an all-optical buffer in practical high-speed
communication systems.

4. Conclusion

We have applied the FD–TD method to inves-
tigate the nonlinear ultrashort pulse in a fiber
Bragg grating. The FD–TD method can directly
simulate Maxwell’s equation and inherently com-
putes the bi-directional electromagnetic field
without using any approximation. As a result, our
study numerically confirms that an ultrashort
solitary wave near the bandgap edge still could
propagate through a nonlinear PBG structure,
even if its broadband spectrum overlaps the for-
bidden gap of the PBG medium. The propagating
dynamics that has not yet been clarified by the
NLCMEs and the NLSE model is explicitly shown
on the basis of the FD–TD method. The present
simulations demonstrate that the low-intensity
pulse does not yield the NLSE soliton-like prop-
agation in Kerr nonlinear Bragg gratings. Such
propagation is only ensured by high-power pulses
(105 W). This imposes severe limitations on the use
of NLSE Bragg solitons for optical communica-
tions. By contrast, solitons can propagate via near-

Fig. 5. (a) Peak power and (b) spatial pulse width of the soli-

ton-like pulse versus the propagating distance. It is shown that

the pulse adjusts its amplitude and duration periodically be-

cause of the interaction between the nonlinearity and the qua-

dratic grating dispersion.

Fig. 6. Time delay versus different carried wavelength of the

ultrashort Bragg soliton.
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resonant self-induced transparency in resonantly
absorbing Bragg reflectors with arbitrarily low
intensities and are therefore much more suitable
for telecommunications [11,12]. Furthermore, the
FD–TD method shows that the time delay of an
ultrashort Bragg soliton is linearly proportional to
the Bragg detuning wavelength. It would be useful
to apply the FD–TD method to design an all-op-
tical delay line in a realistic high-speed telecom-
munication system.

Acknowledgements

This work was supported in part by the Na-
tional Center for High-Performance Computing,
the National Science Council, Taiwan, ROC under
Contract NSC 89-2215-E-009-112, and the Aca-
demic excellence program of R.O.C. Ministry of
Education under Contract 90-E-FA06-1-4-
90X023.

References

[1] W. Chen, D.L. Mills, Phys. Rev. Lett. 58 (1987) 160.

[2] C.M. de Sterke, J.E. Sipe, in: E. Wolf (Ed.), Progress in

Optics, vol. XXXIII, North-Holland, Amsterdam, 1994, p.

203.

[3] C.M. de Sterke, J.E. Sipe, Phys. Rev. A 38 (1988)

5149.

[4] C.M. de Sterke, J.E. Sipe, Phys. Rev. A 39 (1989)

5163.

[5] A.B. Aceves, S. Wabnitz, Phys. Lett. A 141 (1989) 37.

[6] D.N. Christodoulides, R.I. Joseph, Phys. Rev. Lett. 62

(1989) 1746.

[7] C.M. de Steke, B.J. Eggleton, Phy. Rev. E 59 (1999)

1267.

[8] B.J. Eggleton, R.E. Slusher, C.M. de Sterke, Phys. Rev.

Lett. 76 (1996) 1627.

[9] B.J. Eggleton, C.M. de Steke, J. Opt. Am. B 16 (1999)

587.

[10] G.P. Agrawal, Applications of Nonlinear Fiber Optics,

Academic Press, New York, 2001.

[11] G. Kurizki et al., in: Progress in Optics, vol. 42, Amster-

dam, Elsevier, 2001, p. 93.

[12] T. Opatrny, B.A. Malomed, G. Kurizki, Phys. Rev. E 60

(1999) 6137.

S. Chi et al. / Optics Communications 206 (2002) 115–121 121


