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Distortionless Pulse-Train Propagation in a Nonlinear
Photonic Bandgap Structure Doped Uniformly With
Inhomogeneously Broadening Two-Level Atoms

Hong-Yih Tseng and Sien Chi

~ Abstract—The pulse propagation in a one-dimensional non- single pulse solutions for frequency detuned far from Bragg
linear photonic bandgap (PBG) structure doped uniformly with  resonance and frequency detuned near the PBG edge. How-

inhomogeneously broadening two-level atoms is investigated. The e the SIT analytic solution suitably for general frequency
Maxwell-Bloch equations describing pulse propagation in such ’

a uniformly doped PBG structure are derived first and further detuning z_;md general phase modulation na uniformly doped
reduced to effective nonlinear coupled-mode equations. An exact PBG medium has never been found. In this paper, we study the
analytic pulse-train solution to these effective coupled-mode equa- SIT in a nonlinear PBG structure doped uniformly with inho-

tions is obtained. Such a distortionless pulse-train solution is given mogeneously broadening two-level atoms. After neglecting the

by sinusoidal functions with a DC background and a modulated i order spatial harmonics of the material polarization, we
phase. Numerical examples of the distortionless pulse train in a

silica-based PBG structure doped uniformly with Lorentzian line- show that the Maxwell-Bloch equations can be reduced to ef-

shape two-level atoms are shown. fective nonlinear coupled-mode equations (NLCMES). Analytic
. . distortionless pulse-train solutions to these effective NLCMEs

Index Terms—Maxwell-Bloch equations, photonic bandgap . . - .
structure, self-induced transparency. are obtained. It is found that even if the carrier frequency of

the pulse train is inside the forbidden band, the pulse trains can
propagate through the PBG structure and obey the general SIT
. INTRODUCTION phase modulation effect.

HE DISTORTIONLESS propagation of light through The paperisorganized as follows: In Section Il, the Maxwell—
T an optical resonance medium has been widely discus$#¥@ch equations governing the optical pulse propagating in
since McCall and Hahn discovered self-induced transparerieyniformly doped PBG structure are derived by keeping the
(SIT) [1]. The SIT is characterized by the continuous absorptiG§cond derivative of electromagnetic field with respect to the
and reemission of electromagnetic radiation from the resondfPPagation distance. Because this second derivative is consid-
atoms. Thus the optical pulse propagates through the mediffid. our model involves the SIT-induced quadratic dispersion
without loss and distortion. Because of the SIT effect, the groGy€ 10 the slow-light propagation. We also take into account the
velocity of such a coherent pulse depends on the pulsewi(ﬁmte”a_l dispersion and Kerr nonllnearlt_y of the host medium.
and is much less than the speed of light in the host mediuld.Section Ill, we solve the Bloch equations and subsequently
Furthermore, the SIT effect is described by the Maxwell-Blodifduce the Maxwell-Bloch equations to effective NLCMEs. The
equations, which have distortionless pulse-train solutioﬁgecuve NLCMEs describe tha_t pulsg propagation through a
given by the Jacobi elliptic functions [2]-[4]. Such puIse—traiHn'formly doped PBG structure is equivalent to that through an

propagation results from the energy of resonant atoms pe ﬁectlve PBG structure without dopants. In Section IV, we solve

odically oscillating between the ground state and upper sta c effective NLCM.ES and o_btaln e>_<act pulse-train solutions
4 S . . iven by the sinusoidal functions. It is also shown that such a
In particular, when the Jacobi elliptic modulus is unity, th . :
X . . , pulse train obeys the general SIT phase modulation effect. In
pulse-train solutions are reduced to single-pulse solutlons§>

hyperbolic secant functions. These single pulse solutions ?r%Ctlon V. we numerically study the characteristics of the pulse

. . - . trains by assuming the inhomogeneously broadening line shape
called SIT solitons. B.Oth SIT sollt_ons and periodic pulse tralnosf the resonant atoms is Lorentzian. In Section VI, we compare
have been observed in the experiments [5], [6].

More recently, a photonic bandgap (PBG) structure dopg(ljll’ results with the previous research and conclude this paper.

with resonant atoms has drawn considerable attention [7]-[15].
Inthe meantime, Akézbek and John have investigated the funda-
mental work on SIT solitary waves in PBG materials doped uni- We consider a one-dimensional (1-D) Bragg grating formed
formly with resonant atoms [16]. For example, they have fourid a host medium with Kerr nonlinearity. The periodic variations
of the refractive index inside the grating region is assumed to be
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efficient, n, is the magnitude of the periodic index variationsywhereg, (j = 0,1, 2) are determined by the mode-propagation
and g3, is the grating wave number. The two-level atoms withonstant3(w) = (w/c)n(w) via B; = &/ 3/dw |y, 650 =

the resonant frequeney,. are uniformly embedded in this Kerr 5y — /3, implies the wave number detuning from the exact Bragg
host medium. From Maxwell's equations, the wave equation desonances = mn, /A is the linear coupling coefficient; =
scribing light propagation in such a medium can be written asiswp /(cAer) is the Kerr nonlinearity coefficient, and the trans-

—— 1 PE - 2P B 92Pg 22) verse mode function is averaged out by introducing the effective
2 gz Mgz TR . core area 2
wherec is the velocity of light in vacuumy, is the vacuum UOO 1% | F(z,y)|? da dy}
permeability, P is the electric induced polarization including Ao = T;o T;o "
the linear and nonlinear contributions of the host medium, and Loo Loo |F (2, y)* do dy
PR is the resonant polarization due to the two-level atoms. IR arriving at (2.6), we expand(w)? in a Taylor serieg(w)? ~
Fourier domain, (2.2) becomes 32420081 (w—wp )+ (Bofa+B2) (w—wp )? for converting (2.3)
2 . 2 2 . . .
25 |~ n2W s 9z with 8°E, /82 terms to time domain [18]. In the literature,
VE +n(w) ?E = ~How PR (2.3) the wave equation for pulse propagation is usually derived by

neglecting the second derivative of electromagnetic field with

respect taz. However, for the SIT slow-light propagation, the
2E. /922 terms can be comparable to the other terms in (2.6).

This effect will be justified in the following derivation. There-

wherekE is the Fourier transform dE, andP g, is the Fourier
transform ofP . The electric fieldE propagating along the
direction in such a doped nonlinear PBG structure can be

pressed as fore, we keep thé?E.. /32? terms in our equation.
E(r,t) = 1@ [E(r, t)e—iwst + c.c.] We now consider the atomic Bloch equations. If the relax-
% ation times of the polarization and population difference are
= -&F(z,y) { [EJr(z,t)ei(r"gZ*“Bt) long compared with the pulsewidth, the relaxtion effects of the
2 ‘ two-level system can be ignored. Therefore, under the rotating
+ E_(z, t)ez(_’ggz_“m)} +c.c. wave approximation, the electric field and the macroscopic po-
(2.4) larization satisfy the Bloch equations

where c.c. stands for complex conjugateis the polarization gp — —iAwP+itWE (2.72)

unit vector of the light assumed to be linearly polarized along d

thez axis, F'(x, y) is the transverse modal distributiaki,. and QW — _iﬁ(Ep* — E*P) (2.7b)

E_ are the slowly varying envelopes of the forward and Bragg ot 2h

scattering fields, ang s is the Bragg frequency. In addition, thewhereAw is defined byAw = w,—wp, W = p(N1—No)isthe
macroscopic resonant polarizatiBr; caused by the dopants ismacroscopic population difference multiplied by the transition
written as matrix elemenj: between the ground statd/’; ) and upper state

1. iont (N3) of the two-level system. The complex enveloggs and
Pr(r,t) = S2[P(r, t)e +e.cl Py can be further written as
1 - 7 zZ—wp .
= §$F($a Y) { |:P+(Z, t)ei (s R Ei(z,t) = ay(z,t)explips(z, )] (2.8a)
+ P_(z )0 en0] 4 el Pa(z,t) = [Ux (2, ) + Vi, )] expliva (2, )]
(2.8b)
(2.5)

where P, and P_ correspond to the slowly varying poIariza—Whereai(z’t) are real envelopeg. (= ) are phase functions,
tion envelopes induced biZ, andE._. respectively. For sim- Uy (z,t) correspond to the dispersion (in phase) induced by
p + - fesp Y. the resonant atoms, and.(z, t) correspond to the absorption

plicity, the quantities of:»|E|? andn,, are assumed to be much,.
S ) (in quadrature) caused by the resonant atoms. Moreover, the
smaller than the refractive indexw) of the host medium, so . o
Bloch vectors(uy, v, w) relate the macroscopic polarization

that they can be treated as perturbations for expang{ng? and vopulation difference as follows:
in (2.3). After substituting (2.1), (2.4), and (2.5) into (2.3), w& ¢ POP :
can convert the resulting equations to time domain by following
the perturbation theory of distributed feedback [17], but keeping
the second derivative of electromagnetic field with respect t
z. Consequently, the time-domain coupled-mode equations avj]ere u(Aw, z,1), v:(Aw, 2, 1), and w(Aw, 2,t) are the

o L . mponents of polarization and population difference con-
;(r:(rall\)/:/rr]igt;tgrlljlzg propagation in a uniformly doped PBG structu réljbuted from the atoms with frequenciw detuned from

) ) wp, andg(Aw) is the normalized inhomogeneous-broadening
% + 2,5/30% + 2,5/30/31% _ (ﬁf + /30/32) 9 EQi line-shape function. To keep a closed set of Bloch equations,
0z 8; \ ot ot we assume that
+260[[(|Ex|” + 2| Ex|")Ex + 600 By + nEZ]
) 2 APy ox(z,t) = Pz, t) £ (2, 1) (2.10a)
+powp | P+ ——— =0 (2.6)
wg Ot w(z,t) = wo + 2wy cos[2(z,t) + 23,2]. (2.10b)

oo

(U, Vi, W) = / (g vz, Wg(A)d(Aw)  (2.9)

— o0
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After we substitute (2.4), (2.5), and (2.8)—(2.10) into (2.7), th8ubstituting (3.1)—(3.5) into (2.11b), we have

Bloch equations are expressed as n
ov  Opxr 4 p

o _ 9Pt P e
8ui Aw Jpy 211 a - o a h(wo + wy Jax
ot T ) (2.112) + 4w
p(wl +wi) I S
| -B O s (T ) Aw
8vi do u 2h at
Aw+ —— Jux + —(axwo + azwi)
ot o h s as
(2.11b) —uy Ao® + - f(Aw)} . (3.6)
dwo I
ot _F(a““r +a-v-) (2.11¢) The terms in square brackets in (3.6) should be independent of
Odwy Aw. Therefore, we have
W = 27 (CL+U +a— U+) (led)
fAW) = (1 4 c;Aw + cpAw?) ! (3.7)

In (2.11), we have neglected the terms oscillating a5,

exp(+i30,z) to get a closed set of equations. Strictly speaking, L Ops i

we have ignored all higher-order spatial terms of material 1= T W2 +cir n a:l:wi (3.8a)
polarization oscillating with multiples of the light wavenumber. 4 m

In a periodic structure, such higher-order terms might be formed Uy = G2 AxWi (3.8b)

?g/hll:e:s; \gljvac\)lzéw_(l)_h(l:sou?;i;psrg?r?gaetr;r;grja;slngogl:lfesigsdgIate erec; ande; are the constants to be determined. Substituting
P P 9 P Y sp }; b) and (3.8) into (3.1), (3.2), (3.4), and (3.5), we obtain
harmonics of material polarization which are converging ve

slowly. Nevertheless, in this paper we is devoted to findingan O+ N 7 A y

exact solution propagating along one-direction and exciting no“* 1= T AW ) e pwif(Aw)ax(z t)

spatial harmonic of material polarization [16]. (3.9a)

ll. EFFECTIVENLCMES FORMAXWELL—BLOCH EQUATIONS v = Gy wzf(A“’) o ax(z,?) (3.9b)
In this section, we show how to reduce the Maxwell-Bloch 4, — 4, — &2 (H)Qwif(ﬁw)[ai(z,t) +a? (z.t)] (3.9¢)

equations to effective NLCMEs for pulse propagating in a non- 2 2h

linear PBG structure doped uniformly with inhomogeneously 4, = _% (?) w; f(Aw)as(z, t)a—(z,1)]. (3.9d)

(2

broadening two-level atoms. In order to obtain the analytic
solution we assumeL(Aw, z,t) are in factorized forms [4], Then substituting (3.9) into (2.11a) and (2.11b), we have

16], [19
[16], [19] ey dax  _Oax dpxr i

vs(Aw, 2,1) = v (0, 2,1) f(Aw) (31) oot ot ot o ™ (3-102)
2
wheref(Aw) is known as the dipole spectra-response function Pay _|1_a <8‘Pi> <8‘Pi> at
and is normalized ag(0) = 1. Integrating (2.11a), we have ot? C2 ot ot
2
ur(Aw, z,1) = [uf (z,1) + uy (2, ) Aw] f(Aw)  (3.2) 2’; 5 (a3 + 202 )az (3.10b)

+ + 4
whereu;” andu;” are defined as Equations (3.10) not only describe the coupling nature between

auf I 2 the envelopes and phases of the forward and Bragg scattering
ot = o (3.32) fields in the PBG structure, but also lead to the general SIT
augt N chirping equation, which will be studied in the next section.
= = (3.3b) Now we show that using (3.10) can reduce the Maxwell-Bloch

o . ] ot ] equations to effective NLCMEs. Using (2.8)—(2.10), (3.9), and
Similarly, by integrating (2.11c) and (2.11d), we obtain (3.10), we obtain

wo(Aw, z,t) = wi [ (2:0) + wg (5 D)f(Aw) (348) 9By 0By 1 Lt (E)Q (|B<|? +2|Ex[?) Ex
= F
wi(Aw, 2,t) = —=[wf (z,8) + w] (., )] f(Aw). (3.4b) I 2 It o 2 \h
2 (3.11a)
In (3.4),w; is the initial population difference and it is assumed o2 (P 20 0Py
in the ground state of the two-level system, i%;, = Nppu, WB\TET L5 Ot
whereNp, = N1 + N> is the doping concerntration of the res- 2
onant atoms. Likewise/= andwi are defined as =s Kcl - w_o) I+ 0212} Ey
owl dw, 1 _ : Oy
8t0 = %a+vf and 8t0 = Fa-v; (3.5a) +i5C2 <Il + —012> ot
owl _ owy [ 4 C2 o (2 2 2
7 = ﬁa+vl and 7 = ﬁa_vl . (35b) + Swoll (h) (|E:|:| +2|E:|:| )E:t (311b)
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wheres is s = p,w?(1/h)w;, and two integral constanfs and
I, are defined by

I = /jo FAw)g(Aw) d(Aw) (3.12a)

L- |

Substituting (3.11) into (2.6), we obtain

Aw f(Aw)g(Aw) d(Aw). (3.12b)

O Ey
022

OF
Oz

OF 4
+2if,0; 5= + 2Pol68. B + riEx
+Fe(|Ei|2 +2|Ex[)E<]=0 (3.13)

+ 2i8,

where the effective parameters are
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We will numerically show in the next section that the group ve-
locity is much less than the speed of light in the bare Kerr-host
medium. Substituting (3.11a) and (4.2) into (4.1), and using the
new variables of optical field&+(7) = a4 (7) exp[iv+(7)] to
express (4.1), we have

(. 1\ 0E i i
+i (/31 ¥ —) £ 4 (660 F ABo) Ex
v, ) Ot
+f(|Ei|2 + 2|E:F|2)E:|: + IiE:F =0 (4.3

wherel' = I'c — 1i2/(4B0v2h?), B1 = 5 + c1/(2Bocav?) —
Aﬂo/(vgﬁo) and&ﬁO = 6[3 + 1/(2[30621} ) A[32/2ﬂo The
forms of (4.3) are equivalent to the general NLCMEs that have
moving gap-soliton solutions describing distortionless pulse
propagation through an undoped PBG structure [20], [21].
However, we will show in the following that such gap soliton

By =B — (B + BofPe) =——— o <Il + ib) solutions cannot satisfy (3.10). Separating the real parts and
2/30 ez 20, “B imaginary parts of (4.3), we obtain the following differential
, , (3.14a) gquations:
I sc2
e =T+ (8] +fof) —— 173
450h°  2Bows " h g = 1Y% in(20) = 4.4
(3.14b) B F v ) or Fragsin(29) =0  (4.4a)
2 32 + Bof? ~ _1\a
60 = 0+ = | (1= =V I+ ealy = LD (g2 1) O (8By F Adoax
2/3 wp sco vy ) OT
(3.14c) +lal + 2TaZax + rkag cos(2y) = 0. (4.4b)
Consequently, we have reduced (2.6) to the effective NLCMIEgjuations (4.4) possess two first integrals [21]
(3.13) including the)? E /922 terms. The effective NLCMEs
describe that pulse propagation through a uniformly doped PBG /31,,,@1 + B1pa* =co (4.5a)

structure is equivalent to that through an effective PBG structure
without dopants. Equations (3.10) and (3.13) are referred to as
the Bloch-NLCMEs. It is noticed that the analytic solutions de-
scribing pulse propagation in a doped nonlinear PBG structure
have to satisfy the Bloch-NLCMEs.

BrpPin cos(2¢)aga_ = Pin <A/30[31 - %> a

Vg

4
+ @/3171/3371 ay

I
+ Eﬂlpﬁ&pai +c3 (4.5b)

IV. EXACT ANALYTIC SOLUTIONS TOBLOCH-NLCMES
Now, we start solving the Bloch-NLCMES to obtain analytiovherec, andcs are integration constants, afg, = 81 +1/v,,
solutions. By making the moving coordinate transformatiea 51, = 51 — 1/vy, B3, = B1 + 3/v, and Bz, = 1 — 3/v,.
t — z/v, andé = z, (3.13) are rewritten to the forms: Substituting (4.4a) and (4.5a) into (4.5b), we have a differential
equation fora? :
9?E4
o¢?

2 9’FEy OF4
_z +2i4,
vy 9r0e =P e
OE4

+ 23, </3 g) ot

2

B2, A%,
(coBrpBinay = PrpBinal) — 4K2 [ (87 )}

1 9%Es
2 r s r
= |:< c3+ 034 /31)) + Eﬁln <[33n + ;}3])[31”)

92 + 280603 B+

+ 260[Ce (| B |* + 2|E3F|2)Ei + kE%] = 0. (4.2) K Pip
, /31n o L, 1) 2 ’
To solve the Bloch-NLCMESs, we seek the solutions of the forms ABofh — Y T3 oT By . (4.6)
g
Bi(zt) = ax(r)explipx(r) +1060¢].  (4.2) By defining$ = a2, (4.6) can be expressed as
Equations (4.2) indicate that the phase functions¢dret) = ($)?2
H(T) + ABo€ andep(z,t) = (1), where AR, represents the 0 + 7S 7257 + 735 + St =0 (4.7)

change of the propagation constant due to the resonant atoms

and Kerr nonlinearity. The coefficient ¢? EL /072 terms in  where the expressions of, (m = 0,1,2,3,4) in (4.7) will

(4.1) exhibits the induced quadratic dispersion. It is known thbe discussed later. Equation (4.7) can describe the motion of a
the pulse velocity can be greatly reduced by the SIT. Thus the sulitary wave by analogy with that of a classical particle moving
duced dispersion increases when the group velocity is reducieda potential. Therefore, analytic solutions to (4.7) have been
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extensively studied for grating solitons and SIT solitons. THgecausey, > 0 andv, > 0 from (4.11), we have to restrict
well-known solutions include single-pulse solitary waves (foy; < 0 (¢; > 0) for Ps(ay) > 0. The solution to (4.12)
v = v = 0)[20], [21], single-pulse solitons (fof, = depends on the roots d(ay). Thus we assum@,(ay) =
v = 74 = 0) and Jacobi elliptic soliton-trains (foy, = 0) (a3 —a? )(a7 —a]), where0 < a, < a4(7) < a,. Then (4.12)
[2], [4], [16]. From the viewpoint of a mechanical analogy, d&ave an exact solution written by

single-pulse solution corresponds to a particle being released

from a zero potential position and stopping%t= 0; more-

over, a pulse-train solution corresponds to a particle oscillating +(7) = \/
between two positions. Notice that all the above solutions are

obtained undefy, # 0 andvs # 0. However, for a uniformly where a2 = c¢;/2v; + \/(c5/272)> — v0/7: and a2 =
doped nonlinear PBG structure, the Bloch-NLCMEs constrajjg/zry2 - \/(c /272)% — 70/72. From (4.5a) and (4.8)_(7),

the quantities ofy;. Indeed, we subsequently show thgthas ¢, (7) and<p_o(7) are obtained as follow:
to be zero for exact solutions to (4.6). Usi6gdt = 9/ and

a2 — (a2 — a2) sin®(y/727) (4.13a)

integrating (3.10a), we obtain 1 1
. a_(1) = 7 <§covg - a?,) + (a2 — a2) sin®(\/727)
a;f =-Q+ % (4.8) ) (4.13b)
_ Cy4 —1| %
where Q@ = —¢;/(2¢c2) and ¢f are integration constants. #+(7) T Aplqr/Y2 wan [ap tan(ﬁﬂ} T
Equations (4.8) describe the general phase modulation, or pulse (4.13c¢)
chirping in the SIT. The constaf? indicates that the carrier dcy
frequency of the optical field is shifted tog + € by the SIT p—(1) = —Qr + 5 5
effect. Likewise the instantaneous shifted frequency is inversely \/72 (covy = 2a3) (covy — 2a7)
proportional to the pulse intensity. The general chirping relation . covg — 202
has been studied for the SIT in a nonlinear medium without tan™ [ ﬁtan( Y27)| + V-
PBG structure [4]. Substituting (4.8) and (4.5a) into (3.10b), Vg — =%
and then integrating the resulting equationdgr, we obtain (4.13d)
($)?2 , W2 1 whereV, and V_ are integration constant. As a result, we
— (ef)? —csS + <(22 + W g> S? have obtained exact analytic solutions to the Bloch-NLCMES.
p

These solutions demonstrate that both the forward and Bragg
1 (H)2 <1 - ﬁﬂ) S§3 =0 (4.9) scattering fields are modulated periodically with a pefigd=

2\h 2 Py 7/+/72. These periodic pulse trains propagate distortionlessly in
e same direction. Thus the group velocity of the Bragg scat-
; ring field is in the direction opposite to its phase velocity. Such
= 0 resulting from distortionless propagation results from the two-level atoms pe-
riodically absorbing energy from one part of the wave and then
returning the energy to an adjacent part [3]. Likewise these co-
herent photon-atom interactions balance with the grating disper-
sion and Kerr nonlinearity. Therefore, SIT occurs and the optical
field overcomes the forbidden band and passes through the PBG

. . . . t
wherec; is another integration constant. Comparing (4.6), (4.{2
and (4.9), we undergo the constraipt
~v4 = 0. These constraints lead to

B =3/v, and [ =0. (4.10)

Henceyp, y1 and~; are determined as

1 546 e structure.
N0 = 5l CaYy = (i) (4.11a)
"= %ﬁcg(gAﬁo — 530)1,;& — iCO,i%g = —c; V. NUMERICAL STUDY OF THE PULSE-TRAINS
6 16

(4.11b) To study the distortionless pulse trains, we have to further

1 = 1 derive all undetermined constants. For the following discus-
— —(3ABn — 68 2,2 - .22
Y2 64(3 Bo — 600) vg+8/iv

9 sions, we restrict our attention to the optical field without carrier
5 2 1 frequency shift, i.e.£2 = 0. In addition, the inhomogeneous
=0+ —covg — —. (4.11c) o .
4h Ca broadening line shape of the resonant atoms is assumed to be
. ) . Lorentzian
Sinceys has to be zero, the exact single-pulse and Jacobi pulse-
train solutions cannot exist for the Bloch-NLCMESs equations. Aw) = Awg 1 51
Nevertheless, (4.9) can be integrated to yield 21 Aw? + (Aw, /2)
/a+ aqpdag /a+ aqdag where Aw, = 2xf, is the full-width at half-maximum
= TS FWHM) of g(Aw). Substituting (5.1) and (3.7) into the difi-
O )t (i s /T (P . (
+©) \/ ai — (mag +70)/72 +(0) a(a+) nitions of I; and [, in (3.12), we find thatl; = 2/(\/caAw,)

= /72T (4.12) andl> = 0for Aw, > 1/,/¢cz [19]. From (3.14) and (4.10),
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both c; and Aj3, are first obtained as a function of the group £
. ) >
velocity vgy: A
Awgwg 2 2 2 2 2 (2 2 e
c2 = m [4h7v7 Bol — p? + vjp (87 + Pof2) ] -
(5.2a) 2!
1 41 Tw -~
Ao = oy | oo+ o (461 + rwo + 2 D
wo
- E — 3fo. (5.2b) Scaled Time /7,7
Substituting (4.10) and (4.13) into (4.4b), and then comparing -~ 2 ,
the expressions aefos(21) derived from the upper- and lower- E (b)
sign equation of (4.4b), we have =1
|
_ AB 1 1 ASB2 = 1 11
Bo=—=|— 1| 3, — . N ’ ’
6/0 3 <2/3002> Ug + 6/6 2/30 (5 3a) s~l 0 'I lr / A b
_ 1 2 Ci— ; -1 ’
cy = ECOAﬁOUg + ? (53b) \\:-1
By substituting (5.2b) into (5.3a), not onéA, is expressed as s -2-8 ) ° 3 8

functions of the group velocity,, but also the group velocity is
determined for given parameters of the medium. Consequently,
the pulse-train periodd), = 7 /,/7, and the integration constantrig. 1. (a) Envelopes and (b) phases of the optical forward field (solid curves)
co are further obtained from (4.11c). On the other hand, in ord%td Br?gg scattering (;ieg{gl (dasf}eﬁlrvez)gars functi(()jnsh ofa scaleql/t‘@e. .

. . . + - e pu se-train perioa i =T ~2 = 6.85 ns; and the group ve omty IS
to ob.taln th_e integration constants ¢, andc;, we de-flne the v, = 1.29 x 10° m/s resulting in a appropriat& 3, = —0.00169 m—* and
total intensity of the forward and Bragg scattering field as fotorresponding ta /250 of the speed of light in the bare Kerr-host medium.
lows [22]:

It = ay (1)’ 4+ a (7)? = Iy + I, cos®(/727) (5.4)

wherely, = covg/4 + a?l/2 is the background intensity and
I, = (a3 — a?)/2is the modulated intensity of the total field.
The relationship between the optical power and optical inten-

sity is Pr = (no/2)(y/=0/10) Aet I, Wheresg is the vacuum
permittivity, nq is the refractive index at the Bragg wavelength
of the host medium. In this paper, we are interested in the con-
trast between the total field and its modulated amplitude. Thus
we define the contrast = I,,,/(Iy + IL..). Then the integra-
tion constants:s, cff, andc; can be determined for a given
by using the expressions @, /..., a, and a, in conjunction
with (4]_]_) Moreover, for the constant phase parameters Fig. 2. Total power of the pulse tr_ain as a function of a scal'ed tigesr.
and W, we can assumd, — ¥ = 0 for chirped pluses [0 0\econtesy has o sasty < 0. tence we choice = 10
(cE +# 0). However, for an unchirped pulse train, the forwarehodulated power i, = 1.14 W, Each pulsewidth i€, = 0.5T, = 3.425
and Bragg scattering field have to satisfy a constant phase diffeg{FWHM).
enceV, — ¥_ =[x /4 (I: odd number) obtained from (4.4a).
Such an unchirped case leadsA@, = 0 andcz = 0 from  vibrationn, = 0.0006 at the Bragg wavelengths = 1553
(4.4b) and (4.11a), respectively. Therefarg,are reducedto  nm. Here, we focus the frequency on the exact Bragg reso-
a4 (1) = ay) cos(y/727)| (5.5a) nance, i.e.pfp = 0 cr_n—l. For the two-level atoms, we as-
) sume thapy = 1.4 x 10732 c.m,Af, = 1472 GHz andNp =
a-(7) = ap|sin(y/77)|/V2. (5:50) 50 x 1024 m-3 corresponding to the typical 1000 ppm doping
These results lead th = cov,/4 = a§/2 that cannot be zero concentration of erbium atoms. By using the above parameters,
for the existence of the pulse train. Consequently, there mustiig. 1 shows the envelopes and phases of the optical forward
a dc term in the total intensity of the pulse train. field (solid curves) and Bragg scattering field (dashed curves) as
Inorder to illustrate the pulse trains, we use the following mdunctions of a scaled timeg/~>,7. The resulting group velocity
terial parameters: The Kerr host medium is a silica-based msw, = 1.29 x 10 m/s being consistent with the assumption of
terial with ng = 1.45, Aeg = 50 um?, By = 5.9 x 10° m™!,  Aw, > 1/,/¢c;. The group velocity of this forward propagating
51 =4.8x107% s/m,By = —20 p/km andn, = 1.2 x 10722 energy is substantially less than the speed of light in the bare
m?/V2 at 1550-nm wavelength region. The coupling coefficierierr-nost medium because both SIT and Bragg scattering slow
of the Bragg grating i& = 10 cm~! corresponding to the index down the light. Fig. 2 shows the total power of such slow light as

Scaled Time 7,7

w

(W)

a(t)y+a(c)

Scaled Time +7:7
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Normalized Population Difference
WE,t)! w, 1

1
0.8
0.6
0.4

8 40 4 8°
Scaled Time\/l?zf

Fig. 3. Normalized population difference as a function of a scaled {jfigr and a scaled distangg ¢. Clearly, the magnitude of the population difference is
modulated periodically with the same peridd = 6.85 ns; likewise the population difference varies periodically along the propagating distance.

a function of, /7,7. The peak power i85 + Py = 2.24 W and E 3.5
occurs whenp,(7) = ¢_(7) = 0. Furthermore, the compo- & 3.0
nents of the Bloch vector@:1, v4,w) are obtained by substi- £ 25
tuting (4.13) into (3.9). Fig. 3 shows the normalized population § 2.0
difference as a function of/727 and3,¢. Clearly, the magni- % 15
tude of the population difference is modulated periodically with &
. . . . . s 1.0
the period?},, and the population difference varies periodically 3 0.5
along the propagating distance. Such energy exchanges between g
the upper state and the lower state lead to the distortionless pulse £ 0020 40 60 80 100
trains, even if the central frequency of the optical envelopes Coupling Coefficient « (cm™)

is inside the forbidden band. Finally, we emphasize that the
pulse-train periotTp — 6.85 NS corresponds to each pulsewidt}'fig' 4. Individual pulsewidth as a function of the coupling coefficient.
(FWHM) Tw = 0.517, = 3.425 ns. Recalling that for deriving

(2'1|1 ), we assum(;z thti :Elaxa?on t_|mes I(—)|f the resotnjgt l?toﬁ%%ed by Kerr nonlinearity and doping concentration for the con-
are fong compared wi € pulsewidily . However, at 4.2 K, trastn ~ 0.49. However, the peak power of the SIT pulse train

the relaxation times of erbium atoms &fe = 10 ms (>Tiw) ¢, > 80 cm ! exceeds 144.46 W. Consequently, it will be

for the population difference, arith, = 10 ns (>Tiy) for the interesting to investigate the suitable materials and conditions

polarizations. From an experimental viewpoint, the total dur% reduce the peak power required for the pulse train for exper-
tion of a realistic finite pulse train launched into a uniformI){ . : ; :

. “imentally studying the distortionless propagation.
doped PBG structure should be much less than the atomic re- y ying propag

laxation times because the pulse-train solution has a dc back-
ground. Fig. 4 shows the individual pulsewidth as a function of
the coupling coefficient for the contragt ~ 0.49. When the  In this paper, we adopt the uniformly doped PBG model to
coupling coefficient exceeds 80 crh, each pulsewidth can bestudy SIT pulse-train propagation. However, in contrast with
smaller than 0.5 ns. Therefore, a uniformly doped PBG structyfes], our model is more general. 1) In our uniformly doped PBG
with a larger coupling coefficient is more suitable for observingnodel, we derive the Maxwell-Bloch equation by keeping the
our numerical prediction without atomic relaxation processes?E. /dz? terms. In [16], the authors emphasize that they have
The silica-based PBG structure with such a large coupling cweglected the linear contribution to the dispersionrelation arising
efficient can be fabricated on a silicon-on-insulator (SOI) strutrom the two-level atoms. Hence the allowed concentration of
ture [23], [24]. Note that the propagation constant and the grodppant atoms are limited. In[19], it has been found that SIT could
velocity for Fig. 4 remain unchanged because they are dormduce an additional negative dispersion that cannot be predicted

VI. DIscussiON ANDCONCLUSION
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by the SIT theory without the second-order spatial derivative tfe general SIT phase modulation effect. Furthermore, because
the electromagnetic field. Since the Maxwell-Bloch equatidmoth SIT and Bragg scattering slow down the light, the pulse-train
with the 9?E./9~* terms can reduce to Bloch-NLCMES,group velocity can be substantially less than the speed of light
these effective NLCMEs completely involve the SIT-induceth a bare nonlinear medium. Numerical examples of the SIT
negative dispersion and the effective grating dispersion. 2) Tpelse trainin a silica-based PBG structure doped uniformly with
phase functions of the forward and Bragg scattering fields drterentzian line-shape two-level atoms are shown. It is found
assumed to be identical in [16]. On the contrary, we considgrat even if the carrier frequency of the pulse train is inside the
general phase functions written@as (z, t) = ¢(z,t) £ ¢(z,t) forbidden band, the pulse trains can propagate through the PBG
for the fields; likewise the population difference are assumettructure. Namely, the SIT pulse train renders the PBG structure
to bew = wo + 2wy cos[2¢(z,t) + 28,2]. This general transparent.
consideration of the phase functions makes that the phase
modulation effects of the forward and Bragg scattering fields
both satisfy the general SIT chirping equation. Although our o
model is more general than that in [16], the population differ- = ﬁéféﬁfﬁﬁ,'nﬁﬂif'RLJ,'?_Z?t’yj_efé',r'ﬁ;’,cgggtgffafggg,y by pulsed co-
encew = wo + 2wy cos[2¢(z,t) + 2(,2] is a hypothesis  [2] J. H. Eberly, “Optical pulse and pulse-train propagation in a resonant
for neglecting the infinite hierarchy of equations related to the  medium,”Phys. Rev. Leitvol. 22, pp. 760-762, 1969. .
successive spatial harmonics resulting from the population[3] 'r\:']'e ghrﬁﬁfiﬁ;y;?gteo\;t'fgtﬁfl' gg”p;gast'zog_gfzé'?{‘;ggfough an optical
difference and polarization in the Bloch equations. To avoid suchjs] L. matulic and J. H. Eberly, “Analytic study of pulse chirping in self-
an assumption, a resonantly absorbing photonic crystal and a induced transparencyPhys. Rev. Avol. 6, pp. 822-836, 1972.
periodically doped PBG medium have been investigated. A vasf®] M- Nakazawa, Y. Kimura, K. Kurokawa, and K. Suzuki, “Self-induced-
. . . : transparency solitons in an erbium-doped fiber waveguiglbys. Rev.

family of SIT soliton in these two different resonance bandgap  , vol. 45, pp. 23-26, 1992.
media has also been found [11]-[15]. [6] J. L. Shultz and G. J. Salamo, “Experimental observation of the con-

In contrast to the single pulse solutions in [16], we focus E,’;]‘;g“; g\‘lj'f_‘ztt{\‘;"c‘; ?g’y'tg’; Ss‘gls‘ﬂgg E;’Oltgge;l\"axwe” Bloch equations,
our studies on the exact pulse-train solutions to the BIoch—NL—m S. John and T. Quang, “Optical bistability and phase transitions in
CMEs. Notice that the Jacobi elliptic pulse-train solutions to a doped photonic band-gap materiaPhys. Rev. Avol. 54, pp.
the Maxwell-Bloch equations for a resonance medium without  4479-4488, 1996.
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