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General SU„2… formulation for quantum searching with certainty
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A general quantum search algorithm with arbitrary unitary transformations and an arbitrary initial state is
considered in this work. To search a marked state with certainty, we have derived, using an SU~2! represen-
tation: ~1! the matching condition relating the phase rotations in the algorithm,~2! a concise formula for
evaluating the required number of iterations for the search, and~3! the final state after the search, with a
complex phase in its amplitude. Moreover, the optimal choices and modifications of the phase angles in the
Grover kernel are also studied.
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Quantum mechanical algorithms have recently beco
very popular in the field of computational science beca
they can speed up a computation over classical algorith
Famous examples include the factorizing algorithm disc
ered by Shor@1# and the quantum search algorithm well d
veloped by Grover@2,3#. The latter is what we intend to dea
with in this work. If there is an unsorted database contain
N items, and out of which only one marked item satisfie
given condition, then using Grover’s algorithm one will fin
the object inO(AN) quantum mechanical steps instead
O(N) classical steps. It has been shown that Grover’s or
nal algorithm is optimal@4–6#. But Grover’s algorithm pro-
vides a high probability of finding the object only for a larg
N. The probability will be lower asN decreases. Grover@7#,
however, also proposed that the Walsh-Hadamard trans
mation used in the original version can be replaced by alm
any arbitrary unitary operator and the phase angles of r
tion can be arbitrarily used as well, instead of the originap
angles. The utility of the arbitrary phase angles in fact c
provide the possibility for finding the marked item with ce
tainty, no matter whetherN is large or not, if these angle
obey a so-called matching condition.

Some typical literatures concerning with the matchi
condition will be mentioned here. Long and co-workers@8,9#
have derived the relationf5u, where f and u are the
phases used in the algorithm, using an SO~3! picture. Høyer
@10#, on the other hand, has proved a relation tan(f/2)
5tan(u/2)(122/N), and claimed that the relationf5u is an
approximation to this case. Recently, a more general ma
ing condition has been derived by Long, Xiao, and Sun@11#,
also using the SO~3! picture. In the last article, however, onl
the certainty for finding the marked state is ensured. In f
a phase angle appearing in the amplitude of the final s
after searching will remain. If the final state should be n
essary for a future application, i.e., if it should interact w
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other states, this phase angle will be important for quant
interferences, but it cannot be given in the SO~3! represen-
tation. We, therefore, intend to derive the matching condit
in the SU~2! picture. Besides, we will also give a more co
cise formula for evaluating the number of the iteratio
needed in the searching and deduce the final state in a c
plete form aseidut&, whereut& is the marked state. The op
timal choice of the phase angles will be discussed, too.

Suppose in a two-dimensional, complex Hilbert space
have a marked stateut& to be searched by successively ope
ating a Grover kernelG on an arbitrary initial stateus&. The
Grover kernel is a product of two unitary operatorsGt and
Gh , given by

Gt5I 1~eif21!ut&^tu,

Gh5I 1~eiu21!Uuh&^huU21, ~1!

whereU is an arbitrary unitary operator,uh& is another unit
vector in the space, andf and u are two phase angles. I
should be noted that the phasesf and u actually are the
differencesf5f22f1 andu5u22u1 , wheref2 , f1 , u2 ,
and u1 , as depicted in Refs.@12,13#, denote the rotating
angles tout&, the vector orthogonal tout&, Uuh&, and the
vector orthogonal toUuh&, respectively. The Grover kerne
can be expressed in a matrix form as long as an orthonor
set of basis vectors is designated, so we simply choose

uI &5ut& and uII &5~Uuh&2Uthut&)/ l , ~2!

where Uth5^tuUuh& and l 5(12uUthu2)1/2. Letting Uth
5sin(b)eia, we can write, from Eq.~2!,

Uuh&5sin~b!eiauI &1cos~b!uII &, ~3!

and the Grover kernel can now be written as
G52GhGt52F eif@11~eiu21!sin2~b!# ~eiu21!sin~b!cos~b!eia

eif~eiu21!sin~b!cos~b!e2 ia 11~eiu21!cos2~b!
G . ~4!
©2002 The American Physical Society22-1
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In the searching process, the Grover kernel is successi
operated on the initial stateus&. We wish that after, say,m
iterations the operation the final state will be orthogonal
the basis vectoruII & so that the probability for finding the
marked stateut& will exactly be unity. Alternatively, in math-
ematical expression, we wish to fulfill the requirement

^II uGmus&50, ~5!

since then

u^tuGmus&u5u^I uGmus&u51. ~6!

The eigenvalues of the Grover kernelG are

l1,252expF i S f1u

2
6wD G , ~7!

where the anglew is defined by

cos~w!5cosS f2u

2 D22 sinS f

2 D sinS u

2D sin2~b!. ~8!

The normalized eigenvectors associated with these eigen
ues are computed:
n
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ug1&5Fe2 i ~f/2!eia cos~x!

sin~x! G , ug2&5F 2sin~x!

ei ~f/2!e2 ia cos~x!G .
~9!

In expression~9!, the anglex is defined by

sin~x!5sinS u

2D sin~2b!/Al m,

where

l m5Fsin~w!1sinS f2u

2 D12 cosS f

2 D sinS u

2D sin2~b!G2

1FsinS u

2D sin~2b!G2

52 sin~w!Fsin~w!1sinS f2u

2 D
12 cosS f

2 D sinS u

2D sin2~b!G .
The matrix Gm can be simply expressed byGm

5l1
mug1&^g1u1l2

mug2&^g2u, so we have
Gm5~21!meim@~f1u!/2#Feimw cos2~x!1e2 imw sin2~x! e2 i ~f/2!eiai sin~mw!sin~2x!

ei ~f/2!e2 iai sin~mw!sin~2x! eimw sin2~x!1e2 imw cos2~x!
G . ~10!
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The initial stateus& in this work is considered to be a
arbitrary unit vector in the space and is given by

us&5sin~b0!uI &1cos~b0!eiuuII &. ~11!

The requirement~5! implies that both the real and imagina
parts of the term̂ II uGmus& are zero, so, as substituting Eq
~10! and~11! into Eq.~5!, one will eventually obtain the two
equations

2sin~mw!sinS f

2
2a2uD sin~2x!sin~b0!

1cos~mw!cos~b0!50, ~12!

sin~mw!cosS f

2
2a2uD sin~2x!sin~b0!

2sin~mw!cos~2x!cos~b0!50. ~13!

Equation~13!, by the definition of the anglex, will reduce to
the matching condition

FsinS f2u

2 D12 cosS f

2 D sinS u

2D sin2~b!Gcos~b0!

5sinS u

2D sin~2b!cosS f

2
2a2uD sin~b0!, ~14!
which is identical to the relation derived by Long, Xiao, an
Sun @11#,

tanS f

2 D5tanS u

2D S cos~2b!1sin~2b!tan~b0!cos~a1u!

12tan~b0!tanS u

2D sin~2b!sin~a1u! D .

~15!

Equation~12!, under the satisfaction of the matching cond
tion ~14!, or ~15!, will reduce to a concise formula for evalu
ating the number of iterationsm,

cosH mw1sin21Fsin~b0!sinS f

2
2a2uD G J 50. ~16!

By Eq. ~16!, one can compute the numberm,

m5 d f e, ~17!

where d e denotes the smallest integer greater than the qu
tity in it, and the functionf is given by

f 5

p

2
2sin21Fsin~b0!sinS f

2
2a2uD G

cos21FcosS f2u

2 D22 sinS f

2 D sinS u

2D sin2~b!G .

~18!
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It can also be shown that if the matching condition is f
filled, then afterm searching iterations the final state will b

Gmus&5eidut&5expH i FmS p1
f1u

2 D1VG J ut&, ~19!

where the angleV is defined by

V5tan21FcotS f

2
2a2uD G . ~20!

The phase angle appearing in the amplitude of the final s
will be important for quantum interferences if possibly t
state should interact with other states in a future applicat
so we would better had it remain in the present form.

The matching condition~14!, or ~15!, relates the anglesf,
u, b, b0 , anda1u for finding a marked state with certainty
If b, b0 , anda1u are designated, thenf5f(u) is deduced
by the matching condition. Asf~u! is determined, we then
can evaluate by Eq.~18! the value off 5 f „f(u),u… and con-
sequently decide by Eq.~17! the number of iterationsm. The
functionsf~u! and f (u) for some particular designations o
b, b0 , anda1u have been shown in Figs. 1 and 2. The
examples have schematically depicted that theoretically
can establish a tabulated chart of possible choices betw
all of the phases for finding a marked state with certainty
is worth noticing that asa1u50 andb5b0 , the matching

FIG. 1. Variations off~u! ~solid! and f (u) ~broken!, for a1u
50, b051024, and b51024 ~1!, 1022 ~2!, 0.5 ~3!, and 0.7~4!,
respectively. The crosses denote the special case of Høyer@10#,
while the full circles correspond to the optimal choices offop and
uop for a1u50, b051024, andb50.7. The solid straight line 1
corresponds to the casef5u, while the solid curve 2 is only ap
proximately close to the former.
05232
-

te

n,

e
e
en
It

condition recoversf5u automatically since then Eq.~13!
becomes an identity, and accordingly one has

f 5

p

2
2sin21FsinS f

2 D sin~b!G
2 sin21FsinS f

2 D sin~b!G for f5u. ~21!

This is the case discussed in Ref.@9#; an example can be rea
by the straight line of unity slope forb5b051024 and the
correspondingf vs u variation in Fig. 1. It can also be show
that the matching condition~14! will recover the relation
considered by Høyer@10#,

tanS f

2 D5tanS f

2 D cos~2b! for cos~f/22a2u!50.

~22!

In Figs. 1 and 2 we have shown by the cross marks so
particular examples of this special case.

Observing Figs. 1 and 2, one realizes that for every d
ignation ofb, b0 , anda1u, the optimal choices forf and
u is lettingf5u5p, since then the correspondingf is mini-
mum under the factd f /du5(] f /]f)(df/du)1] f /]u50,
for f5u5p. We thus denote the optimal value ofm by

mop5 dmin~ f !e5 dp22sin21@sin~b0!cos~a1u!#

2b e. ~23!

FIG. 2. Variations off~u! ~solid! and f (u) ~broken!, for a1u
50.1, b050.1, andb51024 ~1!, 1022 ~2!, 0.5 ~3!, and 0.7~4!,
respectively. The crosses denote the special case of Høyer@10#. The
solid curves 1 and 2 are very close, and both of them are o
approximately close to the linef5u.
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With the choice ofmop, however, one needs to modify th
phasesu and f~u! to depart fromp so that the matching
condition is satisfied again. For example, ifa1u50, b0

51024, andb50.7 are designated, then the minimum val
of f will be min(f )50.56. So we choosemop51 and the
modified phases areuop5(160.490)p and fop5(1
60.889)p, respectively. This example has been shown
the marked entire circles in Fig. 1. It is worth noticing aga
that under the choice ofmop the modifiedf and u for the
special case considered by Long@9# will be

fop5uop52 sin21S sinS p

4mop12D
sin~b!

D ,

where
on

m

n

y

05232
y

mop5 dp22b

2b
e.

This is in fact a special case in which the phasesfop anduop
can be given by a closed-form formula.

To summarize, using the SU~2! representation we hav
derived the matching condition~14! for finding with cer-
tainty a marked state with arbitrary unitary transformatio
and an arbitrary initial state. The formula~17!, together with
Eq. ~18!, has also been deduced for evaluating the requ
number of iterations for the search. Moreover, the final st
with a phase angle in its amplitude, which cannot be giv
by the SO~3! picture used in Ref.@11#, has been conse
quently obtained. The optimal choicef5u5p under any
designation ofb, b0 , anda1u has been shown. Howeve
for finding the marked state with certainty, the phasesf and
u need to be modified sincemop must be an integer. An
example to depict the modification off andu, therefore, has
also been given.
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