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Distortionless Pulse-Train Propagation in a Nonlinear
Photonic Bandgap Structure Doped Uniformly With

Inhomogeneously Broadening Two-Level Atoms
Hong-Yih Tseng and Sien Chi

Abstract—The pulse propagation in a one-dimensional non-
linear photonic bandgap (PBG) structure doped uniformly with
inhomogeneously broadening two-level atoms is investigated. The
Maxwell–Bloch equations describing pulse propagation in such
a uniformly doped PBG structure are derived first and further
reduced to effective nonlinear coupled-mode equations. An exact
analytic pulse-train solution to these effective coupled-mode equa-
tions is obtained. Such a distortionless pulse-train solution is given
by sinusoidal functions with a DC background and a modulated
phase. Numerical examples of the distortionless pulse train in a
silica-based PBG structure doped uniformly with Lorentzian line-
shape two-level atoms are shown.

Index Terms—Maxwell–Bloch equations, photonic bandgap
structure, self-induced transparency.

I. INTRODUCTION

T HE DISTORTIONLESS propagation of light through
an optical resonance medium has been widely discussed

since McCall and Hahn discovered self-induced transparency
(SIT) [1]. The SIT is characterized by the continuous absorption
and reemission of electromagnetic radiation from the resonant
atoms. Thus the optical pulse propagates through the medium
without loss and distortion. Because of the SIT effect, the group
velocity of such a coherent pulse depends on the pulsewidth
and is much less than the speed of light in the host medium.
Furthermore, the SIT effect is described by the Maxwell–Bloch
equations, which have distortionless pulse-train solutions
given by the Jacobi elliptic functions [2]–[4]. Such pulse-train
propagation results from the energy of resonant atoms peri-
odically oscillating between the ground state and upper state.
In particular, when the Jacobi elliptic modulus is unity, the
pulse-train solutions are reduced to single-pulse solutions of
hyperbolic secant functions. These single pulse solutions are
called SIT solitons. Both SIT solitons and periodic pulse trains
have been observed in the experiments [5], [6].

More recently, a photonic bandgap (PBG) structure doped
with resonant atoms has drawn considerable attention [7]–[15].
In the meantime, Aközbek and John have investigated the funda-
mental work on SIT solitary waves in PBG materials doped uni-
formly with resonant atoms [16]. For example, they have found
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single pulse solutions for frequency detuned far from Bragg
resonance and frequency detuned near the PBG edge. How-
ever, the SIT analytic solution suitably for general frequency
detuning and general phase modulation in a uniformly doped
PBG medium has never been found. In this paper, we study the
SIT in a nonlinear PBG structure doped uniformly with inho-
mogeneously broadening two-level atoms. After neglecting the
high-order spatial harmonics of the material polarization, we
show that the Maxwell–Bloch equations can be reduced to ef-
fective nonlinear coupled-mode equations (NLCMEs). Analytic
distortionless pulse-train solutions to these effective NLCMEs
are obtained. It is found that even if the carrier frequency of
the pulse train is inside the forbidden band, the pulse trains can
propagate through the PBG structure and obey the general SIT
phase modulation effect.

The paper is organized as follows: In Section II, the Maxwell–
Bloch equations governing the optical pulse propagating in
a uniformly doped PBG structure are derived by keeping the
second derivative of electromagnetic field with respect to the
propagation distance. Because this second derivative is consid-
ered, our model involves the SIT-induced quadratic dispersion
due to the slow-light propagation. We also take into account the
material dispersion and Kerr nonlinearity of the host medium.
In Section III, we solve the Bloch equations and subsequently
reduce the Maxwell–Bloch equations to effective NLCMEs. The
effective NLCMEs describe that pulse propagation through a
uniformly doped PBG structure is equivalent to that through an
effective PBG structure without dopants. In Section IV, we solve
the effective NLCMEs and obtain exact pulse-train solutions
given by the sinusoidal functions. It is also shown that such a
pulse train obeys the general SIT phase modulation effect. In
Section V, we numerically study the characteristics of the pulse
trains by assuming the inhomogeneously broadening line shape
of the resonant atoms is Lorentzian. In Section VI, we compare
our results with the previous research and conclude this paper.

II. M AXWELL –BLOCH EQUATIONS

We consider a one-dimensional (1-D) Bragg grating formed
in a host medium with Kerr nonlinearity. The periodic variations
of the refractive index inside the grating region is assumed to be
[17]

(2.1)

where is theelectric field in themedium, is the frequency-
dependent refractive index, is the Kerr nonlinear-index co-

1077-260X/02$17.00 © 2002 IEEE



682 IEEE JOURNAL ON SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 8, NO. 3, MAY/JUNE 2002

efficient, is the magnitude of the periodic index variations,
and is the grating wave number. The two-level atoms with
the resonant frequency are uniformly embedded in this Kerr
host medium. From Maxwell’s equations, the wave equation de-
scribing light propagation in such a medium can be written as

(2.2)

where is the velocity of light in vacuum, is the vacuum
permeability, is the electric induced polarization including
the linear and nonlinear contributions of the host medium, and

is the resonant polarization due to the two-level atoms. In
Fourier domain, (2.2) becomes

(2.3)

where is the Fourier transform of , and is the Fourier
transform of . The electric field propagating along the
direction in such a doped nonlinear PBG structure can be ex-
pressed as

c.c.

c.c.

(2.4)

where c.c. stands for complex conjugate,is the polarization
unit vector of the light assumed to be linearly polarized along
the axis, is the transverse modal distribution, and

are the slowly varying envelopes of the forward and Bragg
scattering fields, and is the Bragg frequency. In addition, the
macroscopic resonant polarization caused by the dopants is
written as

c.c.

c.c.

(2.5)

where and correspond to the slowly varying polariza-
tion envelopes induced by and , respectively. For sim-
plicity, the quantities of and are assumed to be much
smaller than the refractive index of the host medium, so
that they can be treated as perturbations for expanding
in (2.3). After substituting (2.1), (2.4), and (2.5) into (2.3), we
can convert the resulting equations to time domain by following
the perturbation theory of distributed feedback [17], but keeping
the second derivative of electromagnetic field with respect to
. Consequently, the time-domain coupled-mode equations de-

scribing pulse propagation in a uniformly doped PBG structure
are written as

(2.6)

where are determined by the mode-propagation
constant via

implies the wave number detuning from the exact Bragg
resonance, is the linear coupling coefficient,

is the Kerr nonlinearity coefficient, and the trans-
verse mode function is averaged out by introducing the effective
core area

In arriving at (2.6), we expand in a Taylor series
for converting (2.3)

with terms to time domain [18]. In the literature,
the wave equation for pulse propagation is usually derived by
neglecting the second derivative of electromagnetic field with
respect to . However, for the SIT slow-light propagation, the

terms can be comparable to the other terms in (2.6).
This effect will be justified in the following derivation. There-
fore, we keep the terms in our equation.

We now consider the atomic Bloch equations. If the relax-
ation times of the polarization and population difference are
long compared with the pulsewidth, the relaxtion effects of the
two-level system can be ignored. Therefore, under the rotating
wave approximation, the electric field and the macroscopic po-
larization satisfy the Bloch equations

(2.7a)

(2.7b)

where is defined by is the
macroscopic population difference multiplied by the transition
matrix element between the ground state and upper state

of the two-level system. The complex envelopes and
can be further written as

(2.8a)

(2.8b)

where are real envelopes, are phase functions,
correspond to the dispersion (in phase) induced by

the resonant atoms, and correspond to the absorption
(in quadrature) caused by the resonant atoms. Moreover, the
Bloch vectors relate the macroscopic polarization
and population difference as follows:

(2.9)

where , and are the
components of polarization and population difference con-
tributed from the atoms with frequency detuned from

, and is the normalized inhomogeneous-broadening
line-shape function. To keep a closed set of Bloch equations,
we assume that

(2.10a)

(2.10b)
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After we substitute (2.4), (2.5), and (2.8)–(2.10) into (2.7), the
Bloch equations are expressed as

(2.11a)

(2.11b)

(2.11c)

(2.11d)

In (2.11), we have neglected the terms oscillating as
to get a closed set of equations. Strictly speaking,

we have ignored all higher-order spatial terms of material
polarization oscillating with multiples of the light wavenumber.
In a periodic structure, such higher-order terms might be formed
by beating of two counterpropagating and phase-modulated
(chirped) waves. This process in general produce many spatial
harmonics of material polarization which are converging very
slowly. Nevertheless, in this paper we is devoted to finding an
exact solution propagating along one-direction and exciting no
spatial harmonic of material polarization [16].

III. EFFECTIVENLCMES FORMAXWELL –BLOCH EQUATIONS

In this section, we show how to reduce the Maxwell–Bloch
equations to effective NLCMEs for pulse propagating in a non-
linear PBG structure doped uniformly with inhomogeneously
broadening two-level atoms. In order to obtain the analytic
solution we assume are in factorized forms [4],
[16], [19]

(3.1)

where is known as the dipole spectra-response function
and is normalized as . Integrating (2.11a), we have

(3.2)

where and are defined as

(3.3a)

(3.3b)

Similarly, by integrating (2.11c) and (2.11d), we obtain

(3.4a)

(3.4b)

In (3.4), is the initial population difference and it is assumed
in the ground state of the two-level system, i.e., ,
where is the doping concerntration of the res-
onant atoms. Likewise and are defined as

and (3.5a)

and (3.5b)

Substituting (3.1)–(3.5) into (2.11b), we have

(3.6)

The terms in square brackets in (3.6) should be independent of
. Therefore, we have

(3.7)

and

(3.8a)

(3.8b)

where and are the constants to be determined. Substituting
(3.3b) and (3.8) into (3.1), (3.2), (3.4), and (3.5), we obtain

(3.9a)

(3.9b)

(3.9c)

(3.9d)

Then substituting (3.9) into (2.11a) and (2.11b), we have

(3.10a)

(3.10b)

Equations (3.10) not only describe the coupling nature between
the envelopes and phases of the forward and Bragg scattering
fields in the PBG structure, but also lead to the general SIT
chirping equation, which will be studied in the next section.
Now we show that using (3.10) can reduce the Maxwell–Bloch
equations to effective NLCMEs. Using (2.8)–(2.10), (3.9), and
(3.10), we obtain

(3.11a)

(3.11b)
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where is , and two integral constants and
are defined by

(3.12a)

(3.12b)

Substituting (3.11) into (2.6), we obtain

(3.13)

where the effective parameters are

(3.14a)

(3.14b)

(3.14c)

Consequently, we have reduced (2.6) to the effective NLCMEs
(3.13) including the terms. The effective NLCMEs
describe that pulse propagation through a uniformly doped PBG
structure is equivalent to that through an effective PBG structure
without dopants. Equations (3.10) and (3.13) are referred to as
the Bloch-NLCMEs. It is noticed that the analytic solutions de-
scribing pulse propagation in a doped nonlinear PBG structure
have to satisfy the Bloch-NLCMEs.

IV. EXACT ANALYTIC SOLUTIONS TOBLOCH-NLCMES

Now, we start solving the Bloch-NLCMEs to obtain analytic
solutions. By making the moving coordinate transformation

and , (3.13) are rewritten to the forms:

(4.1)

To solve the Bloch-NLCMEs, we seek the solutions of the forms

(4.2)

Equations (4.2) indicate that the phase functions are
and , where represents the

change of the propagation constant due to the resonant atoms
and Kerr nonlinearity. The coefficient of terms in
(4.1) exhibits the induced quadratic dispersion. It is known that
the pulse velocity can be greatly reduced by the SIT. Thus the in-
duced dispersion increases when the group velocity is reduced.

We will numerically show in the next section that the group ve-
locity is much less than the speed of light in the bare Kerr-host
medium. Substituting (3.11a) and (4.2) into (4.1), and using the
new variables of optical field to
express (4.1), we have

(4.3)

where
, and . The

forms of (4.3) are equivalent to the general NLCMEs that have
moving gap-soliton solutions describing distortionless pulse
propagation through an undoped PBG structure [20], [21].
However, we will show in the following that such gap soliton
solutions cannot satisfy (3.10). Separating the real parts and
imaginary parts of (4.3), we obtain the following differential
equations:

(4.4a)

(4.4b)

Equations (4.4) possess two first integrals [21]

(4.5a)

(4.5b)

where and are integration constants, and
and .

Substituting (4.4a) and (4.5a) into (4.5b), we have a differential
equation for

(4.6)

By defining , (4.6) can be expressed as

(4.7)

where the expressions of in (4.7) will
be discussed later. Equation (4.7) can describe the motion of a
solitary wave by analogy with that of a classical particle moving
in a potential. Therefore, analytic solutions to (4.7) have been
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extensively studied for grating solitons and SIT solitons. The
well-known solutions include single-pulse solitary waves (for

) [20], [21], single-pulse solitons (for
) and Jacobi elliptic soliton-trains (for )

[2], [4], [16]. From the viewpoint of a mechanical analogy, a
single-pulse solution corresponds to a particle being released
from a zero potential position and stopping at ; more-
over, a pulse-train solution corresponds to a particle oscillating
between two positions. Notice that all the above solutions are
obtained under and . However, for a uniformly
doped nonlinear PBG structure, the Bloch-NLCMEs constrain
the quantities of . Indeed, we subsequently show thathas
to be zero for exact solutions to (4.6). Using and
integrating (3.10a), we obtain

(4.8)

where and are integration constants.
Equations (4.8) describe the general phase modulation, or pulse
chirping in the SIT. The constant indicates that the carrier
frequency of the optical field is shifted to by the SIT
effect. Likewise the instantaneous shifted frequency is inversely
proportional to the pulse intensity. The general chirping relation
has been studied for the SIT in a nonlinear medium without
PBG structure [4]. Substituting (4.8) and (4.5a) into (3.10b),
and then integrating the resulting equation for, we obtain

(4.9)

where is another integration constant. Comparing (4.6), (4.7)
and (4.9), we undergo the constraint resulting from

. These constraints lead to

and (4.10)

Hence and are determined as

(4.11a)

(4.11b)

(4.11c)

Since has to be zero, the exact single-pulse and Jacobi pulse-
train solutions cannot exist for the Bloch-NLCMEs equations.
Nevertheless, (4.9) can be integrated to yield

(4.12)

Because and from (4.11), we have to restrict
for . The solution to (4.12)

depends on the roots of . Thus we assume
, where . Then (4.12)

have an exact solution written by

(4.13a)

where and
. From (4.5a) and (4.8),

and are obtained as follow:

(4.13b)

(4.13c)

(4.13d)

where and are integration constant. As a result, we
have obtained exact analytic solutions to the Bloch-NLCMEs.
These solutions demonstrate that both the forward and Bragg
scattering fields are modulated periodically with a period

. These periodic pulse trains propagate distortionlessly in
the same direction. Thus the group velocity of the Bragg scat-
tering field is in the direction opposite to its phase velocity. Such
distortionless propagation results from the two-level atoms pe-
riodically absorbing energy from one part of the wave and then
returning the energy to an adjacent part [3]. Likewise these co-
herent photon-atom interactions balance with the grating disper-
sion and Kerr nonlinearity. Therefore, SIT occurs and the optical
field overcomes the forbidden band and passes through the PBG
structure.

V. NUMERICAL STUDY OF THE PULSE-TRAINS

To study the distortionless pulse trains, we have to further
derive all undetermined constants. For the following discus-
sions, we restrict our attention to the optical field without carrier
frequency shift, i.e., . In addition, the inhomogeneous
broadening line shape of the resonant atoms is assumed to be
Lorentzian

(5.1)

where is the full-width at half-maximum
(FWHM) of . Substituting (5.1) and (3.7) into the difi-
nitions of and in (3.12), we find that
and for [19]. From (3.14) and (4.10),
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both and are first obtained as a function of the group
velocity

(5.2a)

(5.2b)

Substituting (4.10) and (4.13) into (4.4b), and then comparing
the expressions of derived from the upper- and lower-
sign equation of (4.4b), we have

(5.3a)

(5.3b)

By substituting (5.2b) into (5.3a), not only is expressed as
functions of the group velocity , but also the group velocity is
determined for given parameters of the medium. Consequently,
the pulse-train period and the integration constant

are further obtained from (4.11c). On the other hand, in order
to obtain the integration constants , and , we define the
total intensity of the forward and Bragg scattering field as fol-
lows [22]:

(5.4)

where is the background intensity and
is the modulated intensity of the total field.

The relationship between the optical power and optical inten-
sity is , where is the vacuum
permittivity, is the refractive index at the Bragg wavelength
of the host medium. In this paper, we are interested in the con-
trast between the total field and its modulated amplitude. Thus
we define the contrast . Then the integra-
tion constants , and can be determined for a given
by using the expressions of and in conjunction
with (4.11). Moreover, for the constant phase parameters
and , we can assume for chirped pluses

. However, for an unchirped pulse train, the forward
and Bragg scattering field have to satisfy a constant phase differ-
ence ( : odd number) obtained from (4.4a).
Such an unchirped case leads to and from
(4.4b) and (4.11a), respectively. Therefore,are reduced to

(5.5a)

(5.5b)

These results lead to that cannot be zero
for the existence of the pulse train. Consequently, there must be
a dc term in the total intensity of the pulse train.

In order to illustrate the pulse trains, we use the following ma-
terial parameters: The Kerr host medium is a silica-based ma-
terial with m , m ,

s/m, ps /km and
m /V at 1550-nm wavelength region. The coupling coefficient
of the Bragg grating is cm corresponding to the index

Fig. 1. (a) Envelopes and (b) phases of the optical forward field (solid curves)
and Bragg scattering field (dashed curves) as functions of a scaled time

p

 � .

The pulse-train period isT = �=
p

 = 6:85 ns; and the group velocity is

v = 1:29� 10 m/s resulting in a appropriate�� = �0:00169 m and
corresponding to1=250 of the speed of light in the bare Kerr-host medium.

Fig. 2. Total power of the pulse train as a function of a scaled times
p

 � .

For c > 0, the contrast� has to satisfy� < 0:5. Hence we choice� = 0:49
so that the background optical power isP = 1:10 W and the amplitude of the
modulated power isP = 1:14W. Each pulsewidth isT = 0:5T = 3:425
ns (FWHM).

vibration at the Bragg wavelength
nm. Here, we focus the frequency on the exact Bragg reso-
nance, i.e., cm . For the two-level atoms, we as-
sume that c.m, GHz and

m corresponding to the typical 1000 ppm doping
concentration of erbium atoms. By using the above parameters,
Fig. 1 shows the envelopes and phases of the optical forward
field (solid curves) and Bragg scattering field (dashed curves) as
functions of a scaled time . The resulting group velocity
is m/s being consistent with the assumption of

. The group velocity of this forward propagating
energy is substantially less than the speed of light in the bare
Kerr-host medium because both SIT and Bragg scattering slow
down the light. Fig. 2 shows the total power of such slow light as
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Fig. 3. Normalized population difference as a function of a scaled time
p

 � and a scaled distance� �. Clearly, the magnitude of the population difference is

modulated periodically with the same periodT = 6:85 ns; likewise the population difference varies periodically along the propagating distance.

a function of . The peak power is W and
occurs when . Furthermore, the compo-
nents of the Bloch vectors are obtained by substi-
tuting (4.13) into (3.9). Fig. 3 shows the normalized population
difference as a function of and . Clearly, the magni-
tude of the population difference is modulated periodically with
the period , and the population difference varies periodically
along the propagating distance. Such energy exchanges between
the upper state and the lower state lead to the distortionless pulse
trains, even if the central frequency of the optical envelopes
is inside the forbidden band. Finally, we emphasize that the
pulse-train period ns corresponds to each pulsewidth
(FWHM) ns. Recalling that for deriving
(2.11), we assume the relaxation times of the resonant atoms
are long compared with the pulsewidth . However, at 4.2 K,
the relaxation times of erbium atoms are ms
for the population difference, and ns for the
polarizations. From an experimental viewpoint, the total dura-
tion of a realistic finite pulse train launched into a uniformly
doped PBG structure should be much less than the atomic re-
laxation times because the pulse-train solution has a dc back-
ground. Fig. 4 shows the individual pulsewidth as a function of
the coupling coefficient for the contrast . When the
coupling coefficient exceeds 80 cm, each pulsewidth can be
smaller than 0.5 ns. Therefore, a uniformly doped PBG structure
with a larger coupling coefficient is more suitable for observing
our numerical prediction without atomic relaxation processes.
The silica-based PBG structure with such a large coupling co-
efficient can be fabricated on a silicon-on-insulator (SOI) struc-
ture [23], [24]. Note that the propagation constant and the group
velocity for Fig. 4 remain unchanged because they are domi-

Fig. 4. Individual pulsewidth as a function of the coupling coefficient.

nated by Kerr nonlinearity and doping concentration for the con-
trast . However, the peak power of the SIT pulse train
for cm exceeds 144.46 W. Consequently, it will be
interesting to investigate the suitable materials and conditions
to reduce the peak power required for the pulse train for exper-
imentally studying the distortionless propagation.

VI. DISCUSSION ANDCONCLUSION

In this paper, we adopt the uniformly doped PBG model to
study SIT pulse-train propagation. However, in contrast with
[16], our model is more general. 1) In our uniformly doped PBG
model, we derive the Maxwell–Bloch equation by keeping the

terms. In [16], the authors emphasize that they have
neglected the linearcontribution to the dispersion relationarising
from the two-level atoms. Hence the allowed concentration of
dopant atoms are limited. In [19], it has been found that SIT could
induce an additional negative dispersion that cannot be predicted
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by the SIT theory without the second-order spatial derivative of
the electromagnetic field. Since the Maxwell–Bloch equation
with the terms can reduce to Bloch-NLCMEs,
these effective NLCMEs completely involve the SIT-induced
negative dispersion and the effective grating dispersion. 2) The
phase functions of the forward and Bragg scattering fields are
assumed to be identical in [16]. On the contrary, we consider
general phase functions written as
for the fields; likewise the population difference are assumed
to be . This general
consideration of the phase functions makes that the phase
modulation effects of the forward and Bragg scattering fields
both satisfy the general SIT chirping equation. Although our
model is more general than that in [16], the population differ-
ence is a hypothesis
for neglecting the infinite hierarchy of equations related to the
successive spatial harmonics resulting from the population
difference and polarization in the Bloch equations. To avoid such
an assumption, a resonantly absorbing photonic crystal and a
periodically doped PBG medium have been investigated. A vast
family of SIT soliton in these two different resonance bandgap
media has also been found [11]–[15].

In contrast to the single pulse solutions in [16], we focus
our studies on the exact pulse-train solutions to the Bloch-NL-
CMEs. Notice that the Jacobi elliptic pulse-train solutions to
the Maxwell–Bloch equations for a resonance medium without
PBG structure have been theoretically studied [4] and experi-
mentally demonstrated [6]. However, our model involves con-
sidering a resonance medium with resonant atoms embedded in
a PBG structure. It is well known that a PBG structure has a for-
bidden band for optical energy, but the SIT provide a mechanism
to make it possible that an optical pulse train can pass through
the PBG medium. The pulse trains in a uniformly doped non-
linear PBG structure are given by the sinusoidal functions with
background intensity. Because the PBG medium is transparent
for the SIT, the research with respect to optical pulse propa-
gation in a doped nonlinear PBG structure has attracted much
interest. It has been further suggested that a doped nonlinear
PBG structure could be applied to high sensitivity optical filter,
pulse reshaping devices and optical switching devices for op-
tical computing, optical interconnection and optical communi-
cation system [7]–[16]. It is our hope that our model can accu-
rately estimate the associated medium parameters and the ini-
tial condition of the input optical field for designing such a uni-
formly doped device. In addition, it would be useful to study
how to excite the pulse trains in a real doped PBG medium and
what are the impacts of the relaxation effects on the stability of
the pulse trains. These subjects would lead to practical appli-
cations of uniformly doped PBG structures in the vast area of
lightwave systems.

In summary, we have derived the Bloch-NLCMEs to model
the SIT effect in a 1-D nonlinear PBG structure doped uniformly
with inhomogeneously broadening two-level atoms. We have
found the exact analytic pulse-train solutions to the Bloch-
NLCMEs. These pulse-train solutions are described by the
sinusoidal functions with DC background. Their phases obey

the general SIT phase modulation effect. Furthermore, because
bothSITandBraggscatteringslowdownthe light, thepulse-train
group velocity can be substantially less than the speed of light
in a bare nonlinear medium. Numerical examples of the SIT
pulse train in a silica-based PBG structure doped uniformly with
Lorentzian line-shape two-level atoms are shown. It is found
that even if the carrier frequency of the pulse train is inside the
forbidden band, the pulse trains can propagate through the PBG
structure. Namely, the SIT pulse train renders the PBG structure
transparent.
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