PHYSICAL REVIEW A, VOLUME 65, 052322
General SU2) formulation for quantum searching with certainty
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A general quantum search algorithm with arbitrary unitary transformations and an arbitrary initial state is
considered in this work. To search a marked state with certainty, we have derived, using2aneplesen-
tation: (1) the matching condition relating the phase rotations in the algorif@na concise formula for
evaluating the required number of iterations for the search,(8ndhe final state after the search, with a
complex phase in its amplitude. Moreover, the optimal choices and modifications of the phase angles in the
Grover kernel are also studied.
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Quantum mechanical algorithms have recently becomether states, this phase angle will be important for quantum
very popular in the field of computational science becausénterferences, but it cannot be given in the (S0Orepresen-
they can speed up a computation over classical algorithmsation. We, therefore, intend to derive the matching condition
Famous examples include the factorizing algorithm discovin the SU2) picture. Besides, we will also give a more con-
ered by Shof1] and the quantum search algorithm well de-cise formula for evaluating the number of the iterations
veloped by Grovef2,3]. The latter is what we intend to deal needed in the searching and deduce the final state in a com-
with in this work. If there is an unsorted database containinglete form ase'’|7), where|7) is the marked state. The op-
N items, and out of which only one marked item satisfies aimal choice of the phase angles will be discussed, too.
given condition, then using Grover’s algorithm one will find ~ Suppose in a two-dimensional, complex Hilbert space we
the object inO(y/N) quantum mechanical steps instead ofhave a marked stafe) to be searched by successively oper-
O(N) classical steps. It has been shown that Grover’s origiating a Grover kerneG on an arbitrary initial statés). The
nal algorithm is optimal4—6]. But Grover’s algorithm pro- Grover kernel is a product of two unitary operat@s and
vides a high probability of finding the object only for a large G,,, given by
N. The probability will be lower af\ decreases. Grovér],

however, also proposed that the Walsh-Hadamard transfor- G,=1+(e?=1)|r)(7],
mation used in the original version can be replaced by almost " _
any arbitrary unitary operator and the phase angles of rota- G,=1+(e"=1U|n)}nlU"", .y

tion can be arbitrarily used as well, instead of the original whereU is an arbitrary unitary operatofy) is another unit
angles. The utility of the arbitrary phase angles in fact can y y op i

. A - . : vector in the space, ang and ¢ are two phase angles. It
provide the possibility for finding the marked item with cer-
tainty, no matter whetheN is large or not, if these angles should be noted that the phasgsand ¢ actually are the

obey a so-called matching condition. differences= ¢~ ¢, and 6= 0,— 0., wheree,, ¢4, 0,

Some typical literatures concerning with the matchingand 61, as depicted in Refd12,13, denote the rotating
condition will be mentioned here. Long and co-workgg®] ~ 2ndles to| ), the vector orthogonal t¢r), U[7), and the
have derived the relatioms=6, where ¢ and 6 are the vector orthogonal tdJ|n), respectively. The Grover kernel

phases used in the algorithm, using an(®Qicture. Hayer can be expressed in.a mat.rix form as long as an orthonormal
[10], on the other hand, has proved a relation s set of basis vectors is designated, so we simply choose
=tan(f/2)(1—2/N), and claimed that the relatioh= 6 is an _ _ _

approximation to this case. Recently, a more general match- =[7) and |1)=(Um=Ur [/, @
ing condition has been derived by Long, Xiao, and §18,  \here U,, =(7|U|5) and I=(1-|U,,|
also using the S@) picture. In the last article, however, only —ging)é“. we can write, from Eq(2),
the certainty for finding the marked state is ensured. In fact,

a phase angle appearing in the amplitude of the final state U|n)=sin(B)e'|1)+cog B)|I1), 3
after searching will remain. If the final state should be nec-

essary for a future application, i.e., if it should interact withand the Grover kernel can now be written as

)12 Letting U,

e[1+ (e~ Dsir(B)]  (e''—1)sin(B)cog B)e'”

C==C.C = duer-1ysinBicog e @ 1+ (e~ 1)co2(B)

(4)
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In the searching process, the Grover kernel is successively e~ (¥l coqx) —sin(x)
operated on the initial stats). We wish that after, saym lg1)= sin(x) ,lg2)= eil(42)g-ia cogx) |
iterations the operation the final state will be orthogonal to (9)

the basis vectofll) so that the probability for finding the
marked statér) will exactly be unity. Alternatively, in math-

In expression9), the anglex is defined b
ematical expression, we wish to fulfill the requirement P ) g y

m — 0
since then
[(71G™|s)|=[(1|G™Is)[=1. (6) ~ Where
The eigenvalues of the Grover kerr@glare b— é 0 2
| = sin(w)+sin( +2 cos(— sin(—) sinz(,B)}
[ p+6 2 2 2
N1o=—exgi Tiw , (7) P 5 b—6
+ sin(i sin(ZB)} =2 sin(w)| sin(w) + sin| 5 )
where the anglev is defined by
b\ [0}
-6 0 h Z
cogw)= cos( QST) -2 sir(g) sin( 5) sirf(B).  (8) +2 Co{ 2)sm( 2) i (B) .
The normalized eigenvectors associated with these eigenvalhe matrix G™ can be simply expressed byG™
ues are computed: =N1191){(91] + 13 92){(g,|, so we have

€M cog(x)+e MVsird(x) e (¢2ele sin(mw)sin(2x)

e'(?e19 sifmw)sin(2x) €™ sir?(x)+e "™ cog(x) |’ (19

GM= ( _ 1)meim[(¢+ 0)/2]

The initial state|s) in this work is considered to be an which is identical to the relation derived by Long, Xiao, and
arbitrary unit vector in the space and is given by Sun[11],

|s)=sin(Bo)|1)+cos Bo)e"[11). a r<¢ t r(a) cos 28) + sin(28)tan Bo)cos a+ u)
a — | =1al —
The requirement5) implies that both the real and imaginary 1—tar(,80)tar<f sin(28)sin(a+u)
parts of the tern{I1|G™|s) are zero, so, as substituting Egs. 2

(10) and(11) into Eq. (5), one will eventually obtain the two (15
equations

Equation(12), under the satisfaction of the matching condi-

. ¢ . - tio_n (14), or (15), will reduc_e to a concise formula for evalu-
—sin( mw)sm( STas u) sin(2x)sin( Bo) ating the number of iterations,
+cogmw)cog By) =0, (12) cos{ mw-+sin~ ! sin(ﬁo)sin(g— a—u) ] =0. (16
sin(mw)cos( ?—a—u)sin(Zx)sin(,Bo) By Eg. (16), one can compute the number
—sin(mw)cog 2x)cog Bg) =0. (13 m=[f1, 17

where[] denotes the smallest integer greater than the quan-

Equation(13), by the definition of the angle, will reduce to tity in it, and the functiorf is given by

the matching condition

.(¢—9
sin| ——

LA A
5 +200<§)Sln(§)8m2(ﬂ) fo — ; .
e & . cos * co{d)T)—Zsi%g)sin(z)sirﬁ(ﬂ)}
=sm(§)sm(2ﬂ)cos(E—a—u)sm([g’o), (14 (18)

sin(Bo)sin(g— a— u)

T

-1
——sin
2

cog Bo)
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FIG. 1. Variations of¢(6) (solid) and f(6) (broken, for a+u FIG. 2. Variations of¢(6) (solid) and f(#) (broken, for a+u
=0, Bp=10% andf=10"* (1), 10 2 (2), 0.5(3), and 0.7(4),  =0.1, B,=0.1, andB=10* (1), 10 2 (2), 0.5 (3), and 0.7(4),

respectively. The crosses denote the special case of H&®r  respectively. The crosses denote the special case of HigeThe
while the full circles correspond to the optimal choicesdgf, and solid curves 1 and 2 are very close, and both of them are only
Bop for a+u=0, Bo=10"*, and 3=0.7. The solid straight line 1 approximately close to the ling= 6.

corresponds to the cask= 0, while the solid curve 2 is only ap-

proximately close to the former. condition recoversp= 6 automatically since then Eq13)
becomes an identity, and accordingly one has
It can also be shown that if the matching condition is ful-
filled, then afterm searching iterations the final state will be T )
——sin’?! sin(E sin(B)
_ . +6 f= for ¢=206. (21
G"|s)=el9| r)zexp{| m( T+ d)T +Q| |7, (19 R sin(?) sin(ﬂ)} ¢
where the anglé) is defined by This is the case discussed in Rf]; an example can be read
by the straight line of unity slope fg8=8,=10 * and the
Q=tan ! cot(f— o u) (20 corresponding vs @ variation in Fig. 1. It can also be shown
2 ' that the matching conditiofl4) will recover the relation

considered by Haydr0],
The phase angle appearing in the amplitude of the final state

will be important for quantum interferences if possibly the f _ f -
state should interact with other states in a future application, 2 @ 2 cog2p) for cog¢i2—a—u)=0.
so we would better had it remain in the present form. (22

The matching conditiofi14), or (15), relates the angles,
0, B, By, anda+u for finding a marked state with certainty. In Figs. 1 and 2 we have shown by the cross marks some
If B, Bo, anda+u are designated, thep= ¢(6) is deduced particular examples of this special case.
by the matching condition. Ag(6) is determined, we then Observing Figs. 1 and 2, one realizes that for every des-
can evaluate by Eq18) the value off = f(¢(6),0) and con- ignation of B, By, anda+u, the optimal choices fog and
sequently decide by E@17) the number of iterations. The  @is letting ¢= 6=, since then the correspondifigs mini-
functions ¢(6) and f(#) for some particular designations of mum under the factf/d6=(df/d¢)(de/do)+df/96=0,
B, Bo, anda+u have been shown in Figs. 1 and 2. Thesefor ¢= 6= . We thus denote the optimal value wfby
examples have schematically depicted that theoretically we
can establish a tabulated chart of possible choices between T
all of the phases for finding a marked state with certainty. It 5 sin [ sin( Bp)cog a+u)]
is worth noticing that ag«+u=0 andB=8,, the matching Mop=[min(f )]= 25

. (23
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With the choice ofm,,, however, one needs to modify the T
phasesf and ¢(6) to depart froms so that the matching E_'B
condition is satisfied again. For example,dft u=0, B, Mop=

=104, andB=0.7 are designated, then the minimum value 2B
of f will be min(f)=0.56. So we choosen,,=1 and the  This is in fact a special case in which the phaggsand 6,,
modified phases aref,,=(1=0.490)r and ¢q,=(1 can be given by a closed-form formula.
+0.889)m, respectively. This example has been shown by To summarize, using the $P) representation we have
the marked entire circles in Fig. 1. It is worth noticing againderived the matching conditiofi4) for finding with cer-
that under the choice ah,, the modified¢ and 6 for the E:gtgnaaTb?{fgg i?]ti";‘i;el \sl\ég[]eaﬁ:g?gr#&g%ytgggfgngﬁﬂonS
special case considered by Lof@] will be Eqg. (18), has also been deduced for evaluating the required
number of iterations for the search. Moreover, the final state
with a phase angle in its amplitude, which cannot be given
sin(—w by the SQ@3) picture used in Ref[11], has been conse-
- 4mgpt+2 quently obtained. The optimal choieg= 6= under any
bop=Oop=2sIN W ' designation ofB, By, anda+u has been shown. However,
for finding the marked state with certainty, the phagesnd
6 need to be modified sincen,, must be an integer. An
example to depict the modification gfand 6, therefore, has
also been given.
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